Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
PLoS One ; 16(7): e0253812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237067

RESUMO

Graphene has shown great potential for improving growth of many plants, but its effect on woody plants remains essentially unstudied. In this work, Pinus tabuliformis Carr. bare-rooted seedlings grown outdoors in pots were irrigated with a graphene solution over a concentration range of 0-50 mg/L for six months. Graphene was found to stimulate root growth, with a maximal effect at 25 mg/L. We then investigated root microstructure and carried out transcript profiling of root materials treated with 0 and 25 mg/L graphene. Graphene treatment resulted in plasma-wall separation and destruction of membrane integrity in root cells. More than 50 thousand of differentially expressed genes (DEGs) were obtained by RNA sequencing, among which 6477 could be annotated using other plant databases. The GO enrichment analysis and KEGG pathway analysis of the annotated DEGs indicated that abiotic stress responses, which resemble salt stress, were induced by graphene treatment in roots, while responses to biotic stimuli were inhibited. Numerous metabolic processes and hormone signal transduction pathways were altered by the treatment. The growth promotion effects of graphene may be mediated by encouraging proline synthesis, and suppression of the expression of the auxin response gene SMALL AUXIN UP-REGULATED RNA 41 (SAUR41), PYL genes which encode ABA receptors, and GSK3 homologs.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Grafite/farmacologia , Pinus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Microscopia Eletrônica de Transmissão , Pinus/efeitos dos fármacos , Pinus/genética , Pinus/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/ultraestrutura , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Transcriptoma/efeitos dos fármacos
2.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34148874

RESUMO

Like any other biological tissue, plant tissue also exhibits optical properties like refraction, transmission, absorption, coloration, scattering and so on. Several studies have been conducted using different parts of plants such as leaves, seedlings, roots, stems and so on, and their optical properties have been analyzed to study plant physiology, influence of environmental cues on plant metabolism, light propagation through plant parts and the like. Thus, it is essential to study in detail the optical properties of several plant parts to determine their structural relationship. In this backdrop, an experimental study was conducted to observe and analyze the optical properties of node and inter-nodal tissue cross-sections of the plant Alternanthera philoxeroides under a polarizing microscope constructed and standardized in the laboratory. The observed optical properties of the microscopic tissue sections have been then studied to determine a significant structural relationship between nodal and inter-nodal tissue arrangement patterns as a whole. Tissue sections that have undergone a sort of biological perturbation like loss of water (dried in air for 15 min) have also been studied to study the change in the pattern of tissue optical property when compared with that of normal plant-tissue cross-sections under a polarizing microscope. This type of biological perturbation was chosen for the study because water plays an important role in maintenance of the normal physiological processes in plants and most other forms of life.


Assuntos
Amaranthaceae/ultraestrutura , Folhas de Planta/ultraestrutura , Raízes de Plantas/ultraestrutura , Caules de Planta/ultraestrutura , Plântula/ultraestrutura , Água/fisiologia , Amaranthaceae/fisiologia , Dessecação/métodos , Humanos , Luz , Microscopia de Polarização , Microtomia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Plântula/fisiologia
3.
Dev Cell ; 56(10): 1484-1497.e7, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878345

RESUMO

Cellulose is produced at the plasma membrane of plant cells by cellulose synthase (CESA) complexes (CSCs). CSCs are assembled in the endomembrane system and then trafficked to the plasma membrane. Because CESAs are only active in the plasma membrane, control of CSC secretion regulates cellulose synthesis. We identified members of a family of seven transmembrane domain-containing proteins (7TMs) that are important for cellulose production during cell wall integrity stress. 7TMs are often associated with guanine nucleotide-binding (G) protein signaling and we found that mutants affecting the Gßγ dimer phenocopied the 7tm mutants. Unexpectedly, the 7TMs localized to the Golgi/trans-Golgi network where they interacted with G protein components. Here, the 7TMs and Gßγ regulated CESA trafficking but did not affect general protein secretion. Our results outline how a G protein-coupled module regulates CESA trafficking and reveal that defects in this process lead to exacerbated responses to cell wall integrity stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glucosiltransferases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Mutação/genética , Ligação Proteica , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Transdução de Sinais , Estresse Fisiológico , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
4.
Plant J ; 106(4): 928-941, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609310

RESUMO

The plant hormone auxin plays a critical role in root growth and development; however, the contributions or specific roles of cell-type auxin signals in root growth and development are not well understood. Here, we mapped tissue and cell types that are important for auxin-mediated root growth and development by manipulating the local response and synthesis of auxin. Repressing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele strongly inhibited root growth, with the largest effect observed in the endodermis. Enhancing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele also caused reduced root growth, albeit to a lesser extent. Moreover, we established that root growth was inhibited by enhancement of auxin synthesis in specific cell types of the epidermis, cortex and endodermis, whereas increased auxin synthesis in the pericycle and stele had only minor effects on root growth. Our study thus establishes an association between cellular identity and cell type-specific auxin signaling that guides root growth and development.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Membrana Celular/metabolismo , Especificidade de Órgãos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura
5.
Plant J ; 106(4): 913-927, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33606325

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2 ), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7-9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Membrana Celular/enzimologia , Genes Reporter , Mutação , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura
6.
Cells ; 9(10)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086614

RESUMO

Plant cell walls play an important role in shaping the defense strategies of plants. This research demonstrates the influence of two differentiators: the lifestyle and properties of the Trichoderma species on cell wall changes in common wheat seedlings. The methodologies used in this investigation include microscopy observations and immunodetection. In this study was shown that the plant cell wall was altered due to its interaction with Trichoderma. The accumulation of lignins and reorganization of pectin were observed. The immunocytochemistry indicated that low methyl-esterified pectins appeared in intercellular spaces. Moreover, it was found that the arabinogalactan protein epitope JIM14 can play a role in the interaction of wheat roots with both the tested Trichoderma strains. Nevertheless, we postulate that modifications, such as the appearance of lignins, rearrangement of low methyl-esterified pectins, and arabinogalactan proteins due to the interaction with Trichoderma show that tested strains can be potentially used in wheat seedlings protection to pathogens.


Assuntos
Parede Celular/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Trichoderma/fisiologia , Triticum/citologia , Parede Celular/ultraestrutura , Contagem de Colônia Microbiana , Epitopos/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plântula/citologia , Plântula/ultraestrutura , Trichoderma/crescimento & desenvolvimento , Trichoderma/ultraestrutura , Triticum/ultraestrutura
7.
Methods Mol Biol ; 2149: 315-325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617942

RESUMO

The deposition and modulation of constituent polymers of plant cell walls are profoundly important events during plant development. Identification of specific polymers within assembled walls during morphogenesis and in response to stress conditions represents a major goal of plant cell biologists. Arabidopsis thaliana is a model organism that has become central to research focused on fundamental plant processes including those related to plant wall dynamics. Its fast life cycle and easy access to a variety of mutants and ecotypes of Arabidopsis have stimulated the need for rapid assessment tools to probe its wall organization at the cellular and subcellular levels. We describe two rapid assessment techniques that allow for elucidation of the cell wall polymers of root hairs and high-resolution analysis of surface features of various vegetative organs. Live organism immunolabeling of cell wall polymers employing light microscopy and confocal laser scanning microscopy can be effectively performed using a large microplate-based screening strategy (see Figs. 1 and 2). Rapid cryofixation and imaging of variable pressure scanning electron microscopy also allows for imaging of surface features of all portions of the plant as clearly seen in Fig. 3.


Assuntos
Arabidopsis/metabolismo , Biopolímeros/metabolismo , Parede Celular/química , Plântula/metabolismo , Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Glucanos/metabolismo , Raízes de Plantas/metabolismo , Plântula/ultraestrutura
8.
Methods Mol Biol ; 2149: 365-382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617946

RESUMO

High-resolution imaging of the membranous intermediates and cytoskeletal arrays involved in the assembly of a new cell wall during plant cytokinesis requires state-of-the-art electron microscopy techniques. The combination of cryofixation/freeze-substitution methods with electron tomography (ET) has revealed amazing structural details of this unique cellular process. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant cytokinesis, sample preparation by high-pressure freezing/freeze substitution, and ET of plastic sections. In addition, immunogold approaches for identification of proteins and polysaccharides during cell wall assembly are discussed.


Assuntos
Arabidopsis/citologia , Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Imuno-Histoquímica/métodos , Células Vegetais/ultraestrutura , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Congelamento , Processamento de Imagem Assistida por Computador , Microtúbulos/ultraestrutura , Pressão , Resinas Vegetais/química , Ribossomos/ultraestrutura , Plântula/citologia , Plântula/ultraestrutura , Sementes/citologia , Sementes/ultraestrutura , Nicotiana/citologia
9.
PLoS One ; 15(5): e0231696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379784

RESUMO

The detection of direct archaeological remains of alcoholic beverages and their production is still a challenge to archaeological science, as most of the markers known up to now are either not durable or diagnostic enough to be used as secure proof. The current study addresses this question by experimental work reproducing the malting processes and subsequent charring of the resulting products under laboratory conditions in order to simulate their preservation (by charring) in archaeological contexts and to explore the preservation of microstructural alterations of the cereal grains. The experimentally germinated and charred grains showed clearly degraded (thinned) aleurone cell walls. The histological alterations of the cereal grains were observed and quantified using reflected light and scanning electron microscopy and supported using morphometric and statistical analyses. In order to verify the experimental observations of histological alterations, amorphous charred objects (ACO) containing cereal remains originating from five archaeological sites dating to the 4th millennium BCE were considered: two sites were archaeologically recognisable brewing installations from Predynastic Egypt, while the three broadly contemporary central European lakeshore settlements lack specific contexts for their cereal-based food remains. The aleurone cell wall thinning known from food technological research and observed in our own experimental material was indeed also recorded in the archaeological finds. The Egyptian materials derive from beer production with certainty, supported by ample contextual and artefactual data. The Neolithic lakeshore settlement finds currently represent the oldest traces of malting in central Europe, while a bowl-shaped bread-like object from Hornstaad-Hörnle possibly even points towards early beer production in central Europe. One major further implication of our study is that the cell wall breakdown in the grain's aleurone layer can be used as a general marker for malting processes with relevance to a wide range of charred archaeological finds of cereal products.


Assuntos
Arqueologia/métodos , Cerveja/história , Grão Comestível , Proteínas de Plantas/ultraestrutura , Cerveja/análise , Grão Comestível/química , Grão Comestível/ultraestrutura , Egito , Europa (Continente) , História Antiga , Humanos , Microscopia Eletrônica de Varredura , Plântula/química , Plântula/ultraestrutura
10.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290389

RESUMO

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Assuntos
Cloroplastos/ultraestrutura , Ácido Cítrico/farmacologia , Cobre/toxicidade , Corchorus/crescimento & desenvolvimento , Corchorus/fisiologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Corchorus/efeitos dos fármacos , Corchorus/ultraestrutura , Gases/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Plântula/efeitos dos fármacos , Plântula/ultraestrutura
11.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739540

RESUMO

This study was conducted in order to determine the effect of priming with γ-aminobutyric acid (GABA) at 0.5 mM on rice (Oryza sativa L.) seed germination under osmotic stress (OS) induced by polyethylene glycol (30 g/L PEG 6000); and salinity stress (S, 150 mM NaCl) and their combination (OS+S). Priming with GABA significantly alleviated the detrimental effects of OS, S and OS+S on seed germination and seedling growth. The photosynthetic system and water relation parameters were improved by GABA under stress. Priming treatment significantly increased the GABA content, sugars, protein, starch and glutathione reductase. GABA priming significantly reduced Na+ concentrations, proline, free radical and malonaldehyde and also significantly increased K+ concentration under the stress condition. Additionally, the activities of antioxidant enzymes, phenolic metabolism-related enzymes, detoxification-related enzymes and their transcription levels were improved by GABA priming under stress. In the GABA primed-plants, salinity stress alone resulted in an obvious increase in the expression level of Calcineurin B-like Protein-interacting protein Kinases (CIPKs) genes such as OsCIPK01, OsCIPK03, OsCIPK08 and OsCIPK15, and osmotic stress alone resulted in obvious increase in the expression of OsCIPK02, OsCIPK07 and OsCIPK09; and OS+S resulted in a significant up-regulation of OsCIPK12 and OsCIPK17. The results showed that salinity, osmotic stresses and their combination induced changes in cell ultra-morphology and cell cycle progression resulting in prolonged cell cycle development duration and inhibitory effects on rice seedlings growth. Hence, our findings suggested that the high tolerance to OS+S is closely associated with the capability of GABA priming to control the reactive oxygen species (ROS) level by inducing antioxidant enzymes, secondary metabolism and their transcription level. This knowledge provides new evidence for better understanding molecular mechanisms of GABA-regulating salinity and osmotic-combined stress tolerance during rice seed germination and development.


Assuntos
Oryza/metabolismo , Pressão Osmótica , Oxirredução , Estresse Oxidativo , Salinidade , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Oryza/genética , Fenóis/metabolismo , Fotossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Estresse Fisiológico , Água/metabolismo
12.
Chemosphere ; 235: 1066-1072, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561296

RESUMO

This study was conducted to explore the effects of priming of seven-year-old aged seeds with different concentrations of silver nanoparticles (AgNPs) on growth of broad bean (Vicia faba L.). Seeds were primed with different concentrations of AgNPs for 6 h before growing in the plastic trays. Different growth parameters like growth attributes, photosynthetic pigments, carbohydrates, antioxidant enzymes and chloroplast ultrastructure were estimated after 14 days of germination. Priming with AgNPs affected the root and shoot growth attributes as compared with control depending upon concentrations of AgNPs. In all treatments, photosynthetic pigments increased significantly above control levels, but total soluble sugars decreased in 10 and 50 ppm AgNPs and slightly increased in 100 ppm AgNPs as compared with control. Starch accumulation was apparent in all treated seedlings above that of control levels. Mesophyll cells of all treated seedlings were altered with electron dense particles than control. Priming with AgNPs affected the chloroplast structure which appeared in the form of less stacking of Greene, formation of protrusions and extensions, irregular shape of chloroplasts as compared with spindle shaped regular chloroplasts of control. In all treatments, total phenols were slightly affected as compared with control. The antioxidant enzyme activities in seedlings varied with the dose and type of antioxidants. Overall, AgNPs adversely affected the chloroplast ultrastructure, but increased growth of seedlings and starch accumulation. Further studies are required to explore the effects of AgNPs on the long-term on crop productivity of aged seeds.


Assuntos
Cloroplastos/efeitos dos fármacos , Nanopartículas Metálicas/química , Plântula/ultraestrutura , Prata/química , Antioxidantes/farmacologia , Cloroplastos/ultraestrutura , Germinação/efeitos dos fármacos , Fotossíntese , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Prata/farmacologia , Amido/metabolismo , Vicia faba/crescimento & desenvolvimento , Vicia faba/ultraestrutura
13.
Plant Sci ; 287: 110203, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31481208

RESUMO

Embryo and endosperm originate from the double fertilization, but they have different developmental fates and biological functions. We identified a previously undescribed maize seed mutant, wherein the embryo appears to be more severely affected than the endosperm (embryo-specific, emb). In the W22 background, the emb embryo arrests at the transition stage whereas its endosperm appears nearly normal in size. At maturity, the embryo in W22-emb is apparently small or even invisible. In contrast, the emb endosperm develops into a relative normal size. We cloned the mutant gene on the Chromosome 7L and designated it emb-7L. This gene is generally expressed, but it has a relatively higher expression level in leaves. Emb-7L encodes a chloroplast-localized P-type pentatricopeptide repeat (PPR) protein, consistent with the severe chloroplast deficiency in emb-7L albino seedling leaves. Full transcriptome analysis of the leaves of WT and emb-7L seedlings reveals that transcription of chloroplast protein-encoding genes are dramatically variable with pre-mRNA intron splicing apparently affected in a tissue-dependent pattern and the chloroplast structure and activity were dramatically affected including chloroplast membrane and photosynthesis machinery component and synthesis of metabolic products (e.g., fatty acids, amino acids, starch).


Assuntos
Proteínas de Plantas/genética , Splicing de RNA , Transcriptoma , Zea mays/genética , Cloroplastos/genética , Cloroplastos/ultraestrutura , Endosperma/embriologia , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Cloroplastos/genética , Íntrons/genética , Mutação , Fotossíntese , Folhas de Planta/embriologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Precursores de RNA/genética , Plântula/embriologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Zea mays/embriologia , Zea mays/crescimento & desenvolvimento , Zea mays/ultraestrutura
14.
Plant Reprod ; 32(3): 307-322, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069543

RESUMO

KEY MESSAGE: We describe a function for a novel Arabidopsis gene, E6-like 1 (E6L1), that was identified as a highly expressed gene in the stigma and plays a role in early post-pollination stages. In Arabidopsis, successful pollen-stigma interactions are dependent on rapid recognition of compatible pollen by the stigmatic papillae located on the surface of the pistil and the subsequent regulation of pollen hydration and germination, and followed by the growth of pollen tubes through the stigma surface. Here we have described the function of a novel gene, E6-like 1 (E6L1), that was identified through the analysis of transcriptome datasets, as one of highest expressed genes in the stigma, and furthermore, its expression was largely restricted to the stigma and trichomes. The first E6 gene was initially identified as a highly expressed gene during cotton fiber development, and related E6-like predicted proteins are found throughout the Angiosperms. To date, no orthologous genes have been assigned a biological function. Both the Arabidopsis E6L1 and cotton E6 proteins are predicted to be secreted, and this was confirmed using an E6L1:RFP fusion construct. To further investigate E6L1's function, one T-DNA and two independent CRISPR-generated mutants were analyzed for compatible pollen-stigma interactions, and pollen hydration, pollen adhesion, and seed set were mildly impaired for the e6l1 mutants. This work identifies E6L1 as a novel stigmatic factor that plays a role during the early post-pollination stages in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiologia , Flores/ultraestrutura , Germinação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Especificidade de Órgãos , Filogenia , Pólen/genética , Pólen/fisiologia , Pólen/ultraestrutura , Tubo Polínico/genética , Tubo Polínico/fisiologia , Tubo Polínico/ultraestrutura , Polinização , Reprodução , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura , Transcriptoma
15.
ACS Appl Mater Interfaces ; 11(18): 16905-16913, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993970

RESUMO

The physiochemical properties of nanoparticles (NPs), including surface charge, will affect their uptake, transformation, translocation, and final fate in the environment. In this study, we compared the phytoxoxicity and transport behaviors of nano CeO2 (nCeO2) functionalized with positively charged (Cs-nCeO2) and negatively charged (PAA-nCeO2) coatings. Cucumber seedlings were hydroponically exposed to 0-1000 mg/L of Cs-nCeO2 and PAA-nCeO2 for 14 days and the contents, distribution, translocation, and transformation of Ce in plants were analyzed using inductively coupled plasma mass spectrometry, micro X-ray fluorescence (µ-XRF), and X-ray absorption near-edge spectroscopy (XANES), respectively. Results showed that the seedling growth and Ce contents in plant tissues were functions of exposure concentrations and surface charge. Cs-nCeO2 was adsorbed strongly on a negatively charged root surface, which led to significantly higher Ce contents in the roots and lower translocation factors of Ce from the roots to shoots in Cs-nCeO2 group than in PAA-nCeO2 group. The results of µ-XRF showed that Ce elements were mainly accumulated at the root tips and lateral roots, as well as in the veins and at the edge of leaves. XANES results revealed that the proportion of Ce(III) was comparable in the plant tissues of the two groups. We speculated that Cs-nCeO2 and PAA-nCeO2 were partially dissolved under the effect of root exudates, releasing Ce3+ ions as a result. Then, the Ce3+ ions were transported upward in the form of Ce(III) complexes along the vascular bundles and eventually accumulated in the veins. The other portion of Cs-nCeO2 and PAA-nCeO2 entered the roots through the gap of a Casparian strip at root tips/lateral roots and was transported upward as intact NPs and finally accumulated at the edge of the blade. This study will greatly advance our information on how the properties of NPs influence their phytotoxicity, uptake, and subsequent trophic transfer in terrestrial food webs.


Assuntos
Cério/química , Cucumis sativus/efeitos dos fármacos , Nanopartículas/química , Plântula/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cério/farmacologia , Cério/toxicidade , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/ultraestrutura , Espectrometria de Massas , Nanopartículas/toxicidade , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Espectroscopia por Absorção de Raios X
16.
Plant Biol (Stuttg) ; 21(5): 844-853, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30927480

RESUMO

Environmental cadmium (Cd) sources have increased in mangrove sediments in recent decades, inducing cellular damage to many plants. Avicennia schaueriana is abundant in mangrove sites and has been subject to Cd contamination. The possible effects of Cd toxicity and the structural and physiological disturbances to this plant were studied. Can this plant express early cellular tolerance mechanisms to such metal contamination? Seedlings of A. schaueriana were collected from sites of their natural occurrence, placed in plastic pots containing nutrient solution for 60 days, and subsequently exposed to increasing Cd concentrations for 5 days under experimental conditions. The anatomical, ultrastructural and physiological changes induced by Cd were analysed. Cd accumulated mainly in the root system and in pneumatophores, stems and leaves, induced differential accumulation of mineral nutrients, but did not induce necrosis or changes in leaf anatomy. However, there was a decrease in starch grains and an increase in deposited electron-dense material in the cortex and vascular bundles. Cd induced both increases in calcium (Ca) content in shoots and Ca oxalate crystal precipitation in leaf mesophyll and was detected in crystals and in the secretion of salt glands. Our observations and experimental results provide evidence of Cd tolerance in A. schaueriana. As a new feature, despite the clear cellular physiological disorders, this plant is able to eliminate Cd through leaf salt glands and immobilise it in Ca crystals, representing fast mechanisms for Cd exclusion and complexation in leaves in heavy metal coastal polluted marine ecosystems.


Assuntos
Avicennia/efeitos dos fármacos , Cádmio/toxicidade , Folhas de Planta/metabolismo , Avicennia/metabolismo , Avicennia/ultraestrutura , Cádmio/metabolismo , Cálcio/metabolismo , Microscopia Eletrônica de Transmissão , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/ultraestrutura
17.
Plant Sci ; 280: 321-329, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824011

RESUMO

Cysteine functions not only as an amino acid in proteins but also as a precursor for a large number of essential biomolecules. Cysteine is synthesized via the incorporation of sulfide to O-acetylserine under the catalysis of O-acetylserine(thiol)lyase (OASTL). In dicotyledonous Arabidopsis, nine OASTL genes have been reported. However, in their null mutants, only the mutant of CS26 encoding S-sulfocysteine synthase showed the visible phenotypic changes, displaying significantly small plants and pale-green leaves under long-day condition but not short-day condition. Up to now, no OASTL gene or mutant has been identified in monocotyledon. In this study, we isolated a green-revertible albino mutant gra78 in rice (Oryza sativa). Its albino phenotype at the early seedling stage was sensitive to temperature but independent of photoperiod. Map-based cloning revealed that candidate gene LOC_Os01g59920 of GRA78 encodes a putative S-sulfocysteine synthase showing significant similarity with Arabidopsis CS26. Complementation experiment confirmed that mutation in LOC_Os01g59920 accounted for the mutant phenotype of gra78. GRA78 is constitutively expressed in all tissues and its encoded protein is targeted to the chloroplast. In addition, qRT-PCR suggested that expression levels of four OASTL homolog genes and five photosynthetic genes were remarkably down-regulated.


Assuntos
Liases/metabolismo , Oryza/enzimologia , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Liases/genética , Liases/ultraestrutura , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Fenótipo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura
18.
Plant Physiol Biochem ; 135: 372-384, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30616112

RESUMO

Nutrient deficiency has economic and ecological repercussions for citrus fruit crops worldwide. Citrus crops rely on fertilization to maintain good fruit output and quality, whereas new crop management policy aims to reduce fertilizers input. New rootstocks are needed to meet to this constraint, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. Here we compared physiological, biochemical and anatomic traits of leaves in diploid (2x) and doubled-diploid (4x) Citrumelo 4475 (Citrus paradisi L. Macf. × Poncirus trifoliata L. Raf.) and Volkamer lemon (Citrus limonia Osb.) seedlings over 7 months of nutrient deficiency. Photosynthetic parameters (Pnet, Gs and Fv/Fm) decreased, but to a lesser extent in 4x genotypes than 2x. Degradation of the ultrastructural organelles (chloroplasts and mitochondria) and compound cells (thylakoids and starches) was also lower in 4x genotypes, suggesting that tetraploidy may enhance tolerance to nutrient deficiency. However, leaf surface (stomata, stomatal density and epithelial cells) showed no nutrient deficiency-induced change. In 4x Citrumelo 4475, the higher tolerance to nutrient deficiency was associated with a lower MDA and H2O2 accumulation than in the 2x, suggesting a more efficient antioxidant system in the 4x genotype. However, few differences in antioxidant system and oxidative status were observed between 2x and 4x Volkamer lemons.


Assuntos
Citrus/genética , Diploide , Plântula/genética , Tetraploidia , Clorofila A/metabolismo , Cloroplastos/ultraestrutura , Citrus/metabolismo , Citrus/fisiologia , Citrus/ultraestrutura , Citrus paradisi/genética , Citrus paradisi/metabolismo , Citrus paradisi/fisiologia , Citrus paradisi/ultraestrutura , Microscopia Eletrônica de Varredura , Mitocôndrias/ultraestrutura , Nutrientes/deficiência , Fotossíntese , Poncirus/genética , Poncirus/metabolismo , Poncirus/fisiologia , Poncirus/ultraestrutura , Plântula/metabolismo , Plântula/fisiologia , Plântula/ultraestrutura , Estresse Fisiológico
19.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626061

RESUMO

As a promising energy plant for biodiesel, Jatropha curcas is a tropical and subtropical shrub and its growth is affected by one of major abiotic stress, chilling. Therefore, we adopt the phosphoproteomic analysis, physiological measurement and ultrastructure observation to illustrate the responsive mechanism of J. curcas seedling under chilling (4 °C) stress. After chilling for 6 h, 308 significantly changed phosphoproteins were detected. Prolonged the chilling treatment for 24 h, obvious physiological injury can be observed and a total of 332 phosphoproteins were examined to be significantly changed. After recovery (28 °C) for 24 h, 291 phosphoproteins were varied at the phosphorylation level. GO analysis showed that significantly changed phosphoproteins were mainly responsible for cellular protein modification process, transport, cellular component organization and signal transduction at the chilling and recovery periods. On the basis of protein-protein interaction network analysis, phosphorylation of several protein kinases, such as SnRK2, MEKK1, EDR1, CDPK, EIN2, EIN4, PI4K and 14-3-3 were possibly responsible for cross-talk between ABA, Ca2+, ethylene and phosphoinositide mediated signaling pathways. We also highlighted the phosphorylation of HOS1, APX and PIP2 might be associated with response to chilling stress in J. curcas seedling. These results will be valuable for further study from the molecular breeding perspective.


Assuntos
Temperatura Baixa , Jatropha/metabolismo , Jatropha/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Plântula/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Sequência de Aminoácidos , Ontologia Genética , Jatropha/ultraestrutura , Anotação de Sequência Molecular , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosforilação , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Mapas de Interação de Proteínas , Plântula/anatomia & histologia , Plântula/fisiologia , Plântula/ultraestrutura
20.
Planta ; 249(6): 1731-1746, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30684036

RESUMO

MAIN CONCLUSION: While plant irrigation usually increases yield, irrigation also affects seed characteristics with respect to endoreplication level, chemical composition, number of carbonyl bands, and cuticular wax profiles. Seeds of sweet varieties of the narrow-leaved lupin have good nutritional properties; however, these plants are sensitive to water deficit. Irrigation improves lupin yield, but can affect seed characteristics. The purpose of the study was to evaluate irrigation influence on lupin seed features and their chemical composition. Morphological analyses showed worse quality of seeds from the irrigated plants, with regard to their size and weight. This was confirmed by cytophotometric analyses which revealed a lower DNA content in the nuclei of cells from the apical and basal regions of the irrigated seeds. The lower degree of polyploidy of the nuclei entails lower cell sizes and limited space for storage components. Fourier transform infrared spectroscopic analysis demonstrated that protein and cuticular wax profiles of the irrigated seeds were different from the control. The electrophoretic analyses indicated differences in protein profiles including changes in the proportion of lupin storage proteins. Among the various studied elements, only the nitrogen content decreased in the embryo axis of irrigated plants. Although germination dynamics of the irrigated seeds was higher, the seedlings' development rate was slightly lower than in the control. The hydrogen peroxide level in root meristem cells was higher during germination in the control suggesting its regulatory role in seed metabolism/signaling. Our study indicated that irrigation of lupin plant affected seed features and composition.


Assuntos
Irrigação Agrícola , Peróxido de Hidrogênio/metabolismo , Lupinus/fisiologia , Sementes/fisiologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Cotilédone/ultraestrutura , Endorreduplicação , Germinação , Lupinus/genética , Lupinus/crescimento & desenvolvimento , Lupinus/ultraestrutura , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Mitose , Proteínas de Armazenamento de Sementes , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/ultraestrutura , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA