Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.599
Filtrar
1.
BMC Plant Biol ; 24(1): 430, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773371

RESUMO

BACKGROUND: As the greenhouse effect intensifies, global temperatures are steadily increasing, posing a challenge to bread wheat (Triticum aestivum L.) production. It is imperative to comprehend the mechanism of high temperature tolerance in wheat and implement breeding programs to identify and develop heat-tolerant wheat germplasm and cultivars. RESULTS: To identify quantitative trait loci (QTL) related to heat stress tolerance (HST) at seedling stage in wheat, a panel of 253 wheat accessions which were re-sequenced used to conduct genome-wide association studies (GWAS) using the factored spectrally transformed linear mixed models (FaST-LMM). For most accessions, the growth of seedlings was found to be inhibited under heat stress. Analysis of the phenotypic data revealed that under heat stress conditions, the main root length, total root length, and shoot length of seedlings decreased by 47.46%, 49.29%, and 15.19%, respectively, compared to those in normal conditions. However, 17 varieties were identified as heat stress tolerant germplasm. Through GWAS analysis, a total of 115 QTLs were detected under both heat stress and normal conditions. Furthermore, 15 stable QTL-clusters associated with heat response were identified. By combining gene expression, haplotype analysis, and gene annotation information within the physical intervals of the 15 QTL-clusters, two novel candidate genes, TraesCS4B03G0152700/TaWRKY74-B and TraesCS4B03G0501400/TaSnRK3.15-B, were responsive to temperature and identified as potential regulators of HST in wheat at the seedling stage. CONCLUSIONS: This study conducted a detailed genetic analysis and successfully identified two genes potentially associated with HST in wheat at the seedling stage, laying a foundation to further dissect the regulatory mechanism underlying HST in wheat under high temperature conditions. Our finding could serve as genomic landmarks for wheat breeding aimed at improving adaptation to heat stress in the face of climate change.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Plântula , Termotolerância , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Termotolerância/genética , Resposta ao Choque Térmico/genética , Fenótipo , Temperatura Alta
2.
Sci Rep ; 14(1): 10682, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724517

RESUMO

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Metabolômica , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Metabolômica/métodos , Perfilação da Expressão Gênica , Transcriptoma , Hemerocallis/metabolismo , Hemerocallis/genética , Metaboloma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética
3.
Planta ; 259(6): 145, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709313

RESUMO

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Assuntos
Genótipo , Hordeum , Raízes de Plantas , Plântula , Solo , Hordeum/genética , Hordeum/fisiologia , Hordeum/crescimento & desenvolvimento , Hordeum/anatomia & histologia , Solo/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/anatomia & histologia , Fenótipo , Concentração de Íons de Hidrogênio , Melhoramento Vegetal , Etiópia , Variação Genética , Análise de Componente Principal , Ácidos/metabolismo
4.
Planta ; 259(6): 144, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709333

RESUMO

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Assuntos
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Fosfatos , Fotossíntese , Raízes de Plantas , Silício , Hordeum/metabolismo , Hordeum/genética , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Silício/farmacologia , Silício/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia
5.
Planta ; 259(6): 151, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733553

RESUMO

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Assuntos
Nitrogênio , Raízes de Plantas , Estresse Fisiológico , Tetraploidia , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Nitrogênio/metabolismo , Estresse Fisiológico/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764056

RESUMO

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Assuntos
Temperatura Baixa , Cucumis sativus , Ferro , Plântula , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos dos fármacos , Ferro/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Hidróxidos/farmacologia , Hidróxidos/metabolismo , Fertilizantes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/química , Estresse Fisiológico , Magnésio/metabolismo
7.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760671

RESUMO

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Assuntos
Helianthus , Sulfeto de Hidrogênio , Osmorregulação , Fotossíntese , Estresse Salino , Plântula , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sulfeto de Hidrogênio/metabolismo , Cloroplastos/metabolismo , Salinidade
8.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760701

RESUMO

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Assuntos
Antioxidantes , Gases em Plasma , Plântula , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Gases em Plasma/farmacologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo
9.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
10.
J Environ Manage ; 359: 121012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718601

RESUMO

Forest Islands and their adjacent natural grasslands are vulnerable and sensitive ecosystems to the actions of severe fires, which result in losses of their resilience, which makes the potential of passive restoration of these environments unfeasible after such events. This study aims to verify, through an autochthonous species exclusive to these Forest Islands, whether it can develop in Histosols around a Forest Island that has been degraded by fire for years. The place of study and collection of the material tested was in the Sempre-Vivas National Park. Histosols samples were collected for analysis of chemical and physical attributes and experimental conduction in a seedling nursery. The performance of Richeria grandis was evaluated in these Histosols from seed vigor tests, initial plant growth in a greenhouse. R. grandis manages to develop in Histosols around the degraded Forest Island, disregarding possible interspecific field competitions. The physical and chemical characteristics of the Histosols around the island do not prevent the effective restoration of this phytocenosis. R. grandis showed the same seed vigor for all Histosols tested and all seedlings survived until the end of the experiment. It was observed that the seedlings grown in the Histosols of the island of the forest, showed a behavior of greater height, number of leaves and moisture content, and the place with exposed Histosols, with the highest fire severity, provided the lowest development in height, diameter and number of leaves. According to ecophysiological analyses, the species is under some environmental stress regardless of the treatment.


Assuntos
Incêndios , Florestas , Árvores , Plântula/crescimento & desenvolvimento , Ecossistema
11.
Sci Rep ; 14(1): 10446, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714777

RESUMO

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Assuntos
Alelopatia , Benzoxazinas , Secale , Amaranthus/crescimento & desenvolvimento , Germinação , Técnicas de Cocultura/métodos , Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
12.
Arch Microbiol ; 206(5): 235, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722413

RESUMO

In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.


Assuntos
Mirtilos Azuis (Planta) , Fusarium , Doenças das Plantas , Raízes de Plantas , Schizophyllum , Mirtilos Azuis (Planta)/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Fusarium/fisiologia , Schizophyllum/metabolismo , Schizophyllum/crescimento & desenvolvimento , Antibiose , Hifas/crescimento & desenvolvimento , Agentes de Controle Biológico , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
13.
BMC Plant Biol ; 24(1): 397, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745144

RESUMO

BACKGROUND AND AIMS: The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS: We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS: The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS: Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.


Assuntos
Germinação , Poaceae , Sementes , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo/química , Estresse Fisiológico
14.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750032

RESUMO

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Extratos Vegetais , Tolerância ao Sal , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Extratos Vegetais/farmacologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/genética , Gleiquênias/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Oxidativo/efeitos dos fármacos
15.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760823

RESUMO

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Assuntos
Carbono , Melatonina , Nitrogênio , Poliestirenos , Titânio , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Titânio/farmacologia , Nitrogênio/metabolismo , Carbono/metabolismo , Melatonina/farmacologia , Poliestirenos/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
16.
BMC Plant Biol ; 24(1): 407, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755531

RESUMO

BACKGROUND: The goal of this research is to enhance the quality of cucumber seedlings grown in greenhouses by experimenting with various soilless culture mediums (CMs) and the application of pistachio wood vinegar (WV). The experimental setup was designed as a factorial experiment within a randomized complete block design (RCBD), in greenhouse conditions featuring three replications to assess the effects of different culture media (CMs) and concentrations of pistachio wood vinegar (WV) on cucumber seedling growth. Cucumber seeds were planted in three CMs: coco peat-peat moss, coco peat-vermicompost, and date palm compost-vermicompost mixed in a 75:25 volume-to-volume ratio. These were then treated with pistachio WV at concentrations of 0, 0.5, and 1%, applied four times during irrigation following the emergence of the third leaf. RESULTS: The study revealed that treating seedlings with 0.5% WV in the date palm compost-vermicompost CM significantly enhanced various growth parameters. Specifically, it resulted in a 90% increase in shoot fresh mass, a 59% increase in shoot dry mass, an 11% increase in root fresh mass, a 36% increase in root dry mass, a 65% increase in shoot length, a 62% increase in leaf area, a 25% increase in stem diameter, a 41% increase in relative water content (RWC), and a 6% improvement in membrane stability index (MSI), all in comparison to untreated seedlings grown in coco peat-peat moss CM. Furthermore, chlorophyll a, b, total chlorophyll, and carotenoid levels were 2.3, 2.7, 2.6, and 2.7 times higher, respectively, in seedlings treated with 0.5% WV and grown in the date palm compost-vermicompost CM, compared to those treated with the same concentration of WV but grown in coco peat-peat moss CM. Additionally, the Fv/Fm ratio saw a 52% increase. When plant nutrition was enhanced with the date palm compost-vermicompost CM and 1% WV, auxin content rose by 130% compared to seedlings grown in coco peat-peat moss CM and treated with 0.5% WV. CONCLUSIONS: The study demonstrates that using 0.5% WV in conjunction with date palm compost-vermicompost CM significantly betters the quality of cucumber seedlings, outperforming other treatment combinations.


Assuntos
Cucumis sativus , Plântula , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Phoeniceae/fisiologia , Phoeniceae/crescimento & desenvolvimento , Ácido Acético/metabolismo , Pistacia/fisiologia , Pistacia/crescimento & desenvolvimento , Compostagem/métodos , Solo/química , Clorofila/metabolismo
17.
PLoS One ; 19(5): e0303145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728268

RESUMO

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Assuntos
Germinação , Polietilenoglicóis , Plântula , Sementes , Polietilenoglicóis/farmacologia , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Desidratação , Catalase/metabolismo , Malondialdeído/metabolismo , Prolina/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
18.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
19.
Braz J Biol ; 84: 279851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747856

RESUMO

The present study was conducted to determine the efficiency of organomineral fertilizer from cupuaçu residues (ORFCup) and dose of maximum technical efficiency of Azospirillum brasilense on the initial growth and morphophysiological quality of Mezilaurus itauba seedlings in the northern Amazon. The variables evaluated were: shoot height (H, cm), stem diameter (SD, mm), shoot dry mass (SDM, g plant-1), root dry mass (RDM, g plant-1) total dry mass (TDM, g plant-1), Dickson quality index (DQI), net assimilation rate (NAR, g m-2 day-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), specific leaf area (SLA, cm2 g-1), and leaf mass ratio (LMR, g g-1). Organomineral fertilizer from cupuaçu residues promotes better quality and robustness in M. itauba seedlings at the dose of maximum technical efficiency of 0.45 mL. L-1 of A. brasilense.


Assuntos
Azospirillum brasilense , Fertilizantes , Plântula , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Azospirillum brasilense/fisiologia , Minerais/análise
20.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646759

RESUMO

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Assuntos
Carvão Vegetal , Cucumis sativus , Nitrogênio , Raízes de Plantas , Plântula , Solo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Nitrogênio/metabolismo , Solo/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Agricultura/métodos , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA