Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Nat Plants ; 10(1): 161-171, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38177664

RESUMO

Plants convert external cues into mobile mRNAs to synchronize meristematic differentiation with environmental dynamics. These mRNAs are selectively transported to intercellular pores, plasmodesmata (PD), for cell-to-cell movement. However, how plants recognize and deliver mobile mRNAs to PD remains unknown. Here we show that mobile mRNAs hitchhike on organelle trafficking to transport towards PD. Perturbed cytoskeleton organization or organelle trafficking severely disrupts the subcellular distribution of mobile mRNAs. Arabidopsis rotamase cyclophilins (ROCs), which are organelle-localized RNA-binding proteins, specifically bind mobile mRNAs on the surface of organelles to direct intracellular transport. Arabidopsis roc mutants exhibit phenotype alterations and disruptions in the transport of mobile mRNAs. These findings suggest that ROCs play a crucial role in facilitating the systemic delivery of mobile mRNAs. Our results highlight that an RNA-binding protein-mediated hitchhiking system is specifically recruited to orient plant mobile mRNAs for intercellular transport.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transporte Biológico , Organelas , Plantas/genética , Plasmodesmos/metabolismo
2.
Mol Plant Microbe Interact ; 37(2): 84-92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942798

RESUMO

In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. While plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To establish a methodology for identification and characterization of the cell-to-cell mobility of effectors, we performed a quantitative live imaging-based screen of candidate effectors of the fungal pathogen Colletotrichum higginsianum. We predicted C. higginsianum effectors by their expression profiles, the presence of a secretion signal, and their predicted and in planta localization when fused to green fluorescent protein. We assayed for cell-to-cell mobility of nucleocytosolic effectors and identified 14 that are cell-to-cell mobile. We identified that three of these effectors are "hypermobile," showing cell-to-cell mobility greater than expected for a protein of that size. To explore the mechanism of hypermobility, we chose two hypermobile effectors and measured their impact on plasmodesmata function and found that even though they show no direct association with plasmodesmata, each increases the transport capacity of plasmodesmata. Thus, our methods for quantitative analysis of cell-to-cell mobility of candidate microbe-derived effectors, or any suite of host proteins, can identify cell-to-cell hypermobility and offer greater understanding of how proteins affect plasmodesmal function and intercellular connectivity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Plantas/metabolismo , Citoplasma , Citosol , Parede Celular
3.
Mol Plant Microbe Interact ; 37(3): 304-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37782126

RESUMO

It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. Fusarium oxysporum f. sp. lycopersici (Fol) facilitates effector translocation by expansion of the size-exclusion limit of PD using the Six5/Avr2 effector pair. How other fungal pathogens manipulate PD is unknown. We recently reported that many fungal pathogens belonging to different families carry effector pairs that resemble the SIX5/AVR2 gene pair from Fol. Here, we performed structural predictions of three of these effector pairs from Leptosphaeria maculans (Lm) and tested their ability to manipulate PD and to complement the virulence defect of a Fol SIX5 knockout mutant. We show that the AvrLm10A homologs are structurally related to FolSix5 and localize at PD when they are expressed with their paired effectors. Furthermore, these effectors were found to complement FolSix5 function in cell-to-cell mobility assays and in fungal virulence. We conclude that distantly related fungal species rely on structurally related paired effector proteins to manipulate PD and facilitate effector mobility. The wide distribution of these effector pairs implies Six5-mediated effector translocation to be a conserved propensity among fungal plant pathogens. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas Fúngicas , Fusarium , Humanos , Proteínas Fúngicas/metabolismo , Virulência , Plasmodesmos/metabolismo , Doenças das Plantas/microbiologia
4.
Plant Biotechnol J ; 22(5): 1387-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130080

RESUMO

Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.


Assuntos
Hemípteros , Proteínas de Membrana , Oryza , Viroses , Animais , Plasmodesmos/metabolismo , Proteínas Virais/metabolismo , Oryza/metabolismo , Doenças das Plantas , Hemípteros/metabolismo
5.
New Phytol ; 241(1): 298-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882365

RESUMO

In leaves of C4 plants, the reactions of photosynthesis become restricted between two compartments. Typically, this allows accumulation of C4 acids in mesophyll (M) cells and subsequent decarboxylation in the bundle sheath (BS). In C4 grasses, proliferation of plasmodesmata between these cell types is thought to increase cell-to-cell connectivity to allow efficient metabolite movement. However, it is not known whether C4 dicotyledons also show this enhanced plasmodesmal connectivity and so whether this is a general requirement for C4 photosynthesis is not clear. How M and BS cells in C4 leaves become highly connected is also not known. We investigated these questions using 3D- and 2D-electron microscopy on the C4 dicotyledon Gynandropsis gynandra as well as phylogenetically close C3 relatives. The M-BS interface of C4 G. gynandra showed higher plasmodesmal frequency compared with closely related C3 species. Formation of these plasmodesmata was induced by light. Pharmacological agents that perturbed photosynthesis reduced the number of plasmodesmata, but this inhibitory effect could be reversed by the provision of exogenous sucrose. We conclude that enhanced formation of plasmodesmata between M and BS cells is wired to the induction of photosynthesis in C4 G. gynandra.


Assuntos
Magnoliopsida , Células do Mesofilo , Células do Mesofilo/metabolismo , Plasmodesmos/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Poaceae
6.
J Plant Res ; 136(6): 865-877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707645

RESUMO

Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Floema , Câmbio , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Plasmodesmos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
New Phytol ; 239(5): 1584-1602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306002

RESUMO

Sugar loading of developing seeds comprises a cohort of transport events that contribute to reproductive success and seed yield. Understanding these events is most advanced for grain crops (Brassicaceae, Fabaceae and Gramineae) and Arabidopsis. For these species, 75-80% of their final seed biomass is derived from phloem-imported sucrose. Sugar loading consecutively traverses three genomically distinct, and symplasmically isolated, seed domains: maternal pericarp/seed coat, filial endosperm and filial embryo. Sink status of each domain co-ordinately transitions from growth to storage. The latter is dominated by embryos (Brassicaceae and Fabaceae) or endosperms (Gramineae). Intradomain sugar transport occurs symplasmically through plasmodesmata. Interdomain sugar transport relies on plasma-membrane transporters operating in efflux (maternal and endosperm) or influx (endosperm and embryo) modes. Discussed is substantial progress made in identifying, and functionally evaluating, sugar symporters (STPs, SUTs or SUCs) and uniporters (SWEETs). These findings have underpinned a mechanistic understanding of seed loading. Less well researched are possible physical limitations imposed by hydraulic conductivities of differentiating protophloem and of subsequent plasmodesmal transport. The latter is coupled with sugar homeostasis within each domain mediated by sugar transporters. A similar conclusion is ascribed to fragmentary understanding of regulatory mechanisms integrating transport events with seed growth and storage.


Assuntos
Arabidopsis , Fabaceae , Açúcares/metabolismo , Floema/metabolismo , Plasmodesmos/metabolismo , Transporte Biológico , Sementes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/metabolismo , Poaceae/metabolismo
8.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37365405

RESUMO

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Plasmodesmos/metabolismo , Reguladores de Crescimento de Plantas , Plantas/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
9.
Plant J ; 115(2): 301-316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243907

RESUMO

In the present study, we present callus grafting, comprising a method for reproducibly generating tissue chimeras from callus cultures of Arabidopsis thaliana. In this way, callus cultures of different genetic backgrounds may be co-cultivated such that cell-to-cell connectivity is achieved as a chimeric tissue is formed. To track intercellular connectivity and transport between non-clonal callus cells, we used transgenic lines expressing fluorescently tagged mobile and non-mobile fusion constructs. Using fluorescently-labelled reporter lines that label plasmodesmata, we show that secondary complex plasmodesmata are present at the cell walls of connected cells. We use this system to investigate cell-to-cell transport across the callus graft junction and show that different proteins and RNAs are mobile between non-clonal callus cells. Finally, we take advantage of the callus culture system to probe intercellular connectivity of grafted leaf and root calli and the effect of different light regimes of cell-to-cell transport. Taking advantage of the ability of callus to be cultivated in the complete absence of light, we show that the rate of silencing spread is significantly decreased in chimeric calli cultivated in total darkness. We propose that callus grafting is a fast and reliable method for analysing the capacity of a macromolecule to be exchanged between cells independent of the vasculature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Transporte Biológico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , Plasmodesmos/metabolismo
10.
New Phytol ; 239(2): 506-517, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194956

RESUMO

Volume and surface area of chloroplasts and surface area of plasmodesmata pit fields are presented for two C4 species, maize and sugarcane, with respect to cell surface area and cell volume. Serial block face scanning electron microscopy (SBF-SEM) and confocal laser scanning microscopy with the Airyscan system (LSM) were used. Chloroplast size estimates were much faster and easier using LSM than with SBF-SEM; however, the results were more variable than SBF-SEM. Mesophyll cells were lobed where chloroplasts were located, facilitating cell-to-cell connections while allowing for greater intercellular airspace exposure. Bundle sheath cells were cylindrical with chloroplasts arranged centrifugally. Chloroplasts occupied c. 30-50% of mesophyll cell volume, and 60-70% of bundle sheath cell volume. Roughly 2-3% of each cell surface area was covered by plasmodesmata pit fields for both bundle sheath and mesophyll cells. This work will aid future research to develop SBF-SEM methodologies with the aim to better understand the effect of cell structure on C4 photosynthesis.


Assuntos
Saccharum , Zea mays , Zea mays/metabolismo , Plasmodesmos/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Células do Mesofilo/metabolismo , Grão Comestível
11.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175758

RESUMO

Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a ß-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.


Assuntos
Plasmodesmos , Pyrus , Plasmodesmos/metabolismo , Pyrus/metabolismo , Anquirinas/metabolismo , Produtos Agrícolas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
12.
Plant Cell ; 35(8): 3035-3052, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37225403

RESUMO

Effective cellular signaling relies on precise spatial localization and dynamic interactions among proteins in specific subcellular compartments or niches, such as cell-to-cell contact sites and junctions. In plants, endogenous and pathogenic proteins gained the ability to target plasmodesmata, membrane-lined cytoplasmic connections, through evolution to regulate or exploit cellular signaling across cell wall boundaries. For example, the receptor-like membrane protein PLASMODESMATA-LOCATED PROTEIN 5 (PDLP5), a potent regulator of plasmodesmal permeability, generates feed-forward or feed-back signals important for plant immunity and root development. However, the molecular features that determine the plasmodesmal association of PDLP5 or other proteins remain largely unknown, and no protein motifs have been identified as plasmodesmal targeting signals. Here, we developed an approach combining custom-built machine-learning algorithms and targeted mutagenesis to examine PDLP5 in Arabidopsis thaliana and Nicotiana benthamiana. We report that PDLP5 and its closely related proteins carry unconventional targeting signals consisting of short stretches of amino acids. PDLP5 contains 2 divergent, tandemly arranged signals, either of which is sufficient for localization and biological function in regulating viral movement through plasmodesmata. Notably, plasmodesmal targeting signals exhibit little sequence conservation but are located similarly proximal to the membrane. These features appear to be a common theme in plasmodesmal targeting.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo
13.
J Exp Bot ; 74(15): 4401-4414, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37210666

RESUMO

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.


Assuntos
Arabidopsis , Cucumovirus , Infecções por Citomegalovirus , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Cucumovirus/metabolismo , Retículo Endoplasmático/metabolismo , Infecções por Citomegalovirus/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(17): e2216397120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068237

RESUMO

The plant immune system relies on the perception of molecules that signal the presence of a microbe threat. This triggers signal transduction that mediates a range of cellular responses via a collection of molecular machinery including receptors, small molecules, and enzymes. One response to pathogen perception is the restriction of cell-to-cell communication by plasmodesmal closure. We previously found that while chitin and flg22 trigger specialized immune signaling cascades in the plasmodesmal plasma membrane, both execute plasmodesmal closure via callose synthesis at the plasmodesmata. Therefore, the signaling pathways ultimately converge at or upstream of callose synthesis. To establish the hierarchy of signaling at plasmodesmata and characterize points of convergence in microbe elicitor-triggered signaling, we profiled the dependence of plasmodesmal responses triggered by different elicitors on a range of plasmodesmal signaling machinery. We identified that, like chitin, flg22 signals via RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) to induce plasmodesmal closure. Further, we found that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1), PDLP5, and CALLOSE SYNTHASE 1 (CALS1) are common to microbe- and salicylic acid (SA)-triggered responses, identifying PDLPs as a candidate signaling nexus. To understand how PDLPs relay a signal to CALS1, we screened for PDLP5 interactors and found NON-RACE SPECIFIC DISEASE RESISTANCE/HIN1 HAIRPIN-INDUCED-LIKE protein 3 (NHL3), which is also required for chitin-, flg22- and SA-triggered plasmodesmal responses and PDLP-mediated activation of callose synthesis. We conclude that a PDLP-NHL3 complex acts as an integrating node of plasmodesmal signaling cascades, transmitting multiple immune signals to activate CALS1 and plasmodesmata closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Transdução de Sinais , Ácido Salicílico/metabolismo , Quitina/metabolismo
15.
Methods Mol Biol ; 2604: 193-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773234

RESUMO

The actin cytoskeleton has close but so far incompletely understood connections to plasmodesmata, the cell junctions of plants. Plasmodesmata are essential for plant development and responses to biotic and abiotic stresses and facilitate the intercellular exchange of metabolites and hormones but also macromolecules such as proteins and RNAs. The molecular size exclusion limited of plasmodesmata is dynamically regulated, including by actin-associated proteins. Therefore, experimental analysis of plasmodesmal regulation can be relevant to plant cytoskeleton research. This chapter presents two simple imaging-based protocols for analyzing macromolecular cell-to-cell connectivity in leaves.


Assuntos
Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Citoesqueleto , Actinas/metabolismo , Desenvolvimento Vegetal
16.
Plant Signal Behav ; 18(1): 2164670, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645916

RESUMO

Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Permeabilidade , Proteínas de Membrana/metabolismo
17.
J Exp Bot ; 74(6): 1821-1835, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36639877

RESUMO

Plasmodesmata are cytosolic bridges, lined by the plasma membrane and traversed by endoplasmic reticulum; plasmodesmata connect cells and tissues, and are critical for many aspects of plant biology. While plasmodesmata are notoriously difficult to extract, tissue fractionation and proteomic analyses can yield valuable knowledge of their composition. Here we have generated two novel proteomes to expand tissue and taxonomic representation of plasmodesmata: one from mature Arabidopsis leaves and one from the moss Physcomitrium patens, and leveraged these and existing data to perform a comparative analysis to identify evolutionarily conserved protein families that are associated with plasmodesmata. Thus, we identified ß-1,3-glucanases, C2 lipid-binding proteins, and tetraspanins as core plasmodesmal components that probably serve as essential structural or functional components. Our approach has not only identified elements of a conserved plasmodesmal proteome, but also demonstrated the added power offered by comparative analysis for recalcitrant samples. Conserved plasmodesmal proteins establish a basis upon which ancient plasmodesmal function can be further investigated to determine the essential roles these structures play in multicellular organism physiology in the green lineages.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plasmodesmos/metabolismo , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteoma/metabolismo
18.
New Phytol ; 238(2): 637-653, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636779

RESUMO

Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.


Assuntos
Plasmodesmos , Proteoma , Proteoma/metabolismo , Plasmodesmos/metabolismo , Filogenia , Reprodutibilidade dos Testes , Parede Celular/metabolismo
19.
Plant J ; 113(3): 493-503, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511822

RESUMO

Arabinogalactan proteins (AGPs) are a plant-specific family of extracellular proteoglycans characterized by large and complex galactose-rich polysaccharide chains. Functional elucidation of AGPs, however, has been hindered by the high degree of redundancy of AGP genes. To uncover as yet unexplored roles of AGPs in Arabidopsis, a mutant of Hyp O-galactosyltransferase (HPGT), a critical enzyme that catalyzes the common initial step of Hyp-linked arabinogalactan chain biosynthesis, was used. Here we show, using the hpgt1,2,3 triple mutant, that a reduction in functional AGPs leads to a stomatal patterning defect in which two or more stomata are clustered together. This defect is attributed to increased and dysregulated symplastic transport following changes in plasmodesmata structure, such that highly permeable complex branched plasmodesmata with cavities in branching parts increased in the mutant. We also found that the hpgt1,2,3 mutation causes a reduction of cellulose in the cell wall and accumulation of pectin, which controls cell wall porosity. Our results highlight the importance of AGPs in the correct biogenesis of plasmodesmata, possibly acting through the regulation of cell wall properties surrounding the plasmodesmata.


Assuntos
Arabidopsis , Plasmodesmos , Plasmodesmos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Mucoproteínas/genética , Parede Celular/metabolismo
20.
Plant Physiol Biochem ; 194: 263-270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442358

RESUMO

In this study, we measured translational water diffusion selectively along symplast pathway through plasmodesmata in maize roots, and the effective plasmodesmata permeability coefficient (P) was determined using a nuclear magnetic resonance (NMR) spin echo method. Measuring of water transport selectively along the plant root plasmodesmata was achieved with paramagnetic complexes (PCs) of high relaxation efficiency. PCs penetrate into the intercellular space of root tissue, but not into cells, and accelerate the magnetic relaxation processes of intercellular water, thereby excluding the contribution of intercellular water to the registered NMR diffusion echo attenuation. In result, NMR control of translational diffusion can be applied to the signal of the water moving along the symplast pathway through plasmodesmata, where the PCs do not penetrate. Diethylenetriaminepentaacetic acid (GdDTPA), Mn2+-trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (MnDCTA), and GdCl3 were used as PCs. An increase in the PCs concentration led to a side effect in the form of a varying decrease in diffusive water transport in the roots. The P was determined by extrapolating the concentration dependence to zero concentration of PCs. Among the PCs studied, MnDCTA had the least side effects on the water transport when the concentration dependence was linear. When MnDCTA was used, the P accounted for 30-35% of the total cell water permeability (by transmembrane and symplast pathways). The rate of water flow along the plasmodesmata in the approximation of the piston mode of flow along the linear cell chain was estimated to range from 4.5 × 10-7 to 8.8 × 10-7 m/s.


Assuntos
Plasmodesmos , Água , Plasmodesmos/metabolismo , Água/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética/métodos , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA