Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.983
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(5): 519-525, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764124

RESUMO

Acupuncture treatment for depression has definite therapeutic efficacy, and its mechanism has been extensively studied. The extracellular regulatory protein kinase(ERK) signaling pathway is involved in the development and progression of depression. This article reviewed and summarized the research progress on the regulation of the ERK signaling pathway by acupuncture in the treatment of depression in recent years, focusing on the physiological activation and regulatory mechanism of the ERK signaling pathway, its association with the occurrence of depression, and the mechanisms through which acupuncture activates the ERK signaling pathway to treat depression (including enhancing neuronal synaptic plasticity, promoting the release of neurotrophic factors, and inhibiting neuronal apoptosis). Future research could explore the relationship between the ERK pathway and other pathways, investigate other brain regions besides the prefrontal cortex and hippocampus, examine differences in regulatory mechanisms between male and female patients, assess the effects of different acupuncture techniques on the ERK pathway, and increase efforts to explore mechanism of synaptic plasticity regulation, so as to provide reference for the clinical application and mechanism sludy of acupuncture in depression treatment.


Assuntos
Terapia por Acupuntura , Depressão , Sistema de Sinalização das MAP Quinases , Humanos , Depressão/terapia , Depressão/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Plasticidade Neuronal
2.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732248

RESUMO

The role of afferent target interactions in dendritic plasticity within the adult brain remains poorly understood. There is a paucity of data regarding the effects of deafferentation and subsequent dendritic recovery in adult brain structures. Moreover, although adult zebrafish demonstrate ongoing growth, investigations into the impact of growth on mitral cell (MC) dendritic arbor structure and complexity are lacking. Leveraging the regenerative capabilities of the zebrafish olfactory system, we conducted a comprehensive study to address these gaps. Employing an eight-week reversible deafferentation injury model followed by retrograde labeling, we observed substantial morphological alterations in MC dendrites. Our hypothesis posited that cessation of injury would facilitate recovery of MC dendritic arbor structure and complexity, potentially influenced by growth dynamics. Statistical analyses revealed significant changes in MC dendritic morphology following growth and recovery periods, indicating that MC total dendritic branch length retained significance after 8 weeks of deafferentation injury when normalized to individual fish physical characteristics. This suggests that regeneration of branch length could potentially function relatively independently of growth-related changes. These findings underscore the remarkable plasticity of adult dendritic arbor structures in a sophisticated model organism and highlight the efficacy of zebrafish as a vital implement for studying neuroregenerative processes.


Assuntos
Dendritos , Bulbo Olfatório , Peixe-Zebra , Animais , Plasticidade Neuronal
3.
Methods Mol Biol ; 2799: 107-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727905

RESUMO

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Assuntos
Aprendizagem em Labirinto , Memória de Longo Prazo , Receptores de N-Metil-D-Aspartato , Memória Espacial , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Memória de Longo Prazo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial/fisiologia , Hipocampo/fisiologia , Hipocampo/metabolismo , Comportamento Animal/fisiologia , Plasticidade Neuronal/fisiologia
4.
Sci Rep ; 14(1): 10773, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730262

RESUMO

The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.


Assuntos
Hipocampo , Plasticidade Neuronal , Animais , Feminino , Hipocampo/metabolismo , Hipocampo/parasitologia , Gravidez , Camundongos , Infecções por Nematoides/imunologia , Infecções por Nematoides/parasitologia , Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Masculino , Neuroimunomodulação
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731870

RESUMO

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Placa Amiloide , Animais , Microglia/metabolismo , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Estimulação Magnética Transcraniana/métodos , Estimulação Acústica , Camundongos Transgênicos , Modelos Animais de Doenças , Sinapses/metabolismo , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Plasticidade Neuronal , Potenciação de Longa Duração , Transdução de Sinais
6.
Invest Ophthalmol Vis Sci ; 65(5): 3, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691090

RESUMO

Purpose: Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods: Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results: Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions: To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.


Assuntos
Microglia , Regeneração Nervosa , Plasticidade Neuronal , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Peixe-Zebra , Animais , Microglia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Plasticidade Neuronal/fisiologia , Células Ganglionares da Retina/fisiologia , Estimulação Luminosa , Modelos Animais de Doenças , Nervo Óptico/fisiologia , Axônios/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
7.
Artigo em Inglês | MEDLINE | ID: mdl-38691431

RESUMO

In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.


Assuntos
Estimulação Acústica , Hipocampo , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana , Animais , Camundongos , Estimulação Magnética Transcraniana/métodos , Masculino , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Cognição/fisiologia , Potenciação de Longa Duração/fisiologia , Ondas Ultrassônicas , Ritmo Teta/fisiologia
8.
Elife ; 132024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700136

RESUMO

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Assuntos
Colecistocinina , Aprendizagem , Camundongos Knockout , Córtex Motor , Destreza Motora , Plasticidade Neuronal , Animais , Córtex Motor/fisiologia , Córtex Motor/metabolismo , Córtex Motor/efeitos dos fármacos , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Masculino
9.
Commun Biol ; 7(1): 555, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724614

RESUMO

Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences. Here, we show that anti-Hebbian spike-timing dependent plasticity (STDP), as observed at cortico-striatal synapses, can naturally lead to learning spike sequences. We design a spiking model of the striatal output neuron receiving spike patterns defined as sequential input from a fixed set of cortical neurons. We use a simple synaptic plasticity rule that combines anti-Hebbian STDP and non-associative potentiation for a subset of the presented patterns called rewarded patterns. We study the ability of striatal output neurons to discriminate rewarded from non-rewarded patterns by firing only after the presentation of a rewarded pattern. In particular, we show that two biological properties of striatal networks, spiking latency and collateral inhibition, contribute to an increase in accuracy, by allowing a better discrimination of partially overlapping sequences. These results suggest that anti-Hebbian STDP may serve as a biological substrate for learning sequences of spikes.


Assuntos
Corpo Estriado , Aprendizagem , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Aprendizagem/fisiologia , Corpo Estriado/fisiologia , Modelos Neurológicos , Animais , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Humanos
10.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719948

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Assuntos
Doença de Alzheimer , Inibidores de Calcineurina , Modelos Animais de Doenças , Camundongos Transgênicos , Tacrolimo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Tacrolimo/farmacologia , Inibidores de Calcineurina/farmacologia , Camundongos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Calcineurina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Proteínas tau/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Masculino , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo
11.
J Vis ; 24(5): 7, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771584

RESUMO

This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.


Assuntos
Imageamento por Ressonância Magnética , Plasticidade Neuronal , Córtex Visual , Campos Visuais , Humanos , Masculino , Feminino , Córtex Visual/fisiologia , Adulto , Campos Visuais/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Plasticidade Neuronal/fisiologia , Estimulação Luminosa/métodos
12.
J Neuroimmune Pharmacol ; 19(1): 20, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758335

RESUMO

Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1ß and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1ß and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.


Assuntos
Catecóis , Depressão , Álcoois Graxos , Lipopolissacarídeos , Microglia , Plasticidade Neuronal , Ratos Sprague-Dawley , Animais , Álcoois Graxos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Lipopolissacarídeos/toxicidade , Masculino , Catecóis/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/metabolismo , Técnicas de Cocultura , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Antidepressivos/farmacologia
13.
Neuroimage ; 293: 120633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704057

RESUMO

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Jogos de Vídeo , Humanos , Plasticidade Neuronal/fisiologia , Conectoma/métodos , Masculino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Modelos Neurológicos
14.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Plasticidade Neuronal/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Terminações Pré-Sinápticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Camundongos , AMP Cíclico/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Complexo Shelterina/metabolismo
15.
PLoS One ; 19(5): e0302850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748711

RESUMO

BACKGROUND AND AIM: Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE: The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT: Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS: Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.


Assuntos
Demência Vascular , Modelos Animais de Doenças , Hipocampo , Potenciação de Longa Duração , Luteína , Plasticidade Neuronal , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/fisiopatologia , Ratos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Luteína/farmacologia , Luteína/administração & dosagem , Luteína/uso terapêutico , Memória/efeitos dos fármacos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprendizagem em Labirinto/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
16.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749544

RESUMO

Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.


Assuntos
Sinalização do Cálcio , Cálcio , Neurônios , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Cálcio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Humanos , Neurônios/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Plasticidade Neuronal , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
17.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697859

RESUMO

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Assuntos
Compostos de Lítio , Humanos , Animais , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores
18.
Nat Commun ; 15(1): 3722, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697981

RESUMO

An important difference between brains and deep neural networks is the way they learn. Nervous systems learn online where a stream of noisy data points are presented in a non-independent, identically distributed way. Further, synaptic plasticity in the brain depends only on information local to synapses. Deep networks, on the other hand, typically use non-local learning algorithms and are trained in an offline, non-noisy, independent, identically distributed setting. Understanding how neural networks learn under the same constraints as the brain is an open problem for neuroscience and neuromorphic computing. A standard approach to this problem has yet to be established. In this paper, we propose that discrete graphical models that learn via an online maximum a posteriori learning algorithm could provide such an approach. We implement this kind of model in a neural network called the Sparse Quantized Hopfield Network. We show our model outperforms state-of-the-art neural networks on associative memory tasks, outperforms these networks in online, continual settings, learns efficiently with noisy inputs, and is better than baselines on an episodic memory task.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Memória/fisiologia , Modelos Neurológicos , Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Aprendizado Profundo
19.
Sci Adv ; 10(18): eadk7257, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701208

RESUMO

Neuromodulators have been shown to alter the temporal profile of short-term synaptic plasticity (STP); however, the computational function of this neuromodulation remains unexplored. Here, we propose that the neuromodulation of STP provides a general mechanism to scale neural dynamics and motor outputs in time and space. We trained recurrent neural networks that incorporated STP to produce complex motor trajectories-handwritten digits-with different temporal (speed) and spatial (size) scales. Neuromodulation of STP produced temporal and spatial scaling of the learned dynamics and enhanced temporal or spatial generalization compared to standard training of the synaptic weights in the absence of STP. The model also accounted for the results of two experimental studies involving flexible sensorimotor timing. Neuromodulation of STP provides a unified and biologically plausible mechanism to control the temporal and spatial scales of neural dynamics and sensorimotor behaviors.


Assuntos
Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Humanos , Modelos Neurológicos , Neurotransmissores/metabolismo , Animais , Aprendizagem/fisiologia , Redes Neurais de Computação
20.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695719

RESUMO

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Assuntos
Microglia , Receptores de GABA-A , Sono de Ondas Lentas , Sinapses , Fator de Necrose Tumoral alfa , Animais , Masculino , Camundongos , Consolidação da Memória , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Sono/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA