Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
1.
Environ Geochem Health ; 46(6): 203, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695991

RESUMO

Manganese (Mn) is of particular concern in groundwater, as low-level chronic exposure to aqueous Mn concentrations in drinking water can result in a variety of health and neurodevelopmental effects. Much of the global population relies on drinking water sourced from karst aquifers. Thus, we seek to assess the relative risk of Mn contamination in karst by investigating the Shenandoah Valley, VA region, as it is underlain by both karst and non-karst aquifers and much of the population relies on water wells and spring water. Water and soil samples were collected throughout the Shenandoah Valley, to supplement pre-existing well water and spring data from the National Water Information System and the Virginia Household Water Quality Program, totaling 1815 wells and 119 springs. Soils were analyzed using X-ray fluorescence and Mn K-Edge X-ray absorption near-edge structure spectroscopy. Factors such as soil type, soil geochemistry, and aquifer lithology were linked with each location to determine if correlations exist with aqueous Mn concentrations. Analyzing the distribution of Mn in drinking water sources suggests that water wells and springs within karst aquifers are preferable with respect to chronic Mn exposure, with < 4.9% of wells and springs in dolostone and limestone aquifers exceeding 100 ppb Mn, while sandstone and shale aquifers have a heightened risk, with > 20% of wells exceeding 100 ppb Mn. The geochemistry of associated soils and spatial relationships to various hydrologic and geologic features indicates that water interactions with aquifer lithology and soils contribute to aqueous Mn concentrations. Relationships between aqueous Mn in spring waters and Mn in soils indicate that increasing aqueous Mn is correlated with decreasing soil Mn(IV). These results point to redox conditions exerting a dominant control on Mn in this region.


Assuntos
Água Subterrânea , Manganês , Oxirredução , Solo , Poluentes Químicos da Água , Poços de Água , Manganês/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Solo/química , Nascentes Naturais/química , Monitoramento Ambiental , Água Potável/química , Poluentes do Solo/análise , Poluentes do Solo/química , Espectrometria por Raios X , Exposição Ambiental
2.
Environ Monit Assess ; 196(6): 518, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710968

RESUMO

The article presents a comprehensive framework for assessing the physical vulnerability of hand-dug wells within the Are Community, Southwestern Nigeria. The study spans from March to April 2023 and meticulously examines 90 wells, focusing on critical parameters such as well collar, well cover, and well lining information. The analysis reveals significant variations in well collar construction materials and dimensions, emphasizing the community's adaptive strategies. The Well Collar Height Index (WCi), Well Cover Index (WCOi), Well Lining Index (WLi), and the derived Vulnerability Index categorize wells into vulnerability classes, offering a nuanced understanding of susceptibility levels. Notably, the study identifies wells with Very High vulnerability that demand urgent attention, as well as wells with effective protective measures categorized as Very Low vulnerability. The article emphasizes the need for a nuanced understanding of local practices and materials, highlighting the variability in well collar construction. It discusses the implications of well cover conditions and the critical role of well linings in assessing groundwater vulnerability. The Vulnerability Index combines these parameters, guiding targeted interventions based on risk severity. The study lays the groundwork for future interventions to enhance the safety and sustainability of water sources within the Are Community. It recommends immediate comprehensive measures for highly vulnerable wells, ongoing monitoring, community engagement, and knowledge sharing. The future scope includes incorporating geochemical analysis, targeted interventions, regular maintenance, community training, and exploring alternative water sources for sustainable improvements.


Assuntos
Monitoramento Ambiental , Poços de Água , Nigéria , Monitoramento Ambiental/métodos , Humanos , Abastecimento de Água/estatística & dados numéricos , Água Subterrânea/química , Medição de Risco
3.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557570

RESUMO

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias , Nitratos/análise , North Carolina , Escherichia coli , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água , Água Subterrânea/microbiologia , Compostos Orgânicos
4.
J Water Health ; 22(3): 612-626, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557575

RESUMO

In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.


Assuntos
Criptosporidiose , Cryptosporidium , Água Subterrânea , Poluentes Químicos da Água , Humanos , Criptosporidiose/epidemiologia , Minnesota , Monitoramento Ambiental/métodos , Abastecimento de Água , Poços de Água , Fatores de Risco , Poluentes Químicos da Água/análise
5.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565529

RESUMO

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Poços de Água , Água , Qualidade da Água , Poluentes Químicos da Água/análise
6.
J Water Health ; 22(4): 746-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678427

RESUMO

Bacteriological studies of well water mainly focus on aerobic and facultative aerobic coliform bacteria. However, the presence of obligate anaerobic bacteria in well water, especially sulfate-reducing bacteria (SRB), possible causative agents of some diseases, is often ignored. In this study, the presence of SRB and coexisting anaerobic bacteria with SRB in sulfate-reducing enrichment cultures obtained from 10 well water samples in Istanbul was investigated. A nested polymerase chain reaction-denaturing gradient gel electrophoresis strategy was performed to characterize the bacterial community structure of the enrichments. The most probable number method was used to determine SRB number. Out of 10, SRB growth was observed in only one (10%) enrichment culture and the SRB number was low (<10 cells/mL). Community members were identified as Desulfolutivibrio sulfodismutans and Anaerosinus sp. The results show that SRB coexist with Anaerosinus sp., and this may indicate poor water quality, posing a risk to public health. Furthermore, Anaerosinus sp., found in the human intestinal tract, may be used as an alternative anaerobic fecal indicator. It is worth noting that the detection of bacteria using molecular analyzes following enrichment culture techniques can bring new perspectives to determine the possible origin and presence of alternative microbial indicators in aquatic environments.


Assuntos
Sulfatos , Sulfatos/metabolismo , Poços de Água , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Redutoras de Enxofre/genética , Turquia , Bactérias Anaeróbias/isolamento & purificação , Microbiologia da Água , Reação em Cadeia da Polimerase
7.
J Prim Care Community Health ; 15: 21501319241247984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682480

RESUMO

BACKGROUND: Arsenic is a well-known toxin which may contaminate household water. It is harmful when ingested over prolonged periods of time. As a result, public health experts recommend that water should be screened and treated to prevent arsenic ingestion. In the United States, the responsibility of testing and treatment of private wells falls on homeowners. Despite recommendations for routine screening, this is rarely done. OBJECTIVES: To assess the prevalence of well water use in a Midwestern patient population, how patients and clinicians perceive the risks of arsenic in well water, and whether additional resources on well water testing are desired. These findings will be used to influence tools for clinicians regarding symptom and examination findings of chronic arsenic exposure and potentiate the distribution of informational resources on well water testing. METHODS: Surveys were sent via email to all actively practicing primary care clinicians at the Mayo Clinic in the United States Midwest, and all active adult patients at the Mayo Clinic in the same region. Our team analyzed survey data to determine whether both patients and clinicians are aware of the health effects of chronic arsenic toxicity from well water, the need for routine well water testing and whether each group wants more information on the associated risks. RESULTS: Both patients and primary care clinicians worry about arsenic exposure. Patients with well water are concerned about their water safety yet feel uninformed about testing options. Clinicians do not know how prevalent well water use is among their patients, feel uninformed about the chronic risks of arsenic exposure and the physical examination associated with it. Both groups unanimously want more information on testing options. CONCLUSIONS: Our findings show a significant reliance on well water use in the American Midwest, and unanimous support for the need for further well water testing information and resources for patients and their clinicians.


Assuntos
Arsênio , Poços de Água , Humanos , Arsênio/análise , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Inquéritos e Questionários , Meio-Oeste dos Estados Unidos , Poluentes Químicos da Água/análise , Conhecimentos, Atitudes e Prática em Saúde , Água Potável , Abastecimento de Água , Idoso , Intoxicação por Arsênico/epidemiologia
8.
Contemp Clin Trials ; 140: 107497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471641

RESUMO

BACKGROUND: The Be Well Home Health Navigator Program is a prospective, randomized controlled trial (RCT) implemented to compare a community health navigator program to usual care program to reduce contaminants in drinking water. DESIGN AND SETTING: This 4-year two-armed RCT will involve well owners in Oregon that have private drinking water wells that contain arsenic, nitrate, or lead above maximum contaminant levels. INTERVENTION: The intervention leverages the trusted relationship between Cooperative Extension Service (CES) Community Educators and rural well owners to educate, assist and motivate to make decisions and set actionable steps to mitigate water contamination. In this study, CES will serve as home health navigators to deliver: 1) individualized feedback, 2) positive reinforcement, 3) teach-back moments, 4) decision-making skills, 5) navigation to resources, 6) self-management, and 7) repeated contact for shaping and maintenance of behaviors. Usual care includes information only with no access to individual meetings with CES. MEASURABLE OUTCOMES: Pre-specified primary outcomes include 1) adoption of treatment to reduce exposure to arsenic, nitrate, or lead in water which may include switching to bottled water and 2) engagement with well stewardship behaviors assessed at baseline, and post-6 and 12 months follow-up. Water quality will be measured at baseline and 12-month through household water tests. Secondary outcomes include increased health literacy scores and risk perception assessed at baseline and 6-month surveys. IMPLICATIONS: The results will demonstrate the efficacy of a domestic well water safety program to disseminate to other CES organizations. TRIAL REGISTRATION NUMBER: NCT05395663.


Assuntos
Água Potável , Humanos , Arsênio , Nitratos/análise , Oregon , Estudos Prospectivos , Poços de Água
9.
Sci Total Environ ; 922: 171112, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387579

RESUMO

Consolidation of multi-domain risk management research is essential for strategies facilitating the concerted government (educational) and population-level (behavioural) actions required to reduce microbial private groundwater contamination. However, few studies to date have synthesised this literature or sought to ascertain the causal generality and extent of supply contamination and preventive responses. In light of the Republic of Ireland (ROI) and Ontario's high reliance and research focus on private wells and consequent utility for empirical comparison, a scoping review of pertinent literature (1990-2022) from both regions was undertaken. The SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) method was employed to inform literature searches, with Scopus and Web of Science selected as primary databases for article identification. The review identified 65 relevant articles (Ontario = 34, ROI = 31), with those investigating well user actions (n = 22) and groundwater quality (n = 28) the most frequent. A markedly higher pooled proportion of private supplies in the ROI exhibited microbial contamination (38.3 % vs. 4.1 %), despite interregional similarities in contamination drivers (e.g., weather, physical supply characteristics). While Ontarian well users demonstrated higher rates of historical (≥ 1) and annual well testing (90.6 % vs. 71.1 %; 39.1 % vs. 8.6 %) and higher rates of historical well treatment (42.3 % vs. 24.3 %), interregional levels of general supply knowledge were analogous (70.7 % vs. 71.0 %). Financial cost, organoleptic properties and residence on property during supply construction emerged as predictors of cognition and behaviour in both regions. Review findings suggest broad interregional similarities in drivers of supply contamination and individual-level risk mitigation, indicating that divergence in contamination rates may be attributable to policy discrepancies - particularly well testing incentivisation. The paucity of identified intervention-oriented studies further highlights the importance of renewed research and policy agendas for improved, targeted well user outreach and incentivised, convenience-based services promoting routine supply maintenance.


Assuntos
Água Subterrânea , Abastecimento de Água , Medição de Risco , Gestão de Riscos , Irlanda , Poços de Água
10.
Sci Total Environ ; 919: 170838, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340869

RESUMO

Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Poços de Água , Abastecimento de Água , New Hampshire , Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Potável/análise
11.
Environ Sci Pollut Res Int ; 31(11): 16164-16176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321277

RESUMO

Antimicrobial resistance (AMR) is a critical global health concern. Animal husbandry operations are AMR hotspots due to heavy antibiotic use and dissemination of animal waste into the environment. In this systematic review, we examined the impact of swine, poultry, and cattle operations on AMR in groundwater. We searched PubMed, Web of Science, CAB Direct, and the North Carolina State University Agricultural and Environmental Science databases in June 2022. The search returned 2487 studies. Of the 23 eligible studies, 17 were conducted in high-income countries (primarily the USA, also Canada, Saudi Arabia, Cyprus), and 6 were conducted in a single upper-middle-income country (China). Studies investigated facilities for swine (13), poultry (4), cattle (3), and multiple types of animals (3). The sampling distance ranged from onsite to > 20 km from facilities; the majority of studies (19) sampled onsite. Most studies collected samples from monitoring wells; only 5 studies investigated private drinking water wells. AMR in groundwater was associated with animal husbandry operations in 74% (17/23) of all studies, 65% (11/17) of studies in high-income countries, and 100% (6/6) of studies in China. Contamination was mostly found in onsite wells, especially downgradient of waste lagoons, but also in offsite private wells up to 2-3 km away. Few studies reported weather data, but AMR contamination appeared to increase with rainy conditions. Future studies should sample private wells at varying distances from animal husbandry operations under different weather conditions and include low- and middle-income countries where food animal production is intensifying.


Assuntos
Criação de Animais Domésticos , Água Subterrânea , Humanos , Suínos , Animais , Bovinos , Antibacterianos , Poços de Água , Aves Domésticas
12.
Water Res ; 252: 121183, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301524

RESUMO

In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.


Assuntos
Água Subterrânea , Poços de Água , Abastecimento de Água , Água , Água Doce
13.
Environ Sci Technol ; 58(2): 1255-1264, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164924

RESUMO

Lithium (Li) concentrations in drinking-water supplies are not regulated in the United States; however, Li is included in the 2022 U.S. Environmental Protection Agency list of unregulated contaminants for monitoring by public water systems. Li is used pharmaceutically to treat bipolar disorder, and studies have linked its occurrence in drinking water to human-health outcomes. An extreme gradient boosting model was developed to estimate geogenic Li in drinking-water supply wells throughout the conterminous United States. The model was trained using Li measurements from ∼13,500 wells and predictor variables related to its natural occurrence in groundwater. The model predicts the probability of Li in four concentration classifications, ≤4 µg/L, >4 to ≤10 µg/L, >10 to ≤30 µg/L, and >30 µg/L. Model predictions were evaluated using wells held out from model training and with new data and have an accuracy of 47-65%. Important predictor variables include average annual precipitation, well depth, and soil geochemistry. Model predictions were mapped at a spatial resolution of 1 km2 and represent well depths associated with public- and private-supply wells. This model was developed by hydrologists and public-health researchers to estimate Li exposure from drinking water and compare to national-scale human-health data for a better understanding of dose-response to low (<30 µg/L) concentrations of Li.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Lítio , Abastecimento de Água , Poços de Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental
14.
Ground Water ; 62(2): 236-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37052198

RESUMO

Managed aquifer recharge has become a standard water resources management practice to promote the development of locally sustainable water supplies and combat water scarcity. However, installation of injection wells for replenishment purposes in urban areas with complex hydrogeology faces many challenges, such as limited land availability, potential impacts on municipal production wells and known subsurface contamination plumes, and complex spatially variable hydraulic connections between aquifer units. To assess the feasibility and cost-effectiveness of injecting advanced treated water (ATW) into a complex urban aquifer system, a Simulation-Optimization (SO) model was developed to automate a systematic search for the most cost-effective locations to install new wells for injecting various quantities of ATW, if feasible. The generalized workflow presented here uses an existing MODFLOW groundwater model-along with advanced optimization routines that are publicly available-to flexibly accommodate a multiobjective function, complex constraints, and specific project requirements. The model successfully placed wells for injection of 1 to 4 MGD of ATW in aquifers underlying the study area. The injection well placement was primarily constrained by avoiding excessive impact on environmental sites with underlying groundwater plumes. The largest costs were for well installation and piping to the wells from the existing ATW pipes. This workflow is readily adaptable to other sites with different complexities, decision variables, or constraints.


Assuntos
Água Subterrânea , Abastecimento de Água , Poços de Água , Recursos Hídricos
15.
Isotopes Environ Health Stud ; 60(1): 53-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092692

RESUMO

Various approaches based on the natural variations of carbon isotopes (14C and 13C) in dissolved inorganic carbon (DIC) are routinely used to study groundwater dynamics and to estimate recharge rates by deriving groundwater ages. However, differences in 14C activities in groundwater samples collected repeatedly from the same wells and discordantly young 14C groundwater ages compared to noble gases led some authors to question the validity of radiocarbon dating. Poor sampling protocols and storage effects (14C contamination) for radiocarbon analysis are a critical factor in explaining age determination discrepancies. We evaluated the impact of storage protocols on carbon isotope exchange with atmospheric carbon dioxide by comparing glass versus standard plastic field sampling bottles for various storage times before radiocarbon and 13C analyses. The 14C bias after 12 months in pre-evacuated glass vials was minimal and within analytical precision. However, storage of DIC samples in plastic sampling bottles led to marked changes in 14C and 13C contents (up to ∼15 pmC and ∼ 5 ‰, respectively, after 12 months), meaning contamination led to younger groundwater age estimations than it should have been. Protocols for sampling and storing DIC samples for radiocarbon using pre-evacuated glass bottles help avoid atmospheric 14CO2 contamination and microbial activity.


Assuntos
Dióxido de Carbono , Água Subterrânea , Isótopos de Carbono/análise , Dióxido de Carbono/análise , Água Subterrânea/análise , Poços de Água
16.
Ground Water ; 62(2): 285-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37392403

RESUMO

Inspired by the analysis by Mishra et al. (2012) of variable pumping rate tests using piecewise-linear reconstructions of the pumping history, this article contains a derivation of the convolutional form of pumping tests in which the pumping history may take any possible form. The solution is very similar to the classical Theis (1935) equation but uses the Green's function for a pumped aquifer given by taking the time derivative of the well function W ( u ( t ) ) . This eliminates one integration inside another and renders the convolution including the pumping history about as computationally demanding as calculating the well function alone, so that the convolution can be completed using handy mathematical software. It also allows nonlinear well losses, and because an easily-computed deterministic model exists for all data points and pumping history, an objective function may include all data, so that errors are reduced in calculating any nonlinear-well losses. In addition, data from multiple observation wells may be used simultaneously in the inversion. We provide codes in MATLAB and Python to solve for drawdown resulting from an arbitrary pumping history and compute the optimal aquifer parameters to fit the data. We find that the subtleties in parameter dependencies and constructing an appropriate objective function have a substantial effect on the interpreted parameters. Furthermore, the optimization from step-drawdown tests is typically nonunique and strongly suggests that a Bayesian inversion should be used to fully estimate the joint probability density of the parameter vector.


Assuntos
Água Subterrânea , Teorema de Bayes , Modelos Teóricos , Poços de Água , Movimentos da Água , Abastecimento de Água
17.
Ground Water ; 62(1): 75-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37714744

RESUMO

This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three-dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations. R-squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically-informed estimates. The results of this work are used to inform a follow-on study that tests additional data-driven approaches in multiple basins within the contiguous United States.


Assuntos
Água Subterrânea , Poços de Água , Hidrologia , Rios
18.
Environ Sci Pollut Res Int ; 31(2): 2079-2089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051492

RESUMO

Depleted reservoirs are widely used for underground gas storage due to their advantages of low construction cost and easy development. Under the influence of complex geological conditions and frequent operations, the integrity of the wells in depleted reservoirs is prone to failure, which would potentially lead to gas leakage. In this study, by using a finite element-based computational fluid dynamics model, we have developed evaluation criteria for assessing the severity of the occurred wellbore integrity failure and the risk of the un-occurred wellbore integrity failures respectively to identify hazardous zones potentially prone to wellbore integrity failure. The study results indicate that the gas storage wellbore integrity failure is prone to occur inside the wellbore structure in the direction of the minimum ground stress near the lower boundary of the formation interlayer. The wellbore integrity failure hazardous zones are mainly concentrated at the formation interlayer boundaries. The practical guidelines and solutions derived from current research results can provide an accurate direction for monitoring and protecting work of wellbore integrity and avoid environment pollution problems caused by natural gas leakage.


Assuntos
Monitoramento Ambiental , Gás Natural , Monitoramento Ambiental/métodos , Poluição Ambiental , Poços de Água
19.
Ground Water ; 62(2): 310-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37793027

RESUMO

In 1989, the Southern Nevada Water Authority (SNWA) launched the Southern Nevada Groundwater Development Project-a bold plan to construct a series of deep wells in east-central Nevada to pump groundwater and send it to the Las Vegas region through 300 miles of pipeline. Before starting work on the project, SNWA conducted an environmental impact study and secured water rights in the valleys. Applications for additional new water rights were filed with Nevada State Engineer on the basis of uncaptured evapotranspiration. The SNWA spent decades and millions of dollars studying the hydrogeology of the region and developing computer models to demonstrate that the project would not have an unduly negative impact on the ecology or water users in the region. The project was opposed by environmental groups, native American tribes, and existing water rights holders. One of the protestants was the Cleveland Ranch in Spring Valley. Using the SNWA's own groundwater model, the ranch argued that the project would result in substantial harm to the ranch's water rights which included springs, wells, and a stream, and that the project would result in perpetual groundwater mining, which is forbidden by Nevada state policy. The Nevada State Engineer approved the project, but the decision was eventually reversed by Seventh District Court, which sided with the ranch and ruled that the project would never be sustainable and is therefore not compatible with Nevada policy. The project was formally abandoned in 2020.


Assuntos
Água Subterrânea , Nevada , Água , Poços de Água
20.
Ground Water ; 62(1): 44-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37930157

RESUMO

An accurate conceptual site model (CSM) and plume-delineation at contamination sites are pre-requisites for successful remediation and for satisfying regulators and stakeholders. PlumeSeeker™ is well-suited for assessing data gaps in CSMs by using available site data and for identifying the optimal number and locations of sampling locations to delineate contaminant plumes. It is an enhancement of a university research code for plume delineation using geostatistical and stochastic modeling integrated with the groundwater modeling software MODFLOW-SURFACT™. PlumeSeeker™ increases the overall confidence in the location of the plume boundary through a variance-reduction approach that selects existing- or new monitoring wells for sampling based on minimizing the uncertainty in plume boundary and on new field information. Applicable at sites with or without existing monitoring wells, PlumeSeeker™ is particularly powerful for optimally allocating project resources (labor, well installation, and laboratory costs) between existing wells and sampling at new locations. An application of PlumeSeeker™ at Lakehurst, the naval component of Joint Base McGuire-Dix-Lakehurst in New Jersey, demonstrates how the cost of delineating the migration pathway of a perfluorooctanoic acid (PFOA) plume can be minimized by requiring only 9 new sampling locations in addition to samples from 2 existing wells for achieving a 70% reduction in plume uncertainty. In addition, the use of available site data in three different scenarios identified CSM data-gaps in the source area and in the interaction between Manapaqua Branch and groundwater, where the observed high concentration in this area could have resulted from a combination of groundwater migration and induced infiltration.


Assuntos
Caprilatos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Humanos , Modelos Teóricos , Poços de Água , Incerteza , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA