Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706262

RESUMO

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Assuntos
Apoptose , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Platina/uso terapêutico , Platina/farmacologia
2.
PLoS One ; 19(5): e0301358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771804

RESUMO

Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 µg/mL and 16 µg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Platina , Rutênio , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Platina/química , Platina/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Rutênio/química , Rutênio/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Catálise , Humanos
3.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740757

RESUMO

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Assuntos
Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Ferro , Neoplasias Ovarianas , Rad51 Recombinase , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ferro/metabolismo , Linhagem Celular Tumoral , Rad51 Recombinase/metabolismo , Animais , Ferritinas/metabolismo , Camundongos , Platina/farmacologia , Platina/uso terapêutico , Camundongos Nus , Oxirredutases/metabolismo
4.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741159

RESUMO

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Assuntos
Quadruplex G , Mitocôndrias , Quadruplex G/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Genoma Mitocondrial , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Platina/farmacologia , Animais
5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612653

RESUMO

To understand chemoresistance in the context of cancer stem cells (CSC), a cisplatin resistance model was developed using a high-grade serous ovarian cancer patient-derived, cisplatin-sensitive sample, PDX4. As a molecular subtype-specific stem-like cell line, PDX4 was selected for its representative features, including its histopathological and BRCA2 mutation status, and exposed to cisplatin in vitro. In the cisplatin-resistant cells, transcriptomics were carried out, and cell morphology, protein expression, and functional status were characterized. Additionally, potential signaling pathways involved in cisplatin resistance were explored. Our findings reveal the presence of distinct molecular signatures and phenotypic changes in cisplatin-resistant PDX4 compared to their sensitive counterparts. Surprisingly, we observed that chemoresistance was not inherently linked with increased stemness. In fact, although resistant cells expressed a combination of EMT and stemness markers, functional assays revealed that they were less proliferative, migratory, and clonogenic-features indicative of an underlying complex mechanism for cell survival. Furthermore, DNA damage tolerance and cellular stress management pathways were enriched. This novel, syngeneic model provides a valuable platform for investigating the underlying mechanisms of cisplatin resistance in a clinically relevant context, contributing to the development of targeted therapies tailored to combat resistance in stem-like ovarian cancer.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Platina/farmacologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário
6.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570564

RESUMO

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Soroalbumina Bovina/química , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Platina/farmacologia , Platina/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Nanopartículas/química , Anti-Inflamatórios
7.
J Ovarian Res ; 17(1): 70, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561819

RESUMO

OBJECTIVES: This retrospective study aims to evaluating the subsequent management and outcomes after first-line PARPi progression in Chinese ovarian cancer population. METHODS: Clinical and pathologic variables, treatment modalities, and outcomes were assessed. We investigated the subsequent management and outcomes after first-line PARPi progression. The objective response rate (ORR) and disease control rate (DCR) parameters were evaluated to determine the response to subsequent chemotherapy. For the survival analyses, progression-free survival 1 (PFS1), PFS2, overall survival (OS) and PFS2 - PFS1 were analysed. RESULTS: A total of 124 patients received PARPi maintenance treatment after first-line chemotherapy during the study period in our center. 44 of them (35.5%) experienced a recurrence. The median duration of PARPi in these patients was 11.1 months (range: 1.2-75.1 months). A total of 40 patients (40/44, 90.9%) received subsequent chemotherapy with 35 (35/44, 79.5%) and 5 (5/44, 11.4%) patients received platinum-based and non-platinum-based chemotherapy in our center. 2 patients (4.5%) received target therapy and other 2 patients (4.5%) received best supportive care. 27.3% (12/44) patients received secondary cytoreduction surgery (SCS). After subsequent chemotherapy, 14 patients received PARPi retreatment as maintenance therapy. In patients who received platinum-based regimens (n = 35), 23 of 35 patients (65.7%) had complete/partial response (CR/PR), 8 of 35 (22.9%) had stable disease (SD), and 4 of 35 (12.1%) had progressive disease (PD). The ORR and DCR of patients who received subsequent chemotherapy was 65.7% and 88.6%, respectively. 15 patients (57.7%, 15/26) were reported to be platinum resistant with a platinum-free interval (PFI) of < 6 months in patients whose platinum sensitivity of the second line platinum-based regimens was evaluable. Patients who received SCS after PARPi resistant associated with a borderline better PFS2 (median PFS2: 41.9 vs. 29.2 months, P = 0.051) and a non-significantly increased PFS2-PFS1 (median PFS2-PFS1: 12.2 vs. 9.8 months, P = 0.551). Patients with a PFI ≥ 12 months had a significantly better PFS2 (median PFS2: 37.0 vs. 25.3 months, P < 0.001) and a tendency towards a better PFS2-PFS1 than those with a PFI < 12 months (median PFS2-PFS1: 11.2 vs. 8.5 months, P = 0.334). A better PFS2 was observed in patients who received second PARPi maintenance therapy (median PFS2 of 35.4 vs. 28.8 months); however, the difference was not statistically significant (P = 0.200). A better PFS2-PFS1 was observed in patients who received second PARPi maintenance therapy (median PFS2-PFS1: 13.6 vs. 8.9 months, P = 0.002) than those without. CONCLUSIONS: In summary, some degree of resistance to standard subsequent platinum and non-platinum chemotherapy is noted in the entire cohort. A trend towards higher benefit from subsequent chemotherapy after first-line PARP inhibitors progression was observed in the PFI ≥ 12 months subgroup than those with PFI < 12 months. PARPi retreatment as maintenance therapy and SCS can be offered to some patients with PARPi resistance.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , Neoplasias Ovarianas/patologia , Intervalo Livre de Progressão , Análise de Sobrevida , Platina/farmacologia , Platina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico
8.
Oncologist ; 29(5): 452-455, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38558248

RESUMO

We analyzed the antitumor activity of platinum-based chemotherapies and then immune checkpoint inhibitors (ICI) in all-comers patients with solid tumors having a somatic DNA damage repair gene alteration (DDR-GA) identified through a prospective precision medicine study (NCT02534649). Each DDR-GA was classified as pathogenic (Pa), probably pathogenic (PPa), and unknown pathogenicity (UPa) according to OncoKB and ClinVAR databases. Between January 2018 and May 2020, 662 patients were screened. One hundred ninety-nine tumors with DDR-GA were found in 121 (18.3%) patients. Ninety-six patients received platinum-based chemotherapy in the advanced setting. No difference in objective response rate (ORR) under platinum regimen was observed between the 3 DDR-GA groups. The only predictor of worse progression-free survival (PFS) in Cox regression was the existence of a Pa alteration compared to the UPa group: HR = 2.11 (95% CI = 1.2-3.7), P = .009. Forty-eight patients received ICI alone or in combination. We observed a significant trend in better ORR to ICI according to the DDR-GA status: 1/11 (9%) patients in UPa, 5/17 (29.4%) patients in PPa, and 9/20 (45%) patients in Pa (P = .003, Cochran-Armitage trend test), and an increased 6-month PFS probability of 11%, 44%, and 50% in the UPa, PPa, and Pa groups, respectively (P = .37, log-rank test). Overall, somatic pathogenic DDR-GAs were not associated with ORR or PFS to platinum-based chemotherapy in patients with unselected advanced solid tumors. However, DDR-GA seemed to impact ORR and PFS to ICI, paving the way for a therapeutic combination with ICI and molecules targeting the DDR mechanisms, which are currently evaluated in ongoing clinical trials.


Assuntos
Reparo do DNA , Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pessoa de Meia-Idade , Idoso , Adulto , Platina/uso terapêutico , Platina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Estudos Prospectivos , Idoso de 80 Anos ou mais
9.
ACS Nano ; 18(17): 11217-11233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627234

RESUMO

Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.


Assuntos
Antineoplásicos , Cisplatino , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferritinas , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Ferritinas/química , Ferritinas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Cisplatino/farmacologia , Cisplatino/química , Desenho de Fármacos , Platina/química , Platina/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sistemas de Liberação de Medicamentos
10.
Colloids Surf B Biointerfaces ; 238: 113910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640797

RESUMO

This study represents an innovative approach to construct multi-functional nanoplatforms for cancer diagnosis and therapy by combining hyaluronic acid (HA) with iron-platinum nanoparticles (FePt NPs). These HA-coated FePt NPs, referred to as FePt@HA NPs, demonstrated remarkable biocompatibility, high absorption, and excellent light-to-heat conversion properties in the near-infrared (NIR) region, making them ideal candidates for photothermal therapy (PTT). In vitro studies revealed their effective cancer cell eradication under NIR laser irradiation, while in vivo experiments on mice showcased their superior heating capabilities. Moreover, FePt@HA NPs exhibited a distinct and strong photoacoustic (PA) signal, facilitating enhanced and precise intra-tumoral PA imaging. Our results highlight the potential of FePt@HA NPs as promising photothermal agents for future PTT applications. They offer high selectivity, precision, and minimal side effects in cancer treatment, along with their valuable PA imaging application for tumor localization and characterization.


Assuntos
Ácido Hialurônico , Ferro , Nanopartículas Metálicas , Técnicas Fotoacústicas , Terapia Fototérmica , Platina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Técnicas Fotoacústicas/métodos , Platina/química , Platina/farmacologia , Animais , Camundongos , Ferro/química , Humanos , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Propriedades de Superfície , Linhagem Celular Tumoral
11.
J Inorg Biochem ; 256: 112573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678913

RESUMO

This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.


Assuntos
Antineoplásicos , Complexos de Coordenação , Oxirredução , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Sulfetos/química , Sulfetos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral
12.
EMBO Mol Med ; 16(5): 1162-1192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658801

RESUMO

Platinum (PT)-resistant Epithelial Ovarian Cancer (EOC) grows as a metastatic disease, disseminating in the abdomen and pelvis. Very few options are available for PT-resistant EOC patients, and little is known about how the acquisition of PT-resistance mediates the increased spreading capabilities of EOC. Here, using isogenic PT-resistant cells, genetic and pharmacological approaches, and patient-derived models, we report that Integrin α6 (ITGA6) is overexpressed by PT-resistant cells and is necessary to sustain EOC metastatic ability and adhesion-dependent PT-resistance. Using in vitro approaches, we showed that PT induces a positive loop that, by stimulating ITGA6 transcription and secretion, contributes to the formation of a pre-metastatic niche enabling EOC cells to disseminate. At molecular level, ITGA6 engagement regulates the production and availability of insulin-like growth factors (IGFs), over-stimulating the IGF1R pathway and upregulating Snail expression. In vitro data were recapitulated using in vivo models in which the targeting of ITGA6 prevents PT-resistant EOC dissemination and improves PT-activity, supporting ITGA6 as a promising druggable target for EOC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Integrina alfa6 , Neoplasias Ovarianas , Regulação para Cima , Humanos , Integrina alfa6/metabolismo , Integrina alfa6/genética , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Platina/farmacologia , Platina/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
13.
J Mater Chem B ; 12(17): 4162-4171, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619400

RESUMO

Sonodynamic therapy (SDT) has been recognized as a promising treatment for cancer due to its advantages of superior specificity, non-invasiveness, and deep tissue penetration. However, the antitumor effect of SDT remains restricted by the limited generation of reactive oxygen species (ROS) due to the lack of highly efficient sonosensitizers. In this work, we developed the novel sonosensitizer Pt/CeO2-xSx by constructing oxygen defects through S doping and Pt loading in situ. Large amounts of oxygen defects have been obtained by S doping, endowing Pt/CeO2-xSx with the ability to suppress electron-hole recombination, further promoting ROS production. Moreover, the introduction of Pt nanoparticles can not only produce oxygen in situ for relieving hypoxia but also form a Schottky heterojunction with CeO2-xSx for further inhibiting electron-hole recombination. In addition, Pt/CeO2-xSx could effectively deplete overexpressed glutathione (GSH) via redox reactions, amplifying oxidative stress in the tumor microenvironment (TME). Combined with the excellent POD-mimetic activity, Pt/CeO2-xSx can achieve highly efficient synergistic therapy of SDT and chemodynamic therapy (CDT). All these findings demonstrated that Pt/CeO2-xSx has great potential for cancer therapy, and this work provides a promising direction for designing and constructing efficient sonosensitizers.


Assuntos
Antineoplásicos , Cério , Cério/química , Cério/farmacologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Platina/química , Platina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/terapia
14.
Sci Rep ; 14(1): 5798, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461314

RESUMO

In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.


Assuntos
Nanopartículas Metálicas , Panax , Rosmarinus , Paládio/química , Platina/farmacologia , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527207

RESUMO

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Assuntos
Platina , Infecção dos Ferimentos , Humanos , Platina/farmacologia , Cicatrização , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química , Seda/química , Bactérias , Hidrogéis/farmacologia
16.
Inorg Chem ; 63(13): 5783-5804, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502532

RESUMO

In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Animais , Embrião de Galinha , Humanos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/química , Platina/farmacologia , Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Apoptose
17.
Nature ; 627(8005): 880-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480884

RESUMO

The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.


Assuntos
Evolução Molecular , Imunoterapia , Neoplasias Pulmonares , Platina , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Platina/farmacologia , Platina/uso terapêutico , Recidiva , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
18.
J Inorg Biochem ; 254: 112515, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490045

RESUMO

Chemotherapy resistance is an insurmountable problem in clinical anticancer therapy. Although Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer (CRC), it still suffers from serious toxicities as well as drug resistance. In this work, three Oxaliplatin tetravalent platinum prodrugs(O1-O3) and three novel mixed ammine/amine analogs(C1-C3) were constructed, introducing cannabidiol with anti-tumor activity in their axial position. All Pt(IV) prodrugs exhibited potent antitumor effects in a variety of tumor cell lines, especially in HCT-116 cells, where complex O3 showed strong inhibitory effects with the half maximal inhibitory concentrations (IC50) value of 6.02 ± 0.69 µM and about 2.6 times higher than that of Oxaliplatin. Further studies revealed that complex O3 decreased cellular mitochondrial membrane potential in a concentration-dependent manner and enhanced reactive oxygen species (ROS) accumulation by decreasing the expression of catalase, superoxide dismutase 2 (SOD2) and superoxide dismutase 3 (SOD3). Complex O3 induces mitochondrial dysfunction and upregulates the pro-apoptotic protein Noxa, ultimately leading to severe DNA damage. The upregulation of Phosphorylated histone protein H2AX (γ-H2AX) expression is clear evidence. In addition, O3 inhibits the expression of RAD51 protein and prevents DNA damage repair, thus overcoming drug resistance. This strategy of combining bioactive molecules cannabidiol with platinum drugs to improve therapeutic efficacy and overcome drug resistance has been proven to be very effective and deserves further investigation.


Assuntos
Antineoplásicos , Canabidiol , Doenças Mitocondriais , Pró-Fármacos , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Platina/farmacologia , Canabidiol/farmacologia , Linhagem Celular Tumoral , Pró-Fármacos/farmacologia , Apoptose , Cisplatino/farmacologia
19.
ACS Chem Neurosci ; 15(6): 1157-1168, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445956

RESUMO

Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Gânglios Espinais , Potencial da Membrana Mitocondrial , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Ácido Fítico/uso terapêutico , Platina/farmacologia , Platina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Receptoras Sensoriais/metabolismo
20.
ACS Infect Dis ; 10(4): 1250-1266, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38436588

RESUMO

The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.


Assuntos
Platina , Sideróforos , Humanos , Sideróforos/farmacologia , Platina/farmacologia , Escherichia coli , Oxaliplatina/farmacologia , Antibacterianos/farmacologia , Enterobactina , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA