Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2026-2038, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227292

RESUMO

Podophyllotoxin (PTOX) is an aryl-tetralin lignan of plant origin found in some species of Podophyllum such as Dysosma versipellis, Diphylleia sinensis, and Sinopodophyllum hexandrum. Etoposide and teniposide are produced semisynthetically from PTOX and used clinically to treat several forms of cancer. As a typical representative of new drug discovery from natural products, the production of PTOX solely depends on extraction from plants, resulting in severe contradiction between supply and demand. With the advantages of unconstrained resources and eco-friendly reaction conditions, biosynthesis method has become a trend in the production of PTOX and its derivatives. In this review, we summarize the research progress of PTOX biosynthesis in plants and expound the functions of the key enzymes as well as their subcellular location. The synthetic biology for production of PTOX intermediates in a tobacco chassis is also introduced. Finally, the heterologous expression and biotransformation of PTOX in microorganisms is summarized, which sets the foundation for the efficient microbial production of PTOX using cell factories.


Assuntos
Podofilotoxina/biossíntese , Podophyllum , Genes de Plantas , Podophyllum/genética
2.
Protoplasma ; 254(1): 217-228, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26733390

RESUMO

Podophyllum species (Podophyllum hexandrum Royle and Podophyllum peltatum) are a major source of deriving anticancer drugs from their major chemical constituent, podophyllotoxin. However, information lacks on regulatory components of podophyllotoxin biosynthesis; therefore, different classes of transcription factors were identified through mining transcriptomes of Podophyllum species and validated through qRT-PCR analysis vis-à-vis podophyllotoxin contents in different tissues/organs of Podophyllum hexandrum. A total of 82, 278, 70, and 90 transcripts were identified in shoots and 89, 273, 72, and 91 transcripts in rhizomes of P. hexandrum transcriptome; 70, 268, 48, and 92 transcripts were in shoots and 58, 245, 41, and 85 transcripts in rhizomes of P. peltatum transcriptome corresponding to bZIP, MYB, WRKY, and bHLH families of transcription factors, which have been shown in regulating biosynthesis of secondary metabolites. Two unique transcripts encoding bHLH and MYB/SANT TFs in shoots of P. peltatum (medp_podpe_41091 and medp_podpe_2547) and bZIP and MYB TFs in rhizomes of P. hexandrum (medp_podhe_163581 and medp_podhe_147614) correlated with podophyllotoxin content. Quantification of podophyllotoxin and comparative expression analysis between high (2.51 %) versus low (0.59) podophyllotoxin content accessions revealed 0.04 to ~16-folds increase in transcripts of transcription factors, thereby further supporting the association of identified transcription factors with podophyllotoxin content. bZIP TF showed the highest transcript abundance (19.60-folds) in P. hexandrum rhizomes (2.51 % podophyllotoxin) compared to shoots (0.01 %). In silico analysis of putative promoter regions of pathway genes in other plant species revealed the presence of sequence elements for MYB and WRKY transcription factors, thereby suggesting their role in controlling the production of podophyllotoxin. A repertoire of additional transcription factors has been provided, which can be functionally validated and used in designing a suitable genetic intervention strategy towards enhanced production of podophyllotoxin.


Assuntos
Perfilação da Expressão Gênica , Podofilotoxina/biossíntese , Podophyllum/genética , Fatores de Transcrição/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Brotos de Planta/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Rizoma/genética , Metabolismo Secundário/genética , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transcriptoma/genética
3.
Plant Physiol Biochem ; 107: 197-203, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27314513

RESUMO

Podophyllotoxin (PPT) and its derivatives, isolated from the rhizome of Podophyllum hexandrum Royle (P. hexandrum), are typically used in clinical settings for anti-cancer and anti-virus treatments. Empirical studies have verified that P. hexandrum had stronger tolerance to chilling, due to involving PPT accumulation in rhizome induced by cold stress. However, the cold-adaptive mechanism and its association with PPT accumulation at a molecular level in P. hexandrum are still limited. In this study, the morpho-physiological traits related to plant growth, PPT accumulation and key gene expressions controlling PPT biosynthesis were assessed by exposing P. hexandrum seedlings to different temperatures (4 °C and 10 °C as chilling stress and 22 °C as the control). The results showed that chilling significantly increased chlorophyll content, net photosynthetic rate, stomatal conductance, and plant biomass, whereas it greatly decreased transpiration rates and intercellular CO2 concentration. Compared to the control, the chilling treatments under 4 °C and 10 °C conditions induced a 5.00- and 3.33-fold increase in PPT contents, respectively. The mRNA expressions of six key genes were also up-regulated by chilling stresses. The findings are useful in understanding the molecular basis of P. hexandrum response to chilling.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Podofilotoxina/biossíntese , Podophyllum/crescimento & desenvolvimento , Podophyllum/genética , Vias Biossintéticas/genética , Clorofila/metabolismo , Clorofila A , Genes de Plantas , Fotossíntese/genética , Podofilotoxina/química , Rizoma/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética
4.
Planta ; 244(2): 505-15, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27097640

RESUMO

MAIN CONCLUSION: Xyloglucan endo-transglycosylase/hydrolase ( Ph XET/H) regulates Podophyllum seed germination via GA mediated up-accumulation of Ph XET protein and subsequent endosperm weakening. Xyloglucan endo-transglycosylase/hydrolase (XET/H) belong to glycosyl hydrolase family 16, which play an important role in endosperm weakening and embryonic expansion during seed germination. Podophyllum hexandrum is a high altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. During seed germination in Podophyllum, accumulation of XET/H transcripts was recorded. This data confirmed its possible role in determining the fate of seed for germination. Full length cDNA of a membrane bound XET/H (here onwards PhXET) was cloned from the germinating seeds of Podophyllum. Analysis of nucleotide sequence revealed PhXET with an open reading frame of 720 bp encoding a protein of 239 amino acids with a molecular mass of 28 kDa and pI of 7.58. In silico structure prediction of PhXET showed homology with that of Populus tremula (1UN1). PhXET was predicted to have a potential GPI-anchor domain and was located in plasma membrane. It was found that the exogenously applied phytohormones (GA and ABA) regulate the expression of PhXET. The obtained data showed that the PhXET regulates seed germination in Podophyllum by supplementing its activity along with other endosperm weakening and embryo expansion genes.


Assuntos
Glicosiltransferases/fisiologia , Proteínas de Plantas/fisiologia , Podophyllum/genética , Ácido Abscísico/farmacologia , Altitude , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Giberelinas/metabolismo , Giberelinas/farmacologia , Glicosiltransferases/análise , Glicosiltransferases/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Podophyllum/efeitos dos fármacos , Podophyllum/enzimologia , Podophyllum/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução de Sinais/genética
5.
Protoplasma ; 252(5): 1253-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25586110

RESUMO

Podophyllum hexandrum Royle is known for its vast medicinal properties, particularly anticancer. It contains higher amount of podophyllotoxin (4.3 %), compared to Podophyllum peltatum (0.025 %) and other plant species; as a result, it has been used worldwide in the preparation of various drugs including anticancer, antimalarial, antiviral, antioxidant, antifungal, and so on. Currently, Etoposide (VP-16-213), Vumon® (Teniposide; VM-26), Etopophos®, Pod-Ben- 25, Condofil, Verrusol, and Warticon are available in the market. Due to highly complex synthesis and low cell culture yields of podophyllotoxin (0.3 %), the supply of raw material cannot be met due to increasing industrial demands. The knowledge on podophyllotoxin biosynthetic pathway vis-à-vis expression status of genes is fragmentary. Quantitative expression analysis of 21 pathway genes has revealed 9 genes, namely SD, PD, PCH, CM, CMT, CAD, CCR, C4H, and ADH, that showed increase in transcript abundance up to 1.4 to 23.05 folds, respectively, vis-à-vis podophyllotoxin content in roots (1.37 %) and rhizomes (3.05 %) of P. hexandrum. In silico analysis of putative cis-regulatory elements in promoter regions of overexpressed genes showed the presence of common Skn-1 motif and MBS elements in CMT, CAD, CCR, C4H, and ADH genes, thereby, suggesting their common regulation. The outcome of the study has resulted in the identification of suitable candidate genes which might be contributing to podophyllotoxin biosynthesis that can act as potential targets for any genetic intervention strategies aimed at its enhanced production.


Assuntos
Vias Biossintéticas , Podofilotoxina/metabolismo , Podophyllum/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas , Especificidade de Órgãos , Podophyllum/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Gene ; 554(1): 25-31, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25303872

RESUMO

Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucana 1,3-beta-Glucosidase/genética , Proteínas de Plantas/genética , Podophyllum/enzimologia , Ácido Abscísico/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Endosperma/metabolismo , Germinação , Glucana 1,3-beta-Glucosidase/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Podophyllum/genética , Homologia de Sequência de Aminoácidos , Temperatura
7.
Mol Biosyst ; 10(11): 2838-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25166004

RESUMO

Podophyllum hexandrum and, to a much lesser extent P. peltatum, are sources of podophyllotoxin, extensively used as a chemical scaffold for various anti-cancer drugs. In this study, integrated omics technologies (including advanced mass spectrometry/metabolomics, transcriptome sequencing/gene assemblies, and bioinformatics) gave unequivocal evidence that both plant species possess a hitherto unknown aporphine alkaloid metabolic pathway. Specifically, RNA-seq transcriptome sequencing and bioinformatics guided gene assemblies/analyses in silico suggested presence of transcripts homologous to genes encoding all known steps in aporphine alkaloid biosynthesis. A comprehensive metabolomics analysis, including UPLC-TOF-MS and MALDI-MS imaging in situ, then enabled detection, identification, localization and quantification of the aporphine alkaloids, magnoflorine, corytuberine and muricinine, in the underground and aerial tissues. Interestingly, the purported presence of alkaloids in Podophyllum species has been enigmatic since the 19th century, remaining unresolved until now. The evolutionary and phylogenetic ramifications of this discovery are discussed.


Assuntos
Aporfinas/metabolismo , Genômica/métodos , Proteínas de Plantas/genética , Podophyllum/enzimologia , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Filogenia , Proteínas de Plantas/metabolismo , Podophyllum/classificação , Podophyllum/genética , Rizoma/enzimologia , Rizoma/genética , Transdução de Sinais , Xilema/enzimologia , Xilema/genética
9.
Protoplasma ; 250(6): 1239-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23653238

RESUMO

Podophyllotoxin, an aryltetralin lignan, is the source of important anticancer drugs etoposide, teniposide, and etopophos. Roots/rhizome of Podophyllum hexandrum form one of the most important sources of podophyllotoxin. In order to understand genes involved in podophyllotoxin biosynthesis, two suppression subtractive hybridization libraries were synthesized, one each from root/rhizome and leaves using high and low podophyllotoxin-producing plants of P. hexandrum. Sequencing of clones identified a total of 1,141 Expressed Sequence Tags (ESTs) resulting in 354 unique ESTs. Several unique ESTs showed sequence similarity to the genes involved in metabolism, stress/defense responses, and signalling pathways. A few ESTs also showed high sequence similarity with genes which were shown to be involved in podophyllotoxin biosynthesis in other plant species such as pinoresinol/lariciresinol reductase. A full length coding sequence of pinoresinol/lariciresinol reductase (PLR) has been cloned from P. hexandrum which was found to encode protein with 311 amino acids and show sequence similarity with PLR from Forsythia intermedia and Linum spp. Spatial and stress-inducible expression pattern of PhPLR and other known genes of podophyllotoxin biosynthesis, secoisolariciresinol dehydrogenase (PhSDH), and dirigent protein oxidase (PhDPO) have been studied. All the three genes showed wounding and methyl jasmonate-inducible expression pattern. The present work would form a basis for further studies to understand genomics of podophyllotoxin biosynthesis in P. hexandrum.


Assuntos
Etiquetas de Sequências Expressas/metabolismo , Furanos/metabolismo , Genes de Plantas/genética , Lignanas/metabolismo , Podophyllum/enzimologia , Podophyllum/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Vias Biossintéticas/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Dados de Sequência Molecular , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Oxirredutases/química , Oxirredutases/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Podofilotoxina/biossíntese , Alinhamento de Sequência , Análise de Sequência de DNA , Estresse Fisiológico
10.
OMICS ; 15(12): 873-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22181019

RESUMO

Podophyllum hexandrum, known for its diversified clinical importance particularly for antineoplastic activity and valuable source for biological protection against high doses of radiation, has its unique position in the plant kingdom. Detailed understanding of mechanism and opportunity of chemical manipulations has amplified the scope of its bioactivity. Podophyllotoxin, the major active principle of this plant, has passed through various structural deviations with the basic aim of making the end product clinically more effective with minimal toxicity. However, over exploitation and limited growth has categorized this plant under endangered species. Depending upon the geographical variations, different species and subspecies of this plant have been explored. Morphological variations and quantitative differences in active principles are the major concern of its unstable medicinal value in whole and semifractionated preparations. The current review has addressed the issues related to the genetic diversity of P. hexandrum, extrinsic and intrinsic stresses responsible for its diversified nature, chemical modifications to enhance its multitasking bioactivity, and efforts for its cultivation and production of important metabolites to avoid collection of wild species due to its critically endangered nature.


Assuntos
Adaptação Biológica , Variação Genética , Podophyllum/genética , Podophyllum/metabolismo , Estresse Fisiológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Biotecnologia/métodos , Flavonoides/química , Humanos , Neoplasias/tratamento farmacológico , Podofilotoxina/biossíntese , Podofilotoxina/química , Podofilotoxina/uso terapêutico , Podophyllum/química , Protetores contra Radiação/química , Protetores contra Radiação/uso terapêutico
11.
Fitoterapia ; 81(4): 243-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19788918

RESUMO

Detailed chemical studies and RAPD analysis were done in different populations of Podophyllum hexandrum collected from high altitude regions of North Western Himalayas. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity among the 12 collected accessions, attributed to their geographical and climatic conditions. HPLC analysis also revealed variation in the concentration of two major marker compounds which lead to the identification of a chemotype. The study demonstrated that RAPD and chemical markers are very useful tools to compare the genetic relationship and pattern of variation among such prioritized and endangered medicinal plants.


Assuntos
DNA de Plantas , Variação Genética , Folhas de Planta/química , Podophyllum/genética , Altitude , Antineoplásicos/análise , Cromatografia Líquida de Alta Pressão , Clima , Impressões Digitais de DNA , Geografia , Glicosídeos/análise , Filogenia , Folhas de Planta/genética , Podofilotoxina/análise , Podofilotoxina/genética , Podophyllum/química , Podophyllum/classificação , Técnica de Amplificação ao Acaso de DNA Polimórfico
12.
J Biol Chem ; 276(16): 12614-23, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11278426

RESUMO

Matairesinol is a central precursor in planta in the biosynthesis of numerous lignans, including that of the important antiviral and anticancer agent, podophyllotoxin. In this study, the approximately 32-kDa NAD-dependent secoisolariciresinol dehydrogenase, which catalyzes the enantiospecific conversion of (-)-secoisolariciresinol into (-)-matairesinol in Forsythia intermedia, was purified >6,000-fold to apparent homogeneity. The 831-base pair cDNA clone encoding this 277-amino acid protein was next obtained from a library constructed from F. intermedia stem tissue, whose fully functional recombinant protein, produced by expression of this cDNA in Escherichia coli, catalyzed the same enantiospecific conversion via the corresponding lactol intermediate. A homologous secoisolariciresinol dehydrogenase gene was also isolated from a Podophyllum peltatum rhizome cDNA library, whose 834-base pair cDNA clone encoded a 278-amino acid protein with a calculated molecular mass of approximately 32 kDa. Expression of this protein in E. coli produced a fully functional recombinant protein that also catalyzed the enantiospecific conversion of (-)-secoisolariciresinol into (-)-matairesinol via the intermediary lactol. Various kinetic parameters were defined and established conversion of the intermediary lactol as being rate-limiting. With this overall enzymatic conversion now unambiguously defined, the entire biochemical pathway to the lignans, secoisolariciresinol and matairesinol, has been elucidated. Last, both secoisolariciresinol and matairesinol are metabolized in the gut of mammals, following digestion of high fiber dietary grains, seeds, and berries, into the so-called "mammalian" lignans, enterodiol and enterolactone, respectively; these in turn confer significant protection against the onset of breast and prostate cancers.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Asteraceae/enzimologia , Butileno Glicóis/metabolismo , Plantas Medicinais , Plantas Tóxicas , Podophyllum/enzimologia , Oxirredutases do Álcool/química , Sequência de Aminoácidos , Asteraceae/genética , Sequência de Bases , Clonagem Molecular , DNA Complementar , Escherichia coli , Biblioteca Gênica , Humanos , Cinética , Lignanas/química , Lignanas/metabolismo , Lignanas/farmacologia , Dados de Sequência Molecular , Peso Molecular , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Podophyllum/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Phytochemistry ; 55(6): 537-49, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11130663

RESUMO

Given the importance of the antitumor/antiviral lignans, podophyllotoxin and 5-methoxypodophyllotoxin, as biotechnological targets, their biosynthetic pathways were investigated in Podophyllum peltatum and Linum flavum. Entry into their pathways was established to occur via dirigent mediated coupling of E-coniferyl alcohol to afford (+)-pinoresinol; the encoding gene was cloned and the recombinant protein subsequently obtained. Radiolabeled substrate studies using partially purified enzyme preparations next revealed (+)-pinoresinol was enantiospecifically converted sequentially into (+)-lariciresinol and (-)-secoisolariciresinol via the action of an NADPH-dependent bifunctional pinoresinol/lariciresinol reductase. The resulting (-)-secoisolariciresinol was enantiospecifically dehydrogenated into (-)-matairesinol, as evidenced through the conversion of both radio- and stable isotopically labeled secoisolariciresinol into matairesinol, this being catalyzed by the NAD-dependent secoisolariciresinol dehydrogenase. (-)-Matairesinol was further hydroxylated to afford 7'-hydroxymatairesinol, this being efficiently metabolized into 5-methoxypodophyllotoxin. Thus much of the overall biosynthetic pathway to podophyllotoxin has been established, that is, from the dirigent mediated coupling of E-coniferyl alcohol to the subsequent conversions leading to 7'-hydroxymatairesinol.


Assuntos
Linho/metabolismo , Plantas Medicinais , Plantas Tóxicas , Podofilotoxina/biossíntese , Podophyllum/metabolismo , Sequência de Aminoácidos , Antineoplásicos/metabolismo , Sequência de Bases , DNA de Plantas/análise , Linho/genética , Furanos/metabolismo , Lignanas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Podofilotoxina/genética , Podofilotoxina/metabolismo , Podophyllum/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA