Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Nat Commun ; 15(1): 4326, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773113

RESUMO

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Assuntos
Dinoprostona , Modelos Animais de Doenças , Pulmão , Macrófagos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica , Receptores de Prostaglandina E Subtipo EP4 , Streptococcus pneumoniae , Animais , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/metabolismo , Camundongos , Dinoprostona/metabolismo , Streptococcus pneumoniae/imunologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Cadeias alfa de Integrinas/metabolismo , Cadeias alfa de Integrinas/genética , Feminino , Antígenos CD/metabolismo , Antígenos CD/genética , Linfócitos T/imunologia
2.
BMC Infect Dis ; 24(1): 414, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641804

RESUMO

BACKGROUND: Lobar pneumonia caused by Mycoplasma pneumoniae is a relatively difficult-to-treat pneumonia in children. The time of radiographic resolution after treatment is variable, a long recovery time can result in several negative effects, and it has attracted our attention. Therefore, exploring factors associated with delayed radiographic resolution will help to identify these children at an early stage and prepare for early intervention. METHODS: The data of 339 children with lobar pneumonia caused by Mycoplasma pneumoniae were collected from the Department of Pediatrics of Fu Yang People's Hospital, China from January 2021 to June 2022. After discharge, the children were regularly followed up in the outpatient department and on the WeChat platform for > 8 weeks. According to whether pulmonary imaging (chest radiography or plain chest computed tomography) returned to normal within 8 weeks, the children were divided into the delayed recovery group (DRG) (n = 69) and the normal recovery group (NRG) (n = 270). The children's general information, laboratory examination findings, bronchoscopy results, and imaging findings were retrospectively analyzed. Single-factor analysis was performed to identify the risk factors for delayed radiographic resolution of lobar pneumonia caused by Mycoplasma pneumoniae, and the factors with statistically significant differences underwent multiple-factor logistic regression analysis. Receiver operating characteristic (ROC) analysis was then performed to calculate the cutoff value of early predictive indicators of delayed radiographic resolution. RESULTS: Single-factor analysis showed that the following were significantly greater in the DRG than NRG: total fever duration, the hospitalization time, C-reactive protein (CRP) level, lactate dehydrogenase (LDH) level, D-dimer level, pulmonary lesions involving two or more lobes, a large amount of pleural effusion, the time to interventional bronchoscopy, and mucus plugs formation. Multivariate logistic regression analysis showed that the hospitalization time, CRP level, LDH level, pulmonary lesions involving two or more lobes, and a large amount of pleural effusion were independent risk factors for delayed radiographic resolution of lobar pneumonia caused by Mycoplasma pneumoniae. The cutoff values on the receiver operating characteristic curve were a hospitalization time of ≥ 10.5 days, CRP level of ≥ 25.92 mg/L, and LDH level of ≥ 378 U/L. CONCLUSION: If patients with lobar pneumonia caused by Mycoplasma pneumoniae have a hospitalization time of ≥ 10.5 days, CRP level of ≥ 25.92 mg/L, and LDH level ≥ 378 U/L, the time of radiographic resolution is highly likely to exceed 8 weeks. Pediatricians must maintain a high level of vigilance for these factors, control the infection as early as possible, strengthen airway management, and follow up closely to avoid complications and sequelae of Mycoplasma pneumoniae pneumonia.


Assuntos
Derrame Pleural , Pneumonia por Mycoplasma , Pneumonia Pneumocócica , Criança , Humanos , Mycoplasma pneumoniae , Estudos Retrospectivos , Pneumonia por Mycoplasma/complicações , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumonia Pneumocócica/patologia , Derrame Pleural/complicações
3.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980300

RESUMO

Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.


Assuntos
MicroRNAs , Pneumonia Pneumocócica , Animais , Humanos , Camundongos , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Pulmão/patologia , Camundongos Knockout , MicroRNAs/genética , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae
4.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36535641

RESUMO

Hypoxia-inducible factor (HIF)1α is a transcription factor involved in cellular metabolism and regulation of immune cell effector functions. Here, we studied the role of HIF1α in myeloid cells during pneumonia caused by the major causative pathogen, Streptococcus pneumoniae (Spneu). Mice deficient for HIF1α in myeloid cells (LysMcreHif1αfl/fl) were generated to study the in vitro responsiveness of bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) to the Gram-positive bacterial wall component lipoteichoic acid (LTA) and heat-killed Spneu, and the in vivo host response after infection with Spneu via the airways. Both BMDMs and AMs released more lactate upon stimulation with LTA or Spneu, indicative of enhanced glycolysis; HIF1α-deficiency in these cells was associated with diminished lactate release. In BMDMs, HIF1α-deficiency resulted in reduced secretion of tumor necrosis factor (TNF)α and interleukin (IL)-6 upon activation with Spneu but not LTA, while HIF1α-deficient AMs secreted less TNFα and IL-6 in response to LTA, and TNFα after Spneu stimulation. However, no difference was found in the host response of LysMcreHif1αfl/fl mice after Spneu infection as compared to controls. Similar in vivo findings were obtained in neutrophil (Mrp8creHif1αfl/fl) HIF1α-deficient mice. These data suggest that myeloid HIF1α is dispensable for the host defense during pneumococcal pneumonia.


Assuntos
Pneumonia Pneumocócica , Animais , Camundongos , Hipóxia , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae , Fator de Necrose Tumoral alfa
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884507

RESUMO

Streptococcus pneumoniae is an important causative organism of respiratory tract infections. Although periodontal bacteria have been shown to influence respiratory infections such as aspiration pneumonia, the synergistic effect of S. pneumoniae and Porphyromonas gingivalis, a periodontopathic bacterium, on pneumococcal infections is unclear. To investigate whether P. gingivalis accelerates pneumococcal infections, we tested the effects of inoculating P. gingivalis culture supernatant (PgSup) into S. pneumoniae-infected mice. Mice were intratracheally injected with S. pneumoniae and PgSup to induce pneumonia, and lung histopathological sections and the absolute number and frequency of neutrophils and macrophages in the lung were analyzed. Proinflammatory cytokine/chemokine expression was examined by qPCR and ELISA. Inflammatory cell infiltration was observed in S. pneumoniae-infected mice and S. pnemoniae and PgSup mixed-infected mice, and mixed-infected mice showed more pronounced inflammation in lung. The ratios of monocytes/macrophages and neutrophils were not significantly different between the lungs of S. pneumoniae-infected mice and those of mixed-infected mice. PgSup synergistically increased TNF-α expression/production and IL-17 production compared with S. pneumoniae infection alone. We demonstrated that PgSup enhanced inflammation in pneumonia caused by S. pneumoniae, suggesting that virulence factors produced by P. gingivalis are involved in the exacerbation of respiratory tract infections such as aspiration pneumonia.


Assuntos
Infecções por Bacteroidaceae/complicações , Inflamação/patologia , Pulmão/patologia , Infiltração de Neutrófilos/imunologia , Pneumonia Pneumocócica/patologia , Porphyromonas gingivalis/fisiologia , Streptococcus pneumoniae/fisiologia , Animais , Infecções por Bacteroidaceae/microbiologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamação/etiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia
6.
Front Immunol ; 12: 726135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589087

RESUMO

The transcription factor Krueppel-like factor (KLF) 4 fosters the pro-inflammatory immune response in macrophages and polymorphonuclear neutrophils (PMNs) when stimulated with Streptococcus pneumoniae, the main causative pathogen of community-acquired pneumonia (CAP). Here, we investigated the impact of KLF4 expression in myeloid cells such as macrophages and PMNs on inflammatory response and disease severity in a pneumococcal pneumonia mouse model and in patients admitted to hospital with CAP. We found that mice with a myeloid-specific knockout of KLF4 mount an insufficient early immune response with reduced levels of pro-inflammatory cytokines and increased levels of the anti-inflammatory cytokine interleukin (IL) 10 in bronchoalveolar lavage fluid and plasma and an impaired bacterial clearance from the lungs 24 hours after infection with S. pneumoniae. This results in higher rates of bacteremia, increased lung tissue damage, more severe symptoms of infection and reduced survival. Higher KLF4 gene expression levels in the peripheral blood of patients with CAP at hospital admission correlate with a favourable clinical presentation (lower sequential organ failure assessment (SOFA) score), lower serum levels of IL-10 at admission, shorter hospital stay and lower mortality or requirement of intensive care unit treatment within 28 days after admission. Thus, KLF4 in myeloid cells such as macrophages and PMNs is an important regulator of the early pro-inflammatory immune response and, therefore, a potentially interesting target for therapeutic interventions in pneumococcal pneumonia.


Assuntos
Bacteriemia/patologia , Infecções Comunitárias Adquiridas/patologia , Fagócitos/metabolismo , Pneumonia Pneumocócica/patologia , Adulto , Idoso , Animais , Bacteriemia/diagnóstico , Líquido da Lavagem Broncoalveolar/citologia , Infecções Comunitárias Adquiridas/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-10/metabolismo , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pneumonia Pneumocócica/imunologia , Índice de Gravidade de Doença , Streptococcus pneumoniae/imunologia
7.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060477

RESUMO

Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.


Assuntos
Linfócitos B/imunologia , Memória Imunológica , Pulmão/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/prevenção & controle , Streptococcus pneumoniae/imunologia , Animais , Antígenos de Diferenciação/imunologia , Linfócitos B/patologia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia
8.
BMC Infect Dis ; 21(1): 345, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849461

RESUMO

BACKGROUND: To guide decision-making on immunisation programmes for ageing adults in Europe, one of the aims of the Vaccines and InfecTious diseases in the Ageing popuLation (IMI2-VITAL) project is to assess the burden of disease (BoD) of (potentially) vaccine-preventable diseases ((P)VPD). We aimed to identify the available data sources to calculate the BoD of (P)VPD in participating VITAL countries and to pinpoint data gaps. Based on epidemiological criteria and vaccine availability, we prioritized (P) VPD caused by Extra-intestinal pathogenic Escherichia coli (ExPEC), norovirus, respiratory syncytial virus, Staphylococcus aureus, and pneumococcal pneumonia. METHODS: We conducted a survey on available data (e.g. incidence, mortality, disability-adjusted life years (DALY), quality-adjusted life years (QALY), sequelae, antimicrobial resistance (AMR), etc.) among national experts from European countries, and carried out five pathogen-specific literature reviews by searching MEDLINE for peer-reviewed publications published between 2009 and 2019. RESULTS: Morbidity and mortality data were generally available for all five diseases, while summary BoD estimates were mostly lacking. Available data were not always stratified by age and risk group, which is especially important when calculating BoD for ageing adults. AMR data were available in several countries for S. aureus and ExPEC. CONCLUSION: This study provides an exhaustive overview of the available data sources and data gaps for the estimation of BoD of five (P) VPD in ageing adults in the EU/EAA, which is useful to guide pathogen-specific BoD studies and contribute to calculation of (P)VPDs BoD.


Assuntos
Efeitos Psicossociais da Doença , Doenças Preveníveis por Vacina/economia , Envelhecimento , Infecções por Caliciviridae/economia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/mortalidade , Infecções por Caliciviridae/patologia , Europa (Continente)/epidemiologia , Humanos , Incidência , Pneumonia Pneumocócica/economia , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/patologia , Anos de Vida Ajustados por Qualidade de Vida , Infecções por Vírus Respiratório Sincicial/economia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/mortalidade , Infecções por Vírus Respiratório Sincicial/patologia , Inquéritos e Questionários , Doenças Preveníveis por Vacina/epidemiologia , Doenças Preveníveis por Vacina/mortalidade , Doenças Preveníveis por Vacina/patologia
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L916-L925, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655757

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a deadly condition characterized by progressive respiratory dysfunction. Exacerbations due to airway infections are believed to promote disease progression, and presence of Streptococcus in the lung microbiome has been associated with the progression of IPF and mortality. The aim of this study was to analyze the effect of lung fibrosis on susceptibility to pneumococcal pneumonia and bacteremia. The effects of subclinical (low dose) infection with Streptococcus pneumoniae were studied in a well characterized fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of spontaneous, progressive pulmonary fibrosis. Forty-eight hours after transnasal infection with S. pneumoniae, bacterial load was assessed in lung tissue, bronchoalveolar lavage (BAL), blood, and spleen. Leukocyte subsets and cytokine levels were analyzed in BAL and blood. Lung compliance and arterial blood gases were assessed. In contrast to wildtype mice, low dose lung infection with S. pneumoniae in Fra-2 TG mice resulted in substantial pneumonia including weight loss, increased lung bacterial load, and bacteremia. BAL alveolar macrophages were reduced in Fra-2 TG mice compared to the corresponding WT mice. Proinflammatory cytokines and chemokines (IL-1ß, IL-6, TNF-α, and CXCL1) were elevated upon infection in BAL supernatant and plasma of Fra-2 TG mice. Lung compliance was decreased in Fra-2 TG mice following low dose infection with S. pneumoniae. Pulmonary fibrosis increases susceptibility to pneumococcal pneumonia and bacteremia possibly via impaired alveolar bacterial clearance.


Assuntos
Antígeno 2 Relacionado a Fos , Macrófagos Alveolares , Pneumonia Pneumocócica , Fibrose Pulmonar , Streptococcus pneumoniae/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/microbiologia , Fibrose Pulmonar/patologia
10.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600743

RESUMO

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Assuntos
Receptor de Proteína C Endotelial/deficiência , Pulmão/metabolismo , Pleura/metabolismo , Derrame Pleural/metabolismo , Pleurisia/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Carga Bacteriana , Células Cultivadas , Modelos Animais de Doenças , Receptor de Proteína C Endotelial/genética , Feminino , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pleura/microbiologia , Pleura/patologia , Derrame Pleural/microbiologia , Derrame Pleural/patologia , Derrame Pleural/fisiopatologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/fisiopatologia
11.
Am J Respir Cell Mol Biol ; 64(4): 492-503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513310

RESUMO

Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3ß, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-ß- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.


Assuntos
Transição Epitelial-Mesenquimal , NADPH Oxidase 1/metabolismo , Pleura/enzimologia , Pleurisia/enzimologia , Pneumonia Pneumocócica/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator Xa/metabolismo , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/deficiência , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Pleura/microbiologia , Pleura/patologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Transdução de Sinais , Trombina/metabolismo
12.
Antioxid Redox Signal ; 34(12): 962-978, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32283950

RESUMO

Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.


Assuntos
Farmacorresistência Bacteriana/genética , Peróxido de Hidrogênio/metabolismo , Pneumonia Pneumocócica/tratamento farmacológico , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Oxidantes/metabolismo , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/genética , Estreptolisinas/metabolismo
13.
J Mol Biol ; 433(2): 166723, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33242497

RESUMO

Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Streptococcus pneumoniae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Ligação de Hidrogênio , Cinética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleosídeos/química , Nucleosídeos/metabolismo , Fagocitose , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Ligação Proteica , Conformação Proteica , Streptococcus pneumoniae/imunologia , Relação Estrutura-Atividade
14.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L377-L392, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296268

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) associated with high morbidity and mortality. Patients with ILD frequently develop an acute exacerbation of their disease, which may be triggered by viral and/or bacterial infections. Prostaglandin E2 (PGE2) is an eicosanoid released in a cyclooxygenase-2 (COX2)-dependent manner and is considered to contribute to regulation of lung fibrosis. However, its role in infection-induced exacerbation of lung fibrosis is poorly defined. We found significantly increased levels of PGE2 in lung tissue of patients with ILD. Increased levels of PGE2 were also found in lung tissue of mice with AdTGF-ß1-induced lung fibrosis and even more so in Streptococcus pneumoniae exacerbated lung fibrosis. Type II alveolar epithelial cells (AT II cells) and alveolar macrophages (AM) contributed to PGE2 release during exacerbating fibrosis. Application of parecoxib to inhibit PGE2 synthesis ameliorated lung fibrosis, whereas intratracheal application of PGE2 worsened lung fibrosis in mice. Both interventions had no effect on S. pneumoniae-exacerbated lung fibrosis. Together, we found that the COX2-PGE2 axis has dual roles in fibrosis that may offset each other: PGE2 helps resolve infection/attenuate inflammation in fibrosis exacerbation but accentuates TGF-ß/AT II cell-mediated fibrosis. These data support the efficacy of COX/PGE2 interventions in the setting of non-exacerbating lung fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Pneumonia Pneumocócica/metabolismo , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Streptococcus pneumoniae/metabolismo , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Animais , Modelos Animais de Doenças , Feminino , Isoxazóis/farmacologia , Camundongos , Pneumonia Pneumocócica/patologia , Fibrose Pulmonar/microbiologia , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta/metabolismo
15.
J Immunol ; 205(12): 3390-3399, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158955

RESUMO

Macrophage-inducible C-type lectin (Mincle)-dependent sensing of pathogens triggers proinflammatory immune responses in professional phagocytes that contribute to protecting the host against pathogen invasion. In this study, we examined whether overexpression of Mincle that is designed to improve early pathogen sensing by professional phagocytes would improve lung-protective immunity against Streptococcus pneumoniae in mice. Proteomic profiling of alveolar macrophages of Mincle transgenic (tg) mice stimulated with the Mincle-specific pneumococcal ligand glucosyl-diacylglycerol (Glc-DAG) revealed increased Nlrp3 inflammasome activation and downstream IL-1ß cytokine release that was not observed in Glc-DAG-stimulated Mincle knockout or Nlrp3 knockout macrophages. Along this line, Mincle tg mice also responded with a stronger Nlrp3 expression and early proinflammatory cytokine release after challenge with S. pneumoniae, ultimately leading to fatal pneumonia in the Mincle tg mice. Importantly, Nlrp3 inhibitor treatment of Mincle tg mice significantly mitigated the observed hyperinflammatory response to pneumococcal challenge. Together, we show that overexpression of the pattern recognition receptor Mincle triggers increased Glc-DAG-dependent Nlrp3 inflammasome activation in professional phagocytes leading to fatal pneumococcal pneumonia in mice that is amenable to Nlrp3 inhibitor treatment. These data show that ectopic expression of the Mincle receptor confers increased susceptibility rather than resistance to S. pneumoniae in mice, thus highlighting the importance of an inducible Mincle receptor expression in response to microbial challenge.


Assuntos
Lectinas Tipo C/imunologia , Macrófagos Alveolares/imunologia , Proteínas de Membrana/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Animais , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lectinas Tipo C/genética , Macrófagos Alveolares/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/patologia
16.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020213

RESUMO

Streptococcus pneumoniae is a major causative bacterium of community-acquired pneumonia. Dendritic cell-associated C-type lectin-2 (dectin-2), one of the C-type lectin receptors (CLRs), was previously reported to play a pivotal role in host defense against pneumococcal infection through regulating phagocytosis by neutrophils while not being involved in neutrophil accumulation. In the present study, to elucidate the possible contribution of other CLRs to neutrophil accumulation, we examined the role of caspase recruitment domain-containing protein 9 (CARD9), a common adaptor molecule for signal transduction triggered by CLRs, in neutrophilic inflammatory response against pneumococcal infection. Wild-type (WT), CARD9 knockout (KO), and dectin-2 KO mice were infected intratracheally with pneumococcus, and the infected lungs were histopathologically analyzed to assess neutrophil accumulation at 24 h postinfection. Bronchoalveolar lavage fluids (BALFs) were collected at the same time point to count the neutrophils and assess the production of inflammatory cytokines and chemokines. Neutrophil accumulation was significantly decreased in CARD9 KO mice, but not in dectin-2 KO mice. Tumor necrosis factor alpha (TNF-α), keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-2 (MIP-2) production in BALFs were also attenuated in CARD9 KO mice, but not in dectin-2 KO mice. Production of TNF-α and KC by alveolar macrophages stimulated with pneumococcal culture supernatants was significantly attenuated in CARD9 KO mice, but not in dectin-2 KO mice, compared to that in each group's respective control mice. In addition, pneumococcus-infected CARD9 KO mice showed larger bacterial burdens in the lungs than did WT mice. These data indicate that CARD9 is required for neutrophil migration after pneumococcal infection, as well as inflammatory cytokine and chemokine production by alveolar macrophages, and suggest that a CLR distinct from dectin-2 may be involved in this response.


Assuntos
Candidíase Mucocutânea Crônica/complicações , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Pneumonia Pneumocócica/etiologia , Streptococcus pneumoniae , Animais , Biópsia , Quimiocinas/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunoglobulina G/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia
17.
Front Immunol ; 11: 2120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042124

RESUMO

Streptococcus pneumoniae is the main cause of bacterial pneumonia, a condition that currently produces significant global morbidity and mortality. The initial immune response to this bacterium occurs when the innate system recognizes common motifs expressed by many pathogens, events driven by pattern recognition receptors like the Toll-like family receptors (TLRs). In this study, lung myeloid-cell populations responsible for the innate immune response (IIR) against S. pneumoniae, and their dependence on the TLR4-signaling axis, were analyzed in TLR4-/- and Myeloid-Differentiation factor-88 deficient (MyD88-/-) mice. Neutrophils and monocyte-derived cells were recruited in infected mice 3-days post-infection. Compared to wild-type mice, there was an increased bacterial load in both these deficient mouse strains and an altered IIR, although TLR4-/- mice were more susceptible to bacterial infection. These mice also developed fewer alveolar macrophages, weaker neutrophil infiltration, less Ly6Chigh monocyte differentiation and a disrupted classical and non-classical monocyte profile. The pro-inflammatory cytokine profile (CXCL1, TNF-α, IL-6, and IL-1ß) was also severely affected by the lack of TLR4 and no induction of Th1 was observed in these mice. The respiratory burst (ROS production) after infection was profoundly dampened in TLR4-/- and MyD88-/- mice. These data demonstrate the complex dynamics of myeloid populations and a key role of the TLR4-signaling axis in the IIR to S. pneumoniae, which involves both the MyD88 and TRIF (Toll/IL-1R domain-containing adaptor-inducing IFN-ß) dependent pathways.


Assuntos
Pulmão/imunologia , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Mielopoese/fisiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/patologia , Transdução de Sinais/fisiologia , Streptococcus pneumoniae/imunologia , Receptor 4 Toll-Like/fisiologia , Administração Intranasal , Animais , Carga Bacteriana , Citocinas/biossíntese , Imunidade Inata , Pulmão/patologia , Macrófagos Alveolares/imunologia , Camundongos , Monócitos/patologia , Fator 88 de Diferenciação Mieloide/deficiência , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio/metabolismo , Células Th1/imunologia , Receptor 4 Toll-Like/deficiência
18.
PLoS One ; 15(10): e0240329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057343

RESUMO

Streptococcus pneumoniae is often isolated from patients with community-acquired pneumonia. Antibiotics are the primary line of treatment for pneumococcal pneumonia; however, rising antimicrobial resistance is becoming more prevalent. Hinokitiol, which is isolated from trees in the cypress family, has been demonstrated to exert antibacterial activity against S. pneumoniae in vitro regardless of antimicrobial resistance. In this study, the efficacy of hinokitiol was investigated in a mouse pneumonia model. Male 8-week-old BALB/c mice were intratracheally infected with S. pneumoniae strains D39 (antimicrobial susceptible) and NU4471 (macrolide resistant). After 1 h, hinokitiol was injected via the tracheal route. Hinokitiol significantly decreased the number of S. pneumoniae in the bronchoalveolar lavage fluid (BALF) and the concentration of pneumococcal DNA in the serum, regardless of whether bacteria were resistant or susceptible to macrolides. In addition, hinokitiol decreased the infiltration of neutrophils in the lungs, as well as the concentration of inflammatory cytokines in the BALF and serum. Repeated hinokitiol injection at 18 h intervals showed downward trend in the number of S. pneumoniae in the BALF and the concentration of S. pneumoniae DNA in the serum with the number of hinokitiol administrations. These findings suggest that hinokitiol reduced bacterial load and suppressed excessive host immune response in the pneumonia mouse model. Accordingly, hinokitiol warrants further exploration as a potential candidate for the treatment of pneumococcal pneumonia.


Assuntos
Anti-Infecciosos/farmacologia , Monoterpenos/farmacologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae/isolamento & purificação , Tropolona/análogos & derivados , Animais , Anti-Infecciosos/uso terapêutico , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocina CXCL1/sangue , Quimiocina CXCL1/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Farmacorresistência Bacteriana , Interleucina-6/sangue , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monoterpenos/uso terapêutico , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/patogenicidade , Tropolona/farmacologia , Tropolona/uso terapêutico
19.
J Clin Invest ; 130(6): 3021-3037, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364537

RESUMO

Patients with respiratory syncytial virus (RSV) infection exhibit enhanced susceptibility to subsequent pneumococcal infections. However, the underlying mechanisms involved in this increased susceptibility remain unclear. Here, we identified potentially novel cellular and molecular cascades triggered by RSV infection to exacerbate secondary pneumococcal pneumonia. RSV infection stimulated the local production of growth arrest-specific 6 (Gas6). The Gas6 receptor Axl was crucial for attenuating pneumococcal immunity in that the Gas6/Axl blockade fully restored antibacterial immunity. Mechanistically, Gas6/Axl interaction regulated the conversion of alveolar macrophages from an antibacterial phenotype to an M2-like phenotype that did not exhibit antibacterial activity, and the attenuation of caspase-1 activation and IL-18 production in response to pneumococcal infection. The attenuated IL-18 production failed to drive both NK cell-mediated IFN-γ production and local NO and TNF-α production, which impair the control of bacterial infection. Hence, the RSV-mediated Gas6/Axl activity attenuates the macrophage-mediated protection against pneumococcal infection. The Gas6/Axl axis could be a potentially novel therapeutic target for RSV-associated secondary bacterial infection.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Macrófagos Alveolares/imunologia , Pneumonia Pneumocócica/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Camundongos , Camundongos Knockout , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/virologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia , Receptor Tirosina Quinase Axl
20.
Microb Pathog ; 144: 104126, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173494

RESUMO

Streptococcus pneumoniae (pneumococcus) is touted to be the generally found pathogen in patients with respiratory issues and there is an epidemiologic linkage present between Respiratory syncytial virus (RSV). This study aim at investigating the interaction between RSV and two serotypes of S. pneumoniae using a distinct animal model and a well-established colonizing pneumococcal strain. Phase variants phenotype of each strain was determined under oblique light. Co infection model was developed using BALB/c mice housed in a BSL-2 facility. Coinfection experiments were performed and number of bacterial colonies was quantified and phase determination was evaluated. RSV was detected in sample through real-time quantitative PCR. Adherence assays were performed to determine adherence of Spn strains and its knock out ΔNanA to nasopharyngeal carcinoma (NPC) epithelial CNE3 cell line. The biofilm viability was determined and phase composition was counted using plate count. Neuraminidase activity was measured in fluorometircassessed using 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUAN) as substrate as described in earlier literature. The GraphPad Software version 5.01 i.e., GraphPad Prism was used to conduct the statistical analysis. The extent of bacterial colonization was increased significantly (p < 0.05), when the mice were co infected. Nasal epithelium remained intact in mock sample with features of a thick mucociliary border. A small percentage of pneumococci exhibit phase variation between opaque phase and transparent phase. The percentage adherent of both phase were not found to be varying significantly within serotype but it was seen that nonpathogenic type 27 was more adherent. Biofilm formation was selectively more for transparent phase from a mixed-phase inoculum. Adherence of both phase variant of S. pneumoniae to nasopharyngeal epithelial cells 2 h post infection expressed as the percentage of adherent bacteria relative to the inoculum. In absence of viral infection, the nasal colonization of the opaque and the transparent variant was increased many folds, which was a significant differences. The extent of nasal colonization by the ΔNanA mutant strain were significantly reduced post-bacterial infection for both type of wild-type (P < 0.05). The findings explore insights into the interactions occurring between S. pneumoniae and RSV during respiratory infections and pneumococcal acquisition, indicate that pneumococcal serotypes have different ability to cause infection as well as co infections and potentially follow an unappreciated mechanism. Much more research work is needed to further understand the minutiae of this interaction within co-infection process.


Assuntos
Aderência Bacteriana/fisiologia , Aderência Bacteriana/efeitos da radiação , Interações Microbianas/fisiologia , Pneumonia Pneumocócica/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Animais , Biofilmes/crescimento & desenvolvimento , Linhagem Celular Tumoral , Coinfecção/microbiologia , Células Epiteliais/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/microbiologia , Vírus Sinciciais Respiratórios/fisiologia , Streptococcus pneumoniae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA