RESUMO
Pneumocystis species are respiratory fungal pathogens that cause life-threatening opportunistic infections in immunocompromised hosts. Pneumocystis typically evade pulmonary innate immunity but are efficiently eradicated by a functional adaptive immune response. FVB/NJ mice are unique in that they display protective alveolar macrophage-dependent innate immunity against Pneumocystis, and remain resistant to infection even in the absence of CD4+ T lymphocyte function. FVB/NJ alveolar macrophages (AMs) were found to display an M2-biased phenotype at baseline, which was potentiated after stimulation with Pneumocystis, suggesting that macrophage polarization may dictate the outcome of the Pneumocystis-macrophage interaction. To determine whether Stat6, a key global regulator of M2 polarization, was required for FVB/NJ innate immunity, FVB Stat6-/- mice were generated. FVB Stat6-deficient AMs were markedly impaired in their ability to polarize to an M2 phenotype when stimulated with Th2 cytokines. However, FVB Stat6-/- mice remained highly resistant to infection, indicating that Stat6 signaling is dispensable for innate FVB/NJ resistance. Despite the loss of Stat6 signaling, primary AMs from FVB Stat6-/- mice maintained baseline expression of M2 markers, and also strongly upregulated M2-associated genes following direct stimulation with Pneumocystis. Additional FVB/NJ knockout strains were generated, but only FVB MerTK-/- mice showed a marginally increased susceptibility to Pneumocystis infection. Together, these findings demonstrate that effective FVB/NJ innate immunity against Pneumocystis does not require Stat6 signaling and suggest that alternative pathways regulate M2 bias and macrophage-mediated innate resistance in FVB/NJ mice.
Assuntos
Imunidade Inata , Macrófagos Alveolares , Pneumocystis , Fator de Transcrição STAT6 , Animais , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Camundongos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Pneumocystis/imunologia , Camundongos Knockout , Infecções por Pneumocystis/imunologia , Infecções por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Transdução de Sinais/imunologia , Citocinas/metabolismo , Ativação de Macrófagos/imunologiaRESUMO
Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30%-60% mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed neutrophil extracellular trap (NET) presence in the lungs of the P. murina-infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina. Isolated NETs compromised P. murina viability in vitro, highlighting the potential role of neutrophils in controlling fungal growth and promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.IMPORTANCEPneumocystis jirovecii pneumonia (PjP) affects individuals with weakened immunity, such as HIV/AIDS, cancer, and organ transplant patients. Severe PjP triggers lung inflammation, impairing function and potentially causing acute respiratory distress syndrome. Non-HIV individuals face a 30%-60% mortality rate, underscoring the need for deeper insight into PjP's inflammatory responses. Past research focused on macrophages in managing Pneumocystis infection and its inflammation, while the role of neutrophils was generally overlooked. In contrast, our findings in P. murina-infected mouse lungs showed neutrophil involvement during inflammation and increased expression of NLRP3 inflammasome and NETosis pathways. Detection of neutrophil extracellular traps further indicated their involvement in the inflammatory process. Although beneficial in combating infection, unregulated neutrophil activation poses a potential threat to lung tissues. Understanding the behavior of neutrophils in Pneumocystis infections is crucial for controlling detrimental reactions and formulating treatments to reduce lung damage, ultimately improving the survival rates of individuals with PjP.
Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Animais , Armadilhas Extracelulares/imunologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Camundongos , Neutrófilos/imunologia , Pneumocystis/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , FemininoRESUMO
IFN-γ plays a critical role in host defense against intracellular pathogens. IFN-γ is produced in the bronchoalveolar lavage fluid of mice infected with Pneumocystis, but the role of IFN-γ in host defense against Pneumocystis remains controversial. It has been previously reported that although exogenous IFN-γ has beneficial effects on eradication of Pneumocystis, endogenous IFN-γ has a negative impact on innate immunity in immunocompromised hosts. Surprisingly, CD4+ T cell-depleted IFN-γ deficient (GKO) mice exhibit resistance to Pneumocystis. Alveolar macrophages (AM) from GKO mice exhibit higher expression of macrophage mannose receptor (MMR) and Dectin-1. Concomitantly, they exhibited greater ability to phagocytize Pneumocystis, and this activity was suppressed by inhibitors of these receptors. Incubation with IFN-γ resulted in a reduction in both the expression of these receptors on AM and their Pneumocystis-phagocytic activity. These results indicate that endogenous IFN-γ facilitates Pneumocystis to escape from host innate immunity by attenuating the phagocytic activity of AM via downregulation of MMR and Dectin-1.
Assuntos
Linfócitos T CD4-Positivos , Regulação para Baixo , Interferon gama , Lectinas Tipo C , Macrófagos Alveolares , Receptor de Manose , Fagocitose , Receptores de Superfície Celular , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Imunidade Inata , Interferon gama/metabolismo , Interferon gama/imunologia , Interferon gama/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Depleção Linfocítica , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumocystis/imunologia , Infecções por Pneumocystis/imunologia , Infecções por Pneumocystis/metabolismo , Infecções por Pneumocystis/microbiologia , Infecções por Pneumocystis/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologiaRESUMO
CD40-CD40 ligand interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and quantitative polymerase chain reaction, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell-depleted splenocytes and unstimulated bone marrow-derived dendritic cells were unable to control infection in CD40 knockout mice. Pneumocystis antigen-pulsed bone marrow-derived dendritic cells showed early but limited control of infection. Additional findings were consistent with recent studies that suggested a role for antigen presentation by B cells; specifically, by using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Assuntos
Linfócitos B , Antígenos CD40 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos B/imunologia , Camundongos , Pneumocystis/imunologia , Infecções por Pneumocystis/imunologia , Infecções por Pneumocystis/microbiologia , Células Dendríticas/imunologia , Pneumonia por Pneumocystis/imunologia , Baço/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Linfócitos T/imunologiaRESUMO
Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.
Assuntos
Armadilhas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Neutrófilos/imunologia , Pneumonia por Pneumocystis/imunologia , Leucotrieno B4/metabolismo , Leucotrieno B4/imunologia , Pneumocystis/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , HumanosRESUMO
Prior work has shown that parenterally administered anti-CD20 (5D2) inhibits CD4+ T cell priming in response to challenge with Pneumocystis murina and predisposes to pneumonia. In this study, we investigated the effect of subcutaneous anti-CD20 antibody and Pneumocystis infection. In mice with primary infection, anti-CD20 antibody treatment depleted both CD19+ and CD27+ CD19+ cells but not T cells in the lung at days 14 and 28 after Pneumocystis inoculation. Although anti-CD20 antibody treatment impaired fungal clearance at day 14 postinfection, fungal burden in the lungs was substantially reduced at day 28 in both depleted and control mice in the low-dose group. Subcutaneous anti-CD20 antibody treatment did not alter antigen-specific serum immunoglobulin levels in mice compared with control mice, and there were no significant differences in the numbers of lung gamma interferon-positive (IFN-γ+) CD4+, interleukin 4-positive (IL-4+) CD4+, IL-5+ CD4+, and IL-17A+ CD4+ cells between depleted and control mice after infection. In mice with secondary infection, the lung fungal burden was comparable between depleted and control mice 14 days after reinfection. Low-dose subcutaneous anti-CD20 antibody treatment may delay fungal clearance, but it did not impair the ability of the host to clear Pneumocystis infection, irrespective of primary or secondary infection.IMPORTANCE Anti-CD20 antibody therapy is used for both cancer and autoimmune disease but has been shown to be associated with Pneumocystis pneumonia in humans. This study shows that low-dose subcutaneous anti-CD20 can modulate B cell populations without grossly perturbing fungal immunity against Pneumocystis lung infection.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Linfócitos B/imunologia , Pulmão/microbiologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/terapia , Animais , Linfócitos B/efeitos dos fármacos , Injeções Subcutâneas , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Pneumocystis/efeitos dos fármacosRESUMO
Pneumocystis is an important opportunistic fungus that causes pneumonia in children and immunocompromised individuals. Recent genomic data show that divergence of major surface glycoproteins may confer speciation and host range selectivity. On the other hand, immune clearance between mice and humans is well correlated. Thus, we hypothesized that humanize mice may provide information about human immune responses involved in controlling Pneumocystis infection. CD34-engrafted huNOG-EXL mice controlled fungal burdens to a greater extent than nonengrafted mice. Moreover, engrafted mice generated fungal-specific IgM. Fungal control was associated with a transcriptional signature that was enriched for genes associated with nonopsonic recognition of trophs (CD209) and asci (CLEC7A). These same genes were downregulated in CD4-deficient mice as well as twins with bare lymphocyte syndrome with Pneumocystis pneumonia.
Assuntos
Pneumonia por Pneumocystis/imunologia , Animais , Anticorpos Antifúngicos/biossíntese , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade de Hospedeiro/imunologia , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Transgênicos , Pneumocystis/imunologia , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/genética , Pneumonia por Pneumocystis/microbiologia , Receptores de Superfície Celular/genética , Especificidade da EspécieRESUMO
Caspase recruitment domains-containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C-type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4-depleted CARD9-/- and immunocompetent hosts. Card9 gene-disrupted (CARD9-/- ) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild-type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9-/- macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin-1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9-/- animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9-/- animals during PCP, T-helper cell cytokines were normal in immunocompetent CARD9-/- animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Macrófagos Alveolares/imunologia , Pneumocystis carinii/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Diferenciação Celular , Contagem de Colônia Microbiana , Citocinas/metabolismo , Hospedeiro Imunocomprometido , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pulmão/enzimologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peroxidase/metabolismo , Pneumocystis/crescimento & desenvolvimento , Pneumocystis carinii/crescimento & desenvolvimento , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/patologia , Ratos , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Pneumocystis major surface glycoprotein (Msg) is a 120-kD surface protein complex on the organism with importance in adhesion and immune recognition. In this study, we show that Msg significantly impairs tumor necrosis factor (TNF)-α secretion by macrophages induced by Saccharomyces cerevisiae and Pneumocystis carinii (Pc) ß-glucans. METHODS: Major surface glycoprotein was shown to greatly reduce ß-glucan-induced Dectin-1 immunoreceptor tyrosine-based activating motif (ITAM) phosphorylation. Major surface glycoprotein also down regulated Dectin-1 receptor messenger ribonucleic acid (mRNA) expression in the macrophages. It is interesting that Msg incubation with macrophages resulted in significant mRNA upregulation of both C-type lectin receptors (CLR) Mincle and MCL in Msg protein presence alone but to even greater amounts in the presence of Pc ß-glucan. RESULTS: The silencing of MCL and Mincle resulted in TNF-α secretions similar to that of macrophages treated with Pneumocystis ß-glucan alone, which is suggestive of an inhibitory role for these 2 CLRs in Msg-suppressive effects on host cell immune response. CONCLUSIONS: Taken together, these data indicate that the Pneumocystis Msg surface protein complex can act to suppress host macrophage inflammatory responses to the proinflammatory ß -glucan components of the organisms.
Assuntos
Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Pneumocystis carinii/imunologia , Pneumonia por Pneumocystis/imunologia , beta-Glucanas/metabolismo , Animais , Proteínas Fúngicas/metabolismo , Lectinas Tipo C/genética , Macrófagos/microbiologia , Camundongos , Pneumocystis/imunologia , Células RAW 264.7 , RNA Mensageiro/genética , Saccharomyces cerevisiae/imunologia , Fator de Necrose Tumoral alfa/metabolismo , beta-Glucanas/imunologiaAssuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Linfopenia/diagnóstico , Piperazinas/efeitos adversos , Pneumonia por Pneumocystis/imunologia , Piridinas/efeitos adversos , Idoso , Androstadienos/efeitos adversos , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Evolução Fatal , Feminino , Humanos , Hospedeiro Imunocomprometido , Contagem de Linfócitos , Linfopenia/induzido quimicamente , Linfopenia/complicações , Linfopenia/imunologia , Pneumocystis/imunologia , Pneumocystis/isolamento & purificação , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/microbiologia , Índice de Gravidade de Doença , Combinação Trimetoprima e Sulfametoxazol/uso terapêuticoRESUMO
Pneumocystis is an unusual, opportunistic fungal pathogen capable of causing Pneumocystis pneumonia (PCP) in immunocompromised hosts. Although PCP was discovered >100 years ago, its pathogenesis remains unclear. The inhibitory receptor PD-1 (programmed death 1), a negative regulator of activated T cells, has been reported to take part in tumor escape, immune tolerance, and infection immunity. In this study, we examined the role of the PD-1/PD-L1 (programmed death-ligand 1) pathway in patients with PCP and in mice. The expression levels of PD-1/PD-L1 in patients with PCP and in mice were measured by real-time PCR and flow cytometry. The effects of PD-1 deficiency are demonstrated using wild-type and PD-1-/- mice. Our data show that Pneumocystis infection promotes PD-1/PD-L1 expression; PD-1 deficiency enhances the phagocytic function of macrophages and the pulmonary T-helper cell type 1 (Th1)/Th17 response, which might contribute to Pneumocystis clearance; and PD-1 deficiency affects the polarization of macrophages. PCP mice treated with anti-PD-1 antibody showed improved pulmonary clearance of Pneumocystis. Collectively, our results demonstrate that the PD-1/PD-L1 pathway plays a role in regulating the innate and adaptive immune responses, suggesting that manipulation of this pathway may constitute an immunotherapeutic strategy for PCP.
Assuntos
Antígeno B7-H1/fisiologia , Ativação de Macrófagos/fisiologia , Pneumonia por Pneumocystis/imunologia , Receptor de Morte Celular Programada 1/deficiência , Células Th1/imunologia , Células Th17/imunologia , Imunidade Adaptativa , Adulto , Idoso , Animais , Anticorpos Antifúngicos/sangue , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Feminino , Humanos , Imunidade Inata , Hospedeiro Imunocomprometido , Imunoterapia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Infecções Oportunistas/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/genética , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de SinaisRESUMO
Pneumocystis pneumonia is the most common serious opportunistic infection in patients with HIV/AIDS. Furthermore, Pneumocystis pneumonia is a feared complication of the immunosuppressive drug regimens used to treat autoimmunity, malignancy, and posttransplantation rejection. With an increasing at-risk population, there is a strong need for novel approaches to discover diagnostic and vaccine targets. There are multiple challenges to finding these targets, however. First, Pneumocystis has a largely unannotated genome. To address this, we evaluated each protein encoded within the Pneumocystis genome by comparisons to proteins encoded within the genomes of other fungi using NCBI BLAST. Second, Pneumocystis relies on a multiphasic life cycle, as both the transmissible form (the ascus) and the replicative form (the trophozoite [troph]) reside within the alveolar space of the host. To that end, we purified asci and trophs from Pneumocystis murina and utilized transcriptomics to identify differentially regulated genes. Two such genes, Arp9 and Sp, are differentially regulated in the ascus and the troph, respectively, and can be utilized to characterize the state of the Pneumocystis life cycle in vivoGsc1, encoding a ß-1,3-glucan synthase with a large extracellular domain previously identified using surface proteomics, was more highly expressed on the ascus form of Pneumocystis GSC-1 ectodomain immunization generated a strong antibody response that demonstrated the ability to recognize the surface of the Pneumocystis asci. GSC-1 ectodomain immunization was also capable of reducing ascus burden following primary challenge with Pneumocystis murina Finally, mice immunized with the GSC-1 ectodomain had limited fungal burden following natural transmission of Pneumocystis using a cohousing model.IMPORTANCE The current report enhances our understanding of Pneumocystis biology in a number of ways. First, the current study provided a preliminary annotation of the Pneumocystis murina genome, addressing a long-standing issue in the field. Second, this study validated two novel transcripts enriched in the two predominant life forms of Pneumocystis These findings allow better characterization of the Pneumocystis life cycle in vivo and could be valuable diagnostic tools. Furthermore, this study outlined a novel pipeline of -omics techniques capable of revealing novel antigens (e.g., GSC-1) for the development of vaccines against Pneumocystis.
Assuntos
Perfilação da Expressão Gênica , Pneumocystis/genética , Pneumocystis/imunologia , Pneumonia por Pneumocystis/diagnóstico , Proteômica , Animais , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia por Pneumocystis/imunologia , TranscriptomaRESUMO
Glucan is the major cell wall component of Pneumocystis cysts. In the current study, we have characterized Pneumocystis Bgl2 (EC 3.2.1.58), an enzyme with glucanosyltransferase and ß-1,3 endoglucanase activity in other fungi. Pneumocystis murina, Pneumocystis carinii, and Pneumocystis jirovecii bgl2 complementary DNA sequences encode proteins of 437, 447, and 408 amino acids, respectively. Recombinant P. murina Bgl2 expressed in COS-1 cells demonstrated ß-glucanase activity, as shown by degradation of the cell wall of Pneumocystis cysts. It also cleaved reduced laminaripentaose and transferred oligosaccharides, resulting in polymers of 6 and 7 glucan residues, demonstrating glucanosyltransferase activity. Surprisingly, confocal immunofluorescence analysis of P. murina-infected mouse lung sections using an antibody against recombinant Bgl2 showed that the native protein is localized primarily to the trophic form of Pneumocystis in both untreated mice and mice treated with caspofungin, an antifungal drug that inhibits ß-1,3-glucan synthase. Thus, like other fungi, Bgl2 of Pneumocystis has both endoglucanase and glucanosyltransferase activities. Given that it is expressed primarily in trophic forms, further studies are needed to better understand its role in the biology of Pneumocystis.
Assuntos
Antifúngicos/farmacologia , Caspofungina/farmacologia , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Pneumocystis/enzimologia , Sequência de Aminoácidos , Animais , Ligante de CD40/genética , Células COS , Parede Celular/enzimologia , Chlorocebus aethiops , Glucana Endo-1,3-beta-D-Glucosidase/antagonistas & inibidores , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucanos/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumocystis/genética , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Proteínas Recombinantes , Alinhamento de SequênciaRESUMO
Pneumocystis pneumonia is a life-threatening opportunistic fungal infection observed in individuals with severe immunodeficiencies, such as AIDS. Molecules with the ability to bind ß-glucan and signal at Fcγ receptors enhance defense against Pneumocystis f. sp. murina, though it is unclear whether antibodies reactive with fungal cell wall carbohydrates are induced during Pneumocystis infection. We observed that systemic and lung mucosal immunoglobulins cross-reactive with ß-glucan and chitosan/chitin are generated after Pneumocystis infection, with increased quantities within the lung mucosal fluid after challenge. While IgG responses against Pneumocystis protein antigens are markedly CD4+ T cell dependent, CD4+ T cell depletion did not impact quantities of IgG cross-reactive with ß-glucan or chitosan/chitin in the serum or mucosa after challenge. Notably, lung mucosal quantities of IgA cross-reactive with ß-glucan or chitosan/chitin are decreased in the setting of CD4+ T cell deficiency, occurring in the setting of concurrent reduced quantities of active transforming growth factor ß, while mucosal IgM is significantly increased in the setting of CD4+ T cell deficiency. Interleukin-21 receptor deficiency does not lead to reduction in mucosal IgA reactive with fungal carbohydrate antigens after Pneumocystis challenge. These studies demonstrate differential CD4+ T cell-dependent regulation of mucosal antibody responses against ß-glucan and chitosan/chitin after Pneumocystis challenge, suggesting that different B cell subsets may be responsible for the generation of these antibody responses, and suggest a potential immune response against fungi that may be operative in the setting of CD4+ T cell-related immunodeficiency.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Linfócitos T Reguladores/imunologia , Animais , Parede Celular/metabolismo , Quitina/análise , Quitosana/análise , Reações Cruzadas/imunologia , Imunoglobulina G/imunologia , Pulmão/metabolismo , Depleção Linfocítica , Camundongos Endogâmicos BALB C , beta-Glucanas/imunologiaRESUMO
Pneumocystis pneumonia (PCP) is a common opportunistic infectious disease that is prevalent in immunosuppressed hosts. Accumulating evidence shows that B cells play an important role in infectious diseases. In the present study, the immune regulatory role of mature B cells in host defense to Pneumocystis was evaluated. Pneumocystis infection resulted in a decrease in B cells in patients and mice, and the Pneumocystis burden in B cell-deficient mice also progressively increased from weeks 1 to 7 after infection. The clearance of Pneumocystis was delayed in B cell-activating factor receptor (BAFF-R)-deficient mice (BAFF-R-/- mice), which had few B cells and Pneumocystis-specific IgG and IgM antibodies, compared with clearance in wild-type (WT) mice. There were fewer effector CD4+ T cells and higher percentages of T helper (Th)1/Th17 cells in BAFF-R-/- mice than in WT mice. Adoptive transfer of naive B cells, mRNA sequencing, and IL-1ß neutralization experiments indicated that IL-1ß is a likely determinant of the IL-10-producing B cell-mediated suppression of Th1/Th17-cell immune responses in BAFF-R-/- PCP mice. Our data indicated that B cells play a vital role in the regulation of Th cells in response to Pneumocystis infection.
Assuntos
Linfócitos B/imunologia , Interleucina-10/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Células Th1/imunologia , Células Th2/imunologia , Adulto , Animais , Anticorpos Antifúngicos/imunologia , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/imunologia , Linfócitos B/patologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Knockout , Pneumonia por Pneumocystis/genética , Pneumonia por Pneumocystis/patologia , Células Th1/patologia , Células Th2/patologiaRESUMO
Introduction: Pneumocystis pneumonia (PCP) remains a severe complication with high mortality in immunocompromised patients. It has been well accepted that CD4+ T cells play a major role in controlling Pneumocystis infection. Th9 cells were the main source of IL-9 with multifaced roles depending on specific diseases. It is unclear whether IL-9/Th9 contributes to the immune response against PCP. The current study aims to explore the role of IL-9 and the effect of IL-9 on Th17 cells in murine model of PCP. Materials and methods: Mice were intratracheally injected with 1 × 106Pneumocystis organisms to establish the murine model of Pneumocystis infection. Pneumocystis burden was detected by TaqMan real-time PCR. Using IL-9-deficient (IL-9-/-) mice, flow cytometry, real-time PCR and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the immune function related to Th17 response in defense against Pneumocystis infection. Results: Reduced Pneumocystis burden was observed in lungs in IL-9-/- mice compared with WT mice at 3-week postinfection. IL-9-/-mice exhibited stronger Th17 immune responses than WT PCP mice through flow cytometer and real-time PCR. ELISA revealed higher levels of IL-17 and IL-23 in bronchoalveolar lavage fluid from IL-9-/- mice than WT mice. And IL-9 deficiency promoted Th17 differentiation from CD4+ naive T cells. IL-17A neutralization increased Pneumocystis burden in IL-9-/- mice. Conclusion: Although similar basic clearance of Pneumocystis organisms was achieved in both WT and IL-9-/- PCP mice, IL-9 deficiency could lower Pneumocystis organism burden and promote pulmonary Th17 cells response in the early stage of infection.
Assuntos
Suscetibilidade a Doenças , Interleucina-9/deficiência , Pneumocystis/imunologia , Pneumonia por Pneumocystis/etiologia , Células Th17/imunologia , Células Th17/metabolismo , Animais , Apoptose , Biomarcadores , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Imunofenotipagem , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumocystis/genética , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/patologiaRESUMO
Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell-mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r-/- mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Doenças do Sistema Imunitário/imunologia , Infecções por Pneumocystis/imunologia , Animais , Anti-Infecciosos/metabolismo , Antifúngicos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Subunidade alfa de Receptor de Interleucina-21/genética , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumocystis/imunologia , Infecções por Pneumocystis/genética , Infecções por Pneumocystis/patologia , Fator de Transcrição STAT3 , Transdução de Sinais , Interleucina 22RESUMO
Pneumocystis has a large multicopy gene family encoding proteins related to the major surface glycoprotein (Msg), whose functions are largely unknown. We expressed one such protein of Pneumocystis murina, p57, which is encoded by 3 highly conserved genes, and demonstrated by immunoblot that immunocompetent mice that were immunized with crude Pneumocystis antigens or that had cleared Pneumocystis infection developed antibodies to p57. Using hyperimmune anti-p57 serum combined with immunolabeling, we found that p57 was expressed by small trophic forms and intracystic bodies, whereas it was not expressed on larger trophic forms or externally by cysts. Expression of p57 and Msg by trophic forms was largely mutually exclusive. Treatment of infected animals with caspofungin inhibited cyst formation and markedly decreased p57 expression. While p57 expression was seen in immunocompetent mice infected with Pneumocystis, immunization with recombinant p57 did not result in altered cytokine expression by lymphocytes or in diminished infection in such mice. Thus, p57 appears to be a stage-specific antigen of Pneumocystis that is expressed on intracystic bodies and young trophic forms and may represent a mechanism to conserve resources in organisms during periods of limited exposure to host immune responses.
Assuntos
Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Infecções por Pneumocystis/imunologia , Pneumocystis/imunologia , Animais , Antígenos de Fungos/genética , Western Blotting , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos KnockoutAssuntos
Antígenos de Fungos/metabolismo , Interações Hospedeiro-Patógeno , Modelos Imunológicos , Infecções Oportunistas/imunologia , Infecções por Pneumocystis/imunologia , Pneumocystis/fisiologia , Receptores Imunológicos/metabolismo , Animais , Humanos , Hospedeiro Imunocomprometido , Lectinas Tipo C/metabolismo , Infecções Oportunistas/microbiologia , Fagocitose , Pneumocystis/imunologia , Infecções por Pneumocystis/microbiologia , Receptores de Reconhecimento de Padrão/metabolismoRESUMO
Pneumocystis species are fungal pathogens that cause pneumonia in immunocompromised hosts. Lung damage during Pneumocystis pneumonia is predominately due to the inflammatory immune response. Pneumocystis species have a biphasic life cycle. Optimal innate immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, the trophic life cycle stage broadly suppresses proinflammatory responses to multiple pathogen-associated molecular patterns (PAMPs), including ß-1,3-glucan. Little is known about the contribution of these life cycle stages to the development of protective adaptive responses to Pneumocystis infection. Here we report that CD4+ T cells primed in the presence of trophic forms are sufficient to mediate clearance of trophic forms and cysts. In addition, primary infection with trophic forms is sufficient to prime B-cell memory responses capable of clearing a secondary infection with Pneumocystis following CD4+ T cell depletion. While trophic forms are sufficient for initiation of adaptive immune responses in immunocompetent mice, infection of immunocompromised recombination-activating gene 2 knockout (RAG2-/-) mice with trophic forms in the absence of cysts does not lead to the severe weight loss and infiltration of innate immune cells associated with the development of Pneumocystis pneumonia.