Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(8): 5136-5153, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39058405

RESUMO

In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.


Assuntos
Antibacterianos , Regeneração Óssea , Poli-Hidroxialcanoatos , Impressão Tridimensional , Staphylococcus aureus , Alicerces Teciduais , Alicerces Teciduais/química , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Engenharia Tecidual , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células 3T3
2.
Int J Biol Macromol ; 275(Pt 2): 133132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945725

RESUMO

With the increased occurrence of bacteria resistance to conventional antibiotics, the development of novel antimicrobials is urgently needed. Traditional biomaterials used for delivering these agents often struggle to achieve sustained release while maintaining non-cytotoxic properties. In this study, we present an innovative approach using bacterial polyhydroxyalkanoates (PHA) as a carrier for antimicrobial delivery, specifically designed for wound healing applications. Octenidine dihydrochloride (OCT), a widely used antimicrobial agent, served as our model drug. To achieve the desired balance of OCT release and low cytotoxicity, we introduced a novel bio-derived additive, 3-hydroxy-pentadecanoic acid (3OHC15), extracted from bacteria. This additive significantly improved the hydrophilicity of PHA films, resulting in enhanced and sustained release of OCT. Importantly, the additive did not adversely affect the material's tensile strength or thermal properties. The increased OCT release led to improved antibacterial activity against both Gram-negative and -positive strains. Most notably, the incorporation of 3OHC15 in PHA mitigated the cytotoxic effects of the released drug on human fibroblasts, ensuring biocompatibility. This work represents a novel strategy in the design of biomaterials for the delivery of bioactive compounds, achieving a critical balance between efficacy and cytocompatibility, and marks a significant advancement in the field of antimicrobial delivery systems.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Humanos , Fibroblastos/efeitos dos fármacos , Iminas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Piridinas/química , Piridinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Interações Hidrofóbicas e Hidrofílicas , Sobrevivência Celular/efeitos dos fármacos
3.
J Hosp Infect ; 149: 144-154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705475

RESUMO

INTRODUCTION: The prevention and control of hospital-acquired infections remain a significant challenge worldwide, as textiles used in hospital wards are highly involved in transmission processes. This paper reports a new antibacterial medical fabric used to prepare hospital pillowcases, bottom sheets and quilt covers for controlling and reducing hospital-acquired infections. METHOD: The medical fabric was composed of blended yarns of staple polyester (PET) and degradable poly(3-hydroxybutyrate co-3-hydroxyvalerate) (PHBV)/polylactic acid (PLA) fibres, which were coated with polylactide oligomers (PLAO), which are environmentally friendly and safe antimicrobial agents with excellent thermal stability in high-temperature laundry. A clinical trial was conducted, with emphasis on the bacterial species that were closely related to the infection cases in the study hospital. RESULT: After 7 days of use, 94% of PET/PHBV/PLA-PLAO fabric retained <20 colony-forming units/100 cm2 of the total bacterial amount, meeting hygiene and cleanliness standards. CONCLUSION: This study demonstrates the potential of fabrics containing polyhydroxyalkanoate oligomers as highly effective, safe and long-lasting antimicrobial medical textiles that can effectively reduce the incidence of hospital-acquired infections.


Assuntos
Antibacterianos , Infecção Hospitalar , Poli-Hidroxialcanoatos , Têxteis , Humanos , Têxteis/microbiologia , Infecção Hospitalar/prevenção & controle , Antibacterianos/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Poli-Hidroxialcanoatos/química , Poliésteres/química , Bactérias/efeitos dos fármacos
4.
ACS Appl Mater Interfaces ; 15(1): 364-377, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36577512

RESUMO

To treat large-scale wounds or chronic ulcers, it is highly desirable to develop multifunctional wound dressings that integrate antibacterial and angiogenic properties. While many biomaterials have been fabricated as wound dressings for skin regeneration, few reports have addressed the issue of complete skin regeneration due to the lack of vasculature and hair follicles. Herein, an instructive poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) fibrous wound dressing that integrates an antibacterial ciprofloxacin (CIP) and pro-angiogenic dimethyloxalylglycine (DMOG) is successfully prepared via electrospinning. The resultant dressings exhibit suitable flexibility with tensile strength and elongation at break up to 4.08 ± 0.18 MPa and 354.8 ± 18.4%, respectively. The in vitro results revealed that the groups of P34HB/CIP/DMOG dressings presented excellent biocompatibility on cell proliferation and significantly promote the spread and migration of L929 cells in both transwell and scratch assays. Capillary-like tube formation is also significantly enhanced in the P34HB/CIP/DMOG group dressings. Additionally, dressings from the P34HB/CIP and P34HB/CIP/DMOG groups show a broad spectrum of antimicrobial action against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In vivo studies further demonstrated that the prepared dressings in the P34HB/CIP/DMOG group not only improved wound closure, increased re-epithelialization and collagen formation, as well as reduced inflammatory response but also increased angiogenesis and remodeling, resulting in complete skin regeneration and hair follicles. Collectively, this work provides a simple but efficient approach for the design of a versatile wound dressing with the potential to have a synergistic effect on the rapid stimulation of angiogenesis as well as antibacterial activity in full-thickness skin repair.


Assuntos
Indutores da Angiogênese , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/farmacologia , Cicatrização , Antibacterianos/farmacologia , Pele , Ciprofloxacina/farmacologia
5.
Int J Biol Macromol ; 209(Pt A): 1553-1561, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439474

RESUMO

Polyhydroxyalkanoates (PHA) is a naturally degradable polyester with good biocompatibility. However, several disadvantages including poor bioactivity and mechanical properties limit the biomedical application of PHA. To circumvent these drawbacks, PHA needs to be blended with other materials to improve performance. Beta-tricalcium phosphate (ß-TCP) has emerged as one of the most promising bone repair materials due to its good biocompatibility, satisfactory mechanical properties, and excellent bone osteoconductivity. In this study, PHA filled with ß-TCP in 0 wt%, 5 wt%, 10 wt%, 20 wt%, and 30 wt% of concentrations were produced using a twin-screw extruder. The extruded 3D filaments made with 20% ß-TCP exhibited the maximum mechanical properties to manufacture 3D scaffolds for bone tissue engineering. We then prepared the 3D-printed PHA/ß-TCP scaffolds by using the fused deposition modeling (FDM) technique. The compressive strength and the shore hardness of the PHA/20%ß-TCP scaffold were 36.7 MPa and 81.1 HD. The produced scaffolds presented compressive strength compatible with natural bone. In addition, the scaffolds with a well-controlled design of pore shape and size provided sufficient space for cellular activity. In vitro studies demonstrated that the addition of ß-TCP could significantly improve the proliferation, adhesion, and migration of MC3T3-E1 cells in the PHA/ß-TCP scaffold. Moreover, the osteogenesis-related genes expression of the PHA/ß-TCP scaffold was enhanced compared to the PHA scaffolds. Therefore, the 3D-printed PHA/ß-TCP scaffold represents an effective strategy to promote mechanical and biological properties, showing huge potential for bone tissue engineering applications.


Assuntos
Poli-Hidroxialcanoatos , Engenharia Tecidual , Fosfatos de Cálcio/farmacologia , Osteogênese , Poli-Hidroxialcanoatos/farmacologia , Porosidade , Impressão Tridimensional , Alicerces Teciduais
6.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281292

RESUMO

Cancer is one of the deadliest illness globally. Searching for new solutions in cancer treatments is essential because commonly used mixed, targeted and personalized therapies are sometimes not sufficient or are too expensive for common patients. Sugar fatty acid esters (SFAEs) are already well-known as promising candidates for an alternative medical tool. The manuscript brings the reader closer to methods of obtaining various SFAEs using combined biological, chemical and enzymatic methods. It presents how modification of SFAE's hydrophobic chains can influence their cytotoxicity against human skin melanoma and prostate cancer cell lines. The compound's cytotoxicity was determined by an MTT assay, which followed an assessment of SFAEs' potential metastatic properties in concentrations below IC50 values. Despite relatively high IC50 values (63.3-1737.6 µM) of the newly synthesized SFAE, they can compete with other sugar esters already described in the literature. The chosen bioactives caused low polymerization of microtubules and the depolymerization of actin filaments in nontoxic levels, which suggest an apoptotic rather than metastatic process. Altogether, cancer cells showed no propensity for metastasis after treating them with SFAE. They confirmed that lactose-based compounds seem the most promising surfactants among tested sugar esters. This manuscript creates a benchmark for creation of novel anticancer agents based on 3-hydroxylated fatty acids of bacterial origin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Açúcares/química , Açúcares/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Feminino , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/ultraestrutura , Masculino , Relação Estrutura-Atividade
7.
EBioMedicine ; 65: 103241, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33647768

RESUMO

BACKGROUND: One strategy being pursued to clear latently infected cells that persist in people living with HIV (PLWH) on antiretroviral therapy (ART) is to activate latent HIV infection with a latency reversing agent (LRA). Surrogate markers that accurately measure virus production following an LRA are needed. METHODS: We quantified cell-associated unspliced (US), multiply spliced (MS) and supernatant (SN) HIV RNA by qPCR from total and resting CD4+ T cells isolated from seven PLWH on ART before and after treatment ex vivo with different LRAs, including histone deacetylase inhibitors (HDACi). MS and plasma HIV RNA were also quantified from PLWH on ART (n-11) who received the HDACi panobinostat. FINDINGS: In total and resting CD4+ T cells from PLWH on ART, detection of US RNA was common while detection of MS RNA was infrequent. Primers used to detect MS RNA, in contrast to US RNA, bound sites of the viral genome that are commonly mutated or deleted in PLWH on ART. Following ex vivo stimulation with LRAs, we identified a strong correlation between the fold change increase in SN and MS RNA, but not the fold change increase in SN and US RNA. In PLWH on ART who received panobinostat, MS RNA was significantly higher in samples with detectable compared to non0detectable plasma HIV RNA. INTERPRETATION: Following administration of an LRA, quantification of MS RNA is more likely to reflect an increase in virion production and is therefore a better indicator of meaningful latency reversal. FUNDING: NHMRC, NIH DARE collaboratory.


Assuntos
HIV-1/genética , Splicing de RNA , RNA Viral/sangue , Latência Viral/fisiologia , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Poli-Hidroxialcanoatos/farmacologia , RNA Viral/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Vorinostat/farmacologia , Vorinostat/uso terapêutico
8.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562111

RESUMO

Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.


Assuntos
Bacillus/metabolismo , Biopolímeros/metabolismo , Osso e Ossos/efeitos dos fármacos , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/farmacologia , Alicerces Teciduais/química , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Humanos , Poli-Hidroxialcanoatos/química
9.
J Biochem Mol Toxicol ; 35(4): e22700, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421271

RESUMO

Nasopharyngeal cancer is a malignancy developing from the nasopharynx epithelium due to smoking and nitrosamine-containing foods. Nasopharyngeal cancer is highly endemic to Southeast Asia. Eugenol and piperine have shown many anticancer activities on numerous cancer types, like colon, lung, liver, and breast cancer. In this study, we amalgamated eugenol and piperine loaded with a polyhydroxy butyrate/polyethylene glycol nanocomposite (Eu-Pi/PHB-PEG-NC) for better anticancer results against nasopharyngeal cancer (C666-1) cells. In the current study, nasopharyngeal cancer cell lines C666-1 were utilized to appraise the cytotoxic potential of Eug-Pip-PEG-NC on cell propagation, programmed cell death, and relocation. Eu-Pi/PHB-PEG-NC inhibits cellular proliferation on C666-1 cells in a dose-dependent manner, and when compared with 20 µg/ml, 15 µg/ml of loaded mixture evidently restrained the passage aptitude of C666-1 cells, this was attended with a downregulated expression of mitochondrial membrane potential. Treatment with 15 µg/ml Eu-Pi/PHB-PEG-NC suggestively amplified cell apoptosis in the C666-1 cells. Furthermore, its cleaved caspase-3, 8, and 9 and Bax gene expression was augmented and Bcl-2 gene expression was diminished after Eu-Pi/PHB-PEG-NC treatment. Additionally, our data established that the collective effect of Eu-Pi/PHB-PEG-NC loaded micelles inhibited the expansion of C666-1 cells augmented apoptosis connected with the intrusion of PI3K/Akt/mTOR signaling pathway.


Assuntos
Alcaloides , Apoptose/efeitos dos fármacos , Benzodioxóis , Portadores de Fármacos , Eugenol , Nanocompostos , Neoplasias Nasofaríngeas , Piperidinas , Alcamidas Poli-Insaturadas , Transdução de Sinais/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Elafina/metabolismo , Eugenol/química , Eugenol/farmacologia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Piperidinas/química , Piperidinas/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Proibitinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Biol Macromol ; 162: 1869-1879, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777414

RESUMO

Polymeric hydrogels from bacterial cellulose (BC) have been widely used for the development of wound dressings due to its water holding capacity, its high tensile strength and flexibility, its permeability to gases and liquids, but lacks antibacterial activity. In this work, we have developed novel antimicrobial hydrogels composed of BC and the antimicrobial poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate) (PHACOS). Hydrogels based on different PHACOS contents (20 and 50 wt%) were generated and analysed through different techniques (IR, DSC, TGA, rheology, SEM and EDX) and their bactericidal activity was studied against Staphylococcus aureus. PHACOS20 (BC 80%-PHACOS 20%) hydrogel shows mechanical and thermal properties in the range of human skin and anti-staphylococcal activity (kills 1.8 logs) demonstrating a huge potential for wound healing applications. Furthermore, the cytotoxicity assay using fibroblast cells showed that it keeps cell viability over 85% in all the cases after seven days.


Assuntos
Bandagens , Celulose/farmacologia , Hidrogéis/farmacologia , Poliésteres/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Pele/efeitos dos fármacos , Cicatrização , Antibacterianos/farmacologia , Caprilatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias Humanas , Humanos , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos
11.
Appl Microbiol Biotechnol ; 104(7): 3121-3131, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060693

RESUMO

Antibiotic resistance in pathogenic bacteria is a major health challenge, as Infectious Diseases Society of America (IDSA) has recognized that the past simply drugs susceptible pathogens are now the most dangerous pathogens due to their nonstop growing resistance towards conventional antibiotics. Therefore, due to the emergence of multi-drug resistance, the bacterial infections have become a serious global problem. Acute infections feasibly develop into chronic infections because of many factors; one of them is the failure of effectiveness of antibiotics against superbugs. Modern research of two-dimensional nanoparticles and biopolymers are of great interest to attain the intricate bactericidal activity. In this study, we fabricated an antibacterial nanocomposite consisting of representative two-dimensional molybdenum disulfide (2D MoS2) nanoparticles. Polyhydroxyalkanoate (PHA) and chitosan (Ch) are used to encapsulate MoS2 nanoparticles into their matrix. This study reports the in vitro antibacterial activity and host cytotoxicity of novel PHA-Ch/MoS2 nanocomposites. PHA-Ch/MoS2 nanocomposites were subjected to time-dependent antibacterial assays at various doses to examine their antibacterial activity against multi-drug-resistant Escherichia coli K1 (Malaysian Type Culture Collection 710859) and methicillin-resistant Staphylococcus aureus (MRSA) (Malaysian Type Culture Collection 381123). Furthermore, the cytotoxicity of nanocomposites was examined against spontaneously immortalized human keratinocyte (HaCaT) cell lines. The results indicated significant antibacterial activity (p value < 0.05) against E. coli K1 and MRSA. In addition, PHA-Ch/MoS2 showed significant host cytocompatibility (p < 0.05) against HaCaT cells. The fabricated PHA-Ch/MoS2 nanocomposites have demonstrated effective antibacterial activity against both Gram-positive and -negative bacteria and exhibited better biocompatibility. Finally, PHA-Ch/MoS2 nanocomposites are shown to be suitable for antibacterial applications and also hold potential for further biomedical studies. Graphical Abstract.


Assuntos
Antibacterianos/farmacologia , Biopolímeros/farmacologia , Dissulfetos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Molibdênio/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Antibacterianos/química , Biopolímeros/química , Linhagem Celular , Quitosana/química , Dissulfetos/química , Farmacorresistência Bacteriana Múltipla/fisiologia , Humanos , Nanopartículas Metálicas/química , Molibdênio/química , Nanocompostos/química , Poli-Hidroxialcanoatos/síntese química , Poli-Hidroxialcanoatos/química
12.
Int J Biol Macromol ; 146: 596-619, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899240

RESUMO

Among many biodegradable and biocompatible biopolymers, polyhydroxyalkanoates (PHAs), generated by microorganisms, have highly attracted attention in various fields due to their unique physicochemical properties. So far, various types of progresses have been made in environmental and engineering fields by employing PHAs. Recently, employing PHAs for nanoarchitecture has become a newly emerging trend among researchers. The intrinsic nature of PHAs has dragged them towards fabrication of nanoparticles and nanocomposites. PHAs integration with nanoparticles has been vastly noted and applied in various areas such as drug delivery, antibacterial agents and bioengineering. Here, a brief review is given to how PHAs act and are produced by microorganisms, demonstrating their properties and finally, their most recent applications are discussed in nanoarchitecture and the ways they are manipulated in the fabrication of nanomaterials. This review can shed light on the exhaustive understanding of PHA capability in nanoarchitectural basics toward the development of advanced nanomaterials in many fields such as medicine, catalysis, sensor, and adsorbents.


Assuntos
Nanotecnologia/métodos , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Engenharia Biomédica/métodos , Catálise , Sistemas de Liberação de Medicamentos , Enzimas Imobilizadas , Nanocompostos/química , Nanopartículas/química , Poli-Hidroxialcanoatos/farmacologia
13.
Int J Biol Macromol ; 141: 765-775, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493452

RESUMO

Four PHA types were synthesized in the culture of Cupriavidus eutrophus B-10646 under special conditions, poly(3­hydroxybutyrate) [P(3HB)] and of copolymers, which contained 3HB monomers and 4­hydroxybutyrate (4HB), 3­hydroxyvalerate (3HV), or 3­hydroxyhexanoate (3HHx). All copolymers had the Mw of about 550-670 kDa, and the homopolymer P(3HB) had a significantly higher Mw - 920 kDa. P(3HB­co­4HB) and P(3HB­co­3HHx) had the lowest Cx (42 and 49%) while P(3HB­co­3HV) and P(3HB) exhibited higher Cx values (76%). Polymer films were prepared from different PHAs. Electron microscopy showed differences in the surface microstructure of the films. Films prepared from the P(3HB) were more hydrophobic and the arithmetic mean surface roughness of 71-75 nm, than the copolymer films, which were hydrophilic (57-60°) and had considerably higher roughness (158-177 nm). Blood parameters (hemoglobin and hemolysis) and response of the cells (erythrocytes, platelets, and monocytes) were studied in experiments with blood directly contacting the surface of the films of PHAs with different compositions. Cultivation of blood cells on polymer films did not cause any adverse effects on adhesion and morphology of all cell types. Results of studying blood cell response suggested that the films made from low-crystallinity copolymers containing 4­hydroxybutyrate and 3­hydroxyhexanoate were the best for contact with blood.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Sanguíneas/efeitos dos fármacos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Células Sanguíneas/citologia , Humanos , Relação Estrutura-Atividade , Propriedades de Superfície
14.
Biopolymers ; 110(11): e23324, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31348536

RESUMO

Biodegradable and biocompatible novel materials of natural origin are gaining more and more attention in recent years. These so called biopolymers, characterized by their biointegrity and biocompatibility, find completely new and promising applications in biomedical sciences. The presented work focuses on the medium chain length elastomeric polyhydroxyalkanoate biopolymer-polyhydroxyoctanoate (PHO). This biopolymer is fully biodegradable without formation of harmful byproducts.We investigated PHO's physical properties with nanoindentation technique and scratch testing to determine Young's modulus and friction coefficient. Further, the work focused on the impact of PHO, used as growth substrate, on the physiology and morphology of mouse embryonic fibroblast cells (MEF 3T3). Application of fluorescent staining protocols and advanced microscopic techniques allowed to study the morphological changes in the cytoskeletons of cells grown on PHO and also gave an insight into their migration strategies on the polymer surface. We found that PHO exhibits no cellular cytotoxicity, similarly to a glass substrate. MEF cells spread better on glass surface than on each tested PHO substrate though there was almost no difference between PHO substrates cast from different solvents. However, a detailed analysis of actin and microtubule cytoskeletal architecture reveals changes in the density of actin and microtubular networks. Migration of MEF cells on PHO substrates was slower than on the glass substrate. To elucidate the molecular mechanisms of observed changes in cytoskeletal architecture and migration parameters can be of special interest for future medical application of PHO polymer.


Assuntos
Fibroblastos/citologia , Polímeros/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Movimento Celular/fisiologia , Fibroblastos/efeitos dos fármacos , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia
15.
Colloids Surf B Biointerfaces ; 182: 110317, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323450

RESUMO

Biomaterial-associated infections (BAI) are the major cause of failure of indwelling medical devices. The risk of BAI can end dramatically in the surgical removal of the affected device. Therefore, a major effort must be undertaken to guarantee the permanence of the implant. In this regard, we have developed antimicrobial coatings for tantalum (Ta) implants, using polyhydroxyalkanoates (PHAs) as matrices for carrying an active principle. The dip-coating technique was successfully used for covering solid Ta discs. An original PHA emulsion flow process was developed for the coating of porous Ta structures, specially for the inner surfaces. The complete characterization of the biopolymer coatings, their antibacterial properties, toxicity and biointegration were analyzed. Thus, non-toxic, well-biointegrated homogeneous biopolymer coatings were attained, which showed antibacterial properties. By using biodegradable PHAs, the resulting drug delivery system assured the protection of Ta against bacterial infections for a period of time.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Próteses e Implantes , Tantálio/química , Anti-Infecciosos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Poli-Hidroxialcanoatos/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
16.
Biomacromolecules ; 20(9): 3324-3332, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268298

RESUMO

Water-soluble poly(3-hydroxyalkanoate) containing ionic groups were designed by two successive photoactivated thiol-ene reactions. Sodium-3-mercapto-1-ethanesulfonate (SO3-) and poly(ethylene glycol) (PEG) methyl ether thiol were grafted onto poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) PHO(67)U(33) to introduce both ionic groups and hydrophilic moieties. The grafted copolymers PHO(67)SO3-(20)PEG(13) were then used as biocompatible coatings of nano-metal organic frameworks (nanoMOFs) surfaces. Scanning electron microscopy and scanning transmission electron microscopy coupled with energy dispersive X-ray characterizations have clearly demonstrated the presence of the copolymer on the MOF surface. These coated nanoMOFs are stable in aqueous and physiological fluids. Cell proliferation and cytotoxicity tests performed on murine macrophages J774.A1 revealed no cytotoxic side effect. Thus, biocompatibility and stability of these novel hybrid porous MOF structures encourage their use in the development of effective therapeutic nanoparticles.


Assuntos
Materiais Biocompatíveis/síntese química , Estruturas Metalorgânicas/síntese química , Nanoestruturas/química , Poli-Hidroxialcanoatos/síntese química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Click , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Compostos de Sulfidrila/química , Água/química
17.
J Tissue Eng Regen Med ; 13(9): 1581-1594, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31185133

RESUMO

Polyhydroxyalkanoates (PHAs) are a family of prokaryotic-derived biodegradable and biocompatible natural polymers known to exhibit neuroregenerative properties. In this work, poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxyoctanoate), P(3HO), have been combined to form blend fibres for directional guidance of neuronal cell growth and differentiation. A 25:75 P(3HO)/P(3HB) blend (PHA blend) was used for the manufacturing of electrospun fibres as resorbable scaffolds to be used as internal guidance lumen structures in nerve conduits. The biocompatibility of these fibres was studied using neuronal and Schwann cells. Highly aligned and uniform fibres with varying diameters were fabricated by controlling electrospinning parameters. The resulting fibre diameters were 2.4 ± 0.3, 3.7 ± 0.3, and 13.5 ± 2.3 µm for small, medium, and large diameter fibres, respectively. The cell response to these electrospun fibres was investigated with respect to growth and differentiation. Cell migration observed on the electrospun fibres showed topographical guidance in accordance with the direction of the fibres. The correlation between fibre diameter and neuronal growth under two conditions, individually and in coculture with Schwann cells, was evaluated. Results obtained from both assays revealed that all PHA blend fibre groups were able to support growth and guide aligned distribution of neuronal cells, and there was a direct correlation between the fibre diameter and neuronal growth and differentiation. This work has led to the development of a family of unique biodegradable and highly biocompatible 3D substrates capable of guiding and facilitating the growth, proliferation, and differentiation of neuronal cells as internal structures within nerve conduits.


Assuntos
Diferenciação Celular , Neurônios/citologia , Poli-Hidroxialcanoatos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Engenharia Tecidual
18.
Mar Drugs ; 17(4)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934741

RESUMO

Vibrio diabolicus A1SM3 strain was isolated from a sediment sample from Manaure Solar Saltern in La Guajira and the produced crude extracts have shown antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human lung cell line. Thus, the aim of this research was to identify the main compound responsible for the biological activity observed and to systematically study how each carbon and nitrogen source in the growth media, and variation of the salinity, affect its production. For the characterization of the bioactive metabolites, 15 fractions obtained from Vibrio diabolicus A1SM3 crude extract were analyzed by HPLC-MS/MS and their activity was established. The bioactive fractions were dereplicated with Antibase and Marinlit databases, which combined with nuclear magnetic resonance (NMR) spectra and fragmentation by MS/MS, led to the identification of 2,2-di(3-indolyl)-3-indolone (isotrisindoline), an indole-derivative antibiotic, previously isolated from marine organisms. The influence of the variations of the culture media in isotrisindoline production was established by molecular network and MZmine showing that the media containing starch and peptone at 7% NaCl was the best culture media to produce it. Also, polyhydroxybutyrates (PHB) identification was established by MS/MS mainly in casamino acids media, contributing to the first report on PHB production by this strain.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Técnicas Bacteriológicas/métodos , Vibrio/química , Vibrio/metabolismo , Alcaloides/biossíntese , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Organismos Aquáticos/microbiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Misturas Complexas/química , Misturas Complexas/isolamento & purificação , Meios de Cultura , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Isoindóis/isolamento & purificação , Isoindóis/metabolismo , Modelos Moleculares , Poliésteres/química , Poliésteres/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Proibitinas , Salinidade
19.
J Biomater Sci Polym Ed ; 30(9): 695-712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31012805

RESUMO

This study aims to provide an overview of the main polyhydroxyalkanoates (PHAs) used in medical applications. In this review, it has been demonstrated that the properties of PHAs can be controlled both by varying the concentration of units in the copolymer and the substrate for PHA production. Another way of controlling the mechanical properties of PHAs is varying the 3HV content, such as the case of P(3HB-co-3HV). A higher 3HV content in the structure of this polyester will lead to a lower cristallinity and, therefore, to greater flexibility, strength and elongation at break. PHAs are biocompatible, completely biodegradable, and non-toxic. Considering the state of the art technologies and their ideal properties, PHAs (especially the short-chain-length PHA polymers) can be tailored for specific medical applications, such as surgical suture, scaffolds, grafts and heart valves or drug delivery systems. Nowaday, random copolyesters of 3HB and 4HB (P(3HB-co-4HB)) are used for the development of biodegradable implants loaded with antibiotics for therapeutic treatment of chronic osteomyelitis. It is also believed that these biodegradable materials can be efficient alternatives for reducing the pollution produced by the medical waste consisting of replacing plastic handles, packs, syringes or tubes that are trashed into the homes, clinics and hospitals around the world.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas de Química Sintética/métodos , Poli-Hidroxialcanoatos/síntese química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Teste de Materiais , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Temperatura
20.
Food Chem ; 277: 38-45, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502160

RESUMO

The antibacterial effect of PHBV films with oregano or clove essential oil, or their main compounds, carvacrol (CA) and eugenol (EU), respectively, was analysed in food matrices (cheese, chicken breast and pumpkin and melon) and in vitro test for Escherichia coli and Listeria innocua. The migration of CA and EU in the different food matrices was determined to analyse the food matrix effect on the film's antimicrobial effectiveness. The antimicrobial activity in foods was less remarkable than in in vitro test. Despite the antilisterial effect in the in vitro test, this was not noticed in any food matrix. The most significant antibacterial effects against E. coli were observed in cheese and pumpkin, whereas the highest migration of both CA and UE took place in melon. This lack of correlation reflected that many compositional factors affect the active compound's availability to exert its antibacterial action in a specific food.


Assuntos
Antibacterianos/química , Eugenol/análise , Monoterpenos/análise , Poli-Hidroxialcanoatos/química , Antibacterianos/farmacologia , Queijo/análise , Queijo/microbiologia , Cucurbita/química , Cucurbita/microbiologia , Cimenos , Escherichia coli/efeitos dos fármacos , Eugenol/isolamento & purificação , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Listeria/efeitos dos fármacos , Monoterpenos/isolamento & purificação , Poli-Hidroxialcanoatos/farmacologia , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA