Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Comput Med Imaging Graph ; 114: 102373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522222

RESUMO

Polymicrogyria (PMG) is a disorder of cortical organization mainly seen in children, which can be associated with seizures, developmental delay and motor weakness. PMG is typically diagnosed on magnetic resonance imaging (MRI) but some cases can be challenging to detect even for experienced radiologists. In this study, we create an open pediatric MRI dataset (PPMR) containing both PMG and control cases from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The differences between PMG and control MRIs are subtle and the true distribution of the features of the disease is unknown. This makes automatic detection of potential PMG cases in MRI difficult. To enable the automatic detection of potential PMG cases, we propose an anomaly detection method based on a novel center-based deep contrastive metric learning loss function (cDCM). Despite working with a small and imbalanced dataset our method achieves 88.07% recall at 71.86% precision. This will facilitate a computer-aided tool for radiologists to select potential PMG MRIs. To the best of our knowledge, our research is the first to apply machine learning techniques to identify PMG solely from MRI. Our code is available at: https://github.com/RichardChangCA/Deep-Contrastive-Metric-Learning-Method-to-Detect-Polymicrogyria-in-Pediatric-Brain-MRI. Our pediatric MRI dataset is available at: https://www.kaggle.com/datasets/lingfengzhang/pediatric-polymicrogyria-mri-dataset.


Assuntos
Polimicrogiria , Criança , Humanos , Polimicrogiria/complicações , Polimicrogiria/patologia , Encéfalo , Imageamento por Ressonância Magnética , Canadá
2.
J Neuroimaging ; 33(4): 527-533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37259271

RESUMO

BACKGROUND AND PURPOSE: Autosomal recessive cobblestone-like cortical malformation of the brain, with no eye or muscle involvement, has been reported in patients with biallelic mutations in ADGRG1 (formerly GPR56) and in other brain surface defects (eg, variants in COL3A1). We reported the intra-uterine brain MRI (iu-MRI), post-mortem MRI (pm-MRI), and neuropathology findings of a new ADGRG1 mutation in a fetus at early gestation. Imaging findings were compared with those of the sibling harboring the same mutation, to provide insights about the evolving morphology of such malformation. METHODS: A 21-week fetus underwent iu-MRI for a suspected cortical anomaly on ultrasound. After the MRI results, the termination of the pregnancy was carried out. A pm-MRI scan and autopsy were performed. A neuropathology-imaging correlation was achieved. The 5-year old sibling affected by developmental impairment also underwent a brain MRI. Both subjects underwent a genetic investigation. RESULTS: Two patterns of abnormality of the cerebral surface were identified on both fetal MRI: one at the vertex resembling a cobblestone-cortex due to neuronal overmigration into the subarchnoid space and the other in the occipital areas resembling polymicrogyria. These details closely matched the neuropathology findings. MRI findings of the sibling consisted of typical ADGRG1/GPR56-related brain findings showing a polymicrogyric-like cortex, also reported as bilateral frontal-parietal polymicrogyria. A flattened pons and small cerebellar vermis were present in both cases. Genetic testing demonstrated a novel homozygous variant c.1484T>C in the c gene in both cases. CONCLUSION: Our findings provide further evidence of the overlap of ADGRG1/GPR56-related brain dysgenesis with cobblestone-like cortical malformation of the brain.


Assuntos
Malformações do Sistema Nervoso , Polimicrogiria , Pré-Escolar , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Mutação/genética , Polimicrogiria/patologia , Diagnóstico Pré-Natal
3.
Neurol Sci ; 44(7): 2617-2619, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36862200

RESUMO

Polymicrogyria (PMG) is a malformation of cortical development that occurs mostly in the perisylvian region bilaterally (60-70%), most often presenting with epilepsy. Unilateral cases are much rarer with hemiparesis being the predominant symptom. We report a case of a 71-year-old man with right perirolandic PMG with ipsilateral hypoplasia and contralateral hyperplasia of the brainstem, with only non-progressive left-sided mild spastic hemiparesis. This imaging pattern is thought to occur due to the normal process of withdrawal of the axons of the corticospinal tract (CST) connected to aberrant cortex, possibly with compensatory contralateral CST hyperplasia. However, the majority of cases is additionally present with epilepsy. We believe it is worthwhile to investigate imaging patterns of PMG with symptoms' correlation, particularly with the help of techniques such as advanced brain imaging to assist in the study of cortical development along with adaptive somatotopic organization of the cerebral cortex in MCD with possible clinical applications.


Assuntos
Epilepsia , Polimicrogiria , Masculino , Humanos , Idoso , Polimicrogiria/complicações , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/patologia , Hiperplasia/complicações , Hiperplasia/diagnóstico por imagem , Hiperplasia/patologia , Córtex Cerebral/patologia , Epilepsia/patologia , Tronco Encefálico/diagnóstico por imagem , Paresia , Imageamento por Ressonância Magnética
4.
Neuropathology ; 43(2): 190-196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36325654

RESUMO

It is known that somatic activation of PI3K-AKT-MTOR signaling causes malformations of cortical development varying from hemimegalencephaly to focal cortical dysplasia. However, there have been few reports of fetal cases. Here we report two fetal cases of hemimegalencephaly, one associated with mosaic mutations in PIK3CA and another in AKT1. Both brains showed polymicrogyria, multiple subarachnoidal, subcortical, and subventricular heterotopia resulting from abnormal proliferation of neural stem/progenitor cells, cell differentiation, and migration of neuroblasts. Scattered cell nests immunoreactive for phosphorylated-S6 ribosomal protein (P-RPS6) (Ser240/244) were observed in the polymicrogyria-like cortical plate, intermediate zone, and arachnoid space, suggesting that the PI3K-AKT-MTOR pathway was actually activated in these cells. Pathological analyses could shed light on the mechanisms involved in disrupted brain development in the somatic mosaicism of the PI3K-AKT-MTOR pathway.


Assuntos
Hemimegalencefalia , Polimicrogiria , Humanos , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Mosaicismo , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/patologia , Mutação
5.
BMC Neurol ; 22(1): 303, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982397

RESUMO

BACKGROUND: Polymicrogyria refers to the disruption of normal cerebral cortical development late in neuronal migration or in early cortical organization. Although patients with polymicrogyria feature relatively favorable motor outcomes, polymicrogyric lesions accompanied by extensive unilateral hemispheric atrophy and ipsilateral brainstem atrophy may induce poorer motor outcomes. This study is the first to employ transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) to characterize changes to motor organization and white matter tracts induced by polymicrogyria. CASE PRESENTATION: We document a case of a 16-year-old female with left hemiplegic unilateral polymicrogyria associated with ipsilateral brainstem atrophy. Magnetic resonance imaging (MRI) of the brain revealed unilateral polymicrogyria to have affected anterior cortical areas, including the perisylvian region on the right side. The right halves of the brain and brainstem were significantly smaller than the left halves. Although our patient was found to exhibit cortical dysplasia of the right frontoparietal and sylvian fissure areas and a decreased number of fibers in the corticospinal tract (CST) of the affected side on DTI, the connectivity of the CST was preserved up to the motor cortex. We also measured the cross-sectional area of the CST at the level of the pons. In TMS, contralateral motor evoked potentials (MEPs) were evoked from both hands, but the ipsilateral MEPs were evoked only from the left hand. The left hand featured a long duration, polyphasic pattern of contralateral MEPs. DISCUSSION AND CONCLUSION: TMS revealed that the concurrent bilateral projections to the paretic hand from the affected and unaffected hemispheres and contralateral MEPs in the paretic hand were polyphasic, indicating delayed electrophysiological maturation or a pathologic condition of the corticospinal motor pathways. In DTI, the cross-sectional area of the CST at the level of the pons on the affected side was smaller than that on the unaffected side. These DTI findings reveal an inadequate CST volume. Despite extensive brain malformation and ipsilateral brainstem atrophy, our patient had less severe motor dysfunction and presented with involuntary mirror movements. Mirror movements in the paretic hand are considered to indicate ipsilateral corticospinal projections from the unaffected hemisphere and may suggest favorable motor outcomes in early brain injury.


Assuntos
Córtex Motor , Transtornos dos Movimentos , Malformações do Sistema Nervoso , Polimicrogiria , Adolescente , Atrofia/patologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Imagem de Tensor de Difusão , Potencial Evocado Motor , Feminino , Lateralidade Funcional/fisiologia , Humanos , Córtex Motor/patologia , Transtornos dos Movimentos/patologia , Polimicrogiria/patologia , Tratos Piramidais/patologia , Estimulação Magnética Transcraniana/métodos
6.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
8.
Nat Commun ; 12(1): 5702, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588434

RESUMO

Regulation of chromatin plays fundamental roles in the development of the brain. Haploinsufficiency of the chromatin remodeling enzyme CHD7 causes CHARGE syndrome, a genetic disorder that affects the development of the cerebellum. However, how CHD7 controls chromatin states in the cerebellum remains incompletely understood. Using conditional knockout of CHD7 in granule cell precursors in the mouse cerebellum, we find that CHD7 robustly promotes chromatin accessibility, active histone modifications, and RNA polymerase recruitment at enhancers. In vivo profiling of genome architecture reveals that CHD7 concordantly regulates epigenomic modifications associated with enhancer activation and gene expression of topologically-interacting genes. Genome and gene ontology studies show that CHD7-regulated enhancers are associated with genes that control brain tissue morphogenesis. Accordingly, conditional knockout of CHD7 triggers a striking phenotype of cerebellar polymicrogyria, which we have also found in a case of CHARGE syndrome. Finally, we uncover a CHD7-dependent switch in the preferred orientation of granule cell precursor division in the developing cerebellum, providing a potential cellular basis for the cerebellar polymicrogyria phenotype upon loss of CHD7. Collectively, our findings define epigenomic regulation by CHD7 in granule cell precursors and identify abnormal cerebellar patterning upon CHD7 depletion, with potential implications for our understanding of CHARGE syndrome.


Assuntos
Síndrome CHARGE/genética , Cerebelo/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Polimicrogiria/genética , Animais , Síndrome CHARGE/patologia , Divisão Celular/genética , Cerebelo/patologia , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Epigênese Genética , Código das Histonas , Humanos , Lactente , Camundongos , Camundongos Knockout , Mutação , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Polimicrogiria/patologia , RNA-Seq
9.
Am J Med Genet A ; 185(9): 2719-2738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087052

RESUMO

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.


Assuntos
Encéfalo/anormalidades , Ciclina D2/genética , Hidrocefalia/patologia , Megalencefalia/patologia , Mutação , Polidactilia/patologia , Polimicrogiria/patologia , Adolescente , Adulto , Criança , Feminino , Humanos , Hidrocefalia/genética , Lactente , Masculino , Megalencefalia/genética , Polidactilia/genética , Polimicrogiria/genética
10.
Neurology ; 96(14): e1898-e1912, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33589534

RESUMO

OBJECTIVE: To determine whether specific speech, language, and oromotor profiles are associated with different patterns of polymicrogyria, we assessed 52 patients with polymicrogyria using a battery of standardized tests and correlated findings with topography and severity of polymicrogyria. METHODS: Patients were identified via clinical research databases and invited to participate, irrespective of cognitive and verbal language abilities. We conducted standardized assessments of speech, oromotor structure and function, language, and nonverbal IQ. Data were analyzed according to normative assessment data and descriptive statistics. We conducted a correlation analysis between topographic pattern and speech and language findings. RESULTS: Fifty-two patients (33 male, 63%) were studied at an average age of 12.7 years (range 2.5-36 years). All patients had dysarthria, which ranged from mild impairment to anarthria. Developmental speech errors (articulation and phonology), oral motor structure and function deficits, and language disorder were frequent. A total of 23/29 (79%) had cognitive abilities in the low average to extremely low range. In the perisylvian polymicrogyria group (36/52), speech, everyday language, and oral motor impairments were more severe, compared to generalized (1 patient), frontal (3), polymicrogyria with periventricular nodular heterotopia (3), parasagittal parieto-occipital (1), mesial occipital (1), and other (7) patterns. CONCLUSIONS: Dysarthria is a core feature of polymicrogyria, often accompanied by receptive and expressive language impairments. These features are associated with all polymicrogyria distribution patterns and more severe in individuals with bilateral polymicrogyria, particularly in the perisylvian region.


Assuntos
Disartria/etiologia , Transtornos do Desenvolvimento da Linguagem/etiologia , Polimicrogiria/complicações , Polimicrogiria/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Disartria/patologia , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/patologia , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
11.
Pediatr Neurol ; 116: 41-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450624

RESUMO

BACKGROUND: The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS: This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS: Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS: Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.


Assuntos
Síndrome de Down , Epilepsia , Feto/anormalidades , Malformações do Desenvolvimento Cortical , Neurônios Aferentes/fisiologia , Polimicrogiria , Sinapses/fisiologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Epilepsia/metabolismo , Epilepsia/patologia , Epilepsia/fisiopatologia , Humanos , Recém-Nascido , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Neurônios Aferentes/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Polimicrogiria/fisiopatologia
12.
J Med Genet ; 58(1): 33-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571897

RESUMO

BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Polimicrogiria/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Vermis Cerebelar/diagnóstico por imagem , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Neuroimagem/métodos , Fenótipo , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/patologia , Tubulina (Proteína)/deficiência , Adulto Jovem
13.
Sci Rep ; 10(1): 21516, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299078

RESUMO

GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.


Assuntos
Neurônios GABAérgicos/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Animais , Animais Geneticamente Modificados/genética , Sequência de Bases/genética , Encéfalo/metabolismo , Callithrix/genética , Callithrix/metabolismo , Movimento Celular/genética , Córtex Cerebral/metabolismo , Expressão Gênica/genética , Homozigoto , Humanos , Mutação/genética , Células-Tronco Neurais/metabolismo , Polimicrogiria/genética , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Receptores Acoplados a Proteínas G/metabolismo , Deleção de Sequência/genética
14.
Am J Med Genet A ; 182(11): 2761-2764, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32902107

RESUMO

Bi-allelic loss-of-function variants in LAMC3, encoding extracellular matrix protein laminin gamma 3, represent a rare cause of occipital polymicrogyria with epilepsy, developmental delay and cognitive impairment. So far, only five families have been reported. We now identified a novel, homozygous splice variant in LAMC3 in an individual with an unusual manifestation of cortical malformation. She presented with polymicrogyria in the frontal but not the occipital lobes, with adult-onset seizures and normal psychomotor development and cognition. Additionally, ictal asystole, requiring implantation of a pacemaker, and nonepileptic seizures occurred. This case expands the spectrum of LAMC3-associated cortical malformation phenotypes to frontal only polymicrogyria and adult-onset of epilepsy.


Assuntos
Epilepsia/patologia , Laminina/genética , Lobo Occipital/fisiopatologia , Fenótipo , Polimicrogiria/patologia , Splicing de RNA , Convulsões/patologia , Adulto , Idade de Início , Epilepsia/genética , Feminino , Humanos , Masculino , Linhagem , Polimicrogiria/genética , Convulsões/genética
15.
Acta Neuropathol ; 140(6): 881-891, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979071

RESUMO

Polymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.


Assuntos
Encéfalo/patologia , Cromossomos/metabolismo , Epilepsia Resistente a Medicamentos/patologia , Malformações do Desenvolvimento Cortical/patologia , Polimicrogiria/patologia , Variações do Número de Cópias de DNA/fisiologia , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/genética , Feminino , Humanos , Masculino , Polimicrogiria/complicações , Polimicrogiria/genética , Convulsões/patologia
16.
Ann Neurol ; 88(6): 1153-1164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959437

RESUMO

OBJECTIVE: Congenital structural brain malformations have been described in patients with pathogenic phosphatase and tensin homologue (PTEN) variants, but the frequency of cortical malformations in patients with PTEN variants and their impact on clinical phenotype are not well understood. Our goal was to systematically characterize brain malformations in patients with PTEN variants and assess the relevance of their brain malformations to clinical presentation. METHODS: We systematically searched a local radiology database for patients with PTEN variants who had available brain magnetic resonance imaging (MRI). The MRI scans were reviewed systematically for cortical abnormalities. We reviewed electroencephalogram (EEG) data and evaluated the electronic medical record for evidence of epilepsy and developmental delay. RESULTS: In total, we identified 22 patients with PTEN pathogenic variants for which brain MRIs were available (age range 0.4-17 years). Twelve among these 22 patients (54%) had polymicrogyria (PMG). Variants associated with PMG or atypical gyration encoded regions of the phosphatase or C2 domains of PTEN. Interestingly, epilepsy was present in only 2 of the 12 patients with PMG. We found a trend toward higher rates of global developmental delay (GDD), intellectual disability (ID), and motor delay in individuals with cortical abnormalities, although cohort size limited statistical significance. INTERPRETATION: Malformations of cortical development, PMG in particular, represent an under-recognized phenotype associated with PTEN pathogenic variants and may have an association with cognitive and motor delays. Epilepsy was infrequent compared to the previously reported high risk of epilepsy in patients with PMG. ANN NEUROL 2020;88:1153-1164.


Assuntos
Deficiências do Desenvolvimento/epidemiologia , Deficiência Intelectual/epidemiologia , PTEN Fosfo-Hidrolase/genética , Polimicrogiria/epidemiologia , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Comorbidade , Bases de Dados Genéticas/estatística & dados numéricos , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Massachusetts/epidemiologia , Neuroimagem , Polimicrogiria/genética , Polimicrogiria/patologia
17.
AJNR Am J Neuroradiol ; 41(8): 1495-1502, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732266

RESUMO

BACKGROUND AND PURPOSE: Polymicrogyria and lissencephaly may be associated with abnormal organization of the undelying white matter tracts that have been rarely investigated so far. Our aim was to characterize white matter tract organization in polymicrogyria and lissencephaly using constrained spherical deconvolution, a multifiber diffusion MR imaging modeling technique for white matter tractography reconstruction. MATERIALS AND METHODS: We retrospectively reviewed 50 patients (mean age, 8.3 ± 5.4 years; range, 1.4-21.2 years; 27 males) with different polymicrogyria (n = 42) and lissencephaly (n = 8) subtypes. The fiber direction-encoded color maps and 6 different white matter tracts reconstructed from each patient were visually compared with corresponding images reconstructed from 7 age-matched, healthy control WM templates. Each white matter tract was assessed by 2 experienced pediatric neuroradiologists and scored in consensus on the basis of the severity of the structural abnormality, ranging from the white matter tracts being absent to thickened. The results were summarized by different polymicrogyria and lissencephaly subgroups. RESULTS: More abnormal-appearing white matter tracts were identified in patients with lissencephaly compared with those with polymicrogyria (79.2% versus 37.3%). In lissencephaly, structural abnormalities were identified in all studied white matter tracts. In polymicrogyria, the more frequently affected white matter tracts were the cingulum, superior longitudinal fasciculus, inferior longitudinal fasciculus, and optic radiation-posterior corona radiata. The severity of superior longitudinal fasciculus and cingulum abnormalities was associated with the polymicrogyria distribution and extent. A thickened superior fronto-occipital fasciculus was demonstrated in 3 patients. CONCLUSIONS: We demonstrated a range of white matter tract structural abnormalities in patients with polymicrogyria and lissencephaly. The patterns of white matter tract involvement are related to polymicrogyria and lissencephaly subgroups, distribution, and, possibly, their underlying etiologies.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Lisencefalia/diagnóstico por imagem , Polimicrogiria/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Lisencefalia/diagnóstico , Lisencefalia/patologia , Masculino , Polimicrogiria/patologia , Estudos Retrospectivos , Substância Branca/patologia , Adulto Jovem
18.
World Neurosurg ; 142: 396-400, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711148

RESUMO

BACKGROUND: Hypothalamic hamartomas (HHs) are rare, and it is even rarer when combined with gray matter heterotopia (GMH) and polymicrogyria (PMG). CASE DESCRIPTION: A 5-year-old boy with HH, GMH, and PMG was retrospectively evaluated. The clinical data, including the symptoms, examinations, diagnosis, and treatment, were collected. The patient had a chief complaint of gelastic seizures and intellectual deficiency. Brain magnetic resonance imaging showed HH, paraventricular nodular heterotopia, and PMG. Video electroencephalographs were normal. The patient underwent resection of the HH via transcallosal transseptal interforniceal approach. Seizures disappeared immediately after complete resection of HH, and the intellectual development improved. CONCLUSIONS: In this extremely rare case, resection of the HH eliminated the symptoms. Nonetheless, we still need to be cautious about the possible epilepsy that may be caused by GMH and PMG.


Assuntos
Substância Cinzenta/patologia , Hamartoma/patologia , Doenças Hipotalâmicas/patologia , Polimicrogiria/patologia , Pré-Escolar , Hamartoma/cirurgia , Humanos , Doenças Hipotalâmicas/cirurgia , Deficiência Intelectual/etiologia , Masculino , Procedimentos Neurocirúrgicos/métodos , Convulsões/etiologia
19.
Eur J Hum Genet ; 28(12): 1703-1713, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32488097

RESUMO

While chromosome 1p36 deletion syndrome is one of the most common terminal subtelomeric microdeletion syndrome, 1p36 microduplications are rare events. Polymicrogyria (PMG) is a brain malformation phenotype frequently present in patients with 1p36 monosomy. The gene whose haploinsufficiency could cause this phenotype remains to be identified. We used high-resolution arrayCGH in patients with various forms of PMG in order to identify chromosomal variants associated to the malformation and characterized the genes included in these regions in vitro and in vivo. We identified the smallest case of 1p36 duplication reported to date in a patient presenting intellectual disability, microcephaly, epilepsy, and perisylvian polymicrogyria. The duplicated segment is intrachromosomal, duplicated in mirror and contains two genes: enolase 1 (ENO1) and RERE, both disrupted by the rearrangement. Gene expression analysis performed using the patient cells revealed a reduced expression, mimicking haploinsufficiency. We performed in situ hybridization to describe the developmental expression profile of the two genes in mouse development. In addition, we used in utero electroporation of shRNAs to show that Eno1 inactivation in the rat causes a brain development defect. These experiments allowed us to define the ENO1 gene as the most likely candidate to contribute to the brain malformation phenotype of the studied patient and consequently a candidate to contribute to the malformations of the cerebral cortex observed in patients with 1p36 monosomy.


Assuntos
Biomarcadores Tumorais/genética , Duplicação Cromossômica , Cromossomos Humanos Par 1/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Fosfopiruvato Hidratase/genética , Polimicrogiria/genética , Proteínas Supressoras de Tumor/genética , Adulto , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Feminino , Humanos , Deficiência Intelectual/patologia , Camundongos , Microcefalia/genética , Microcefalia/patologia , Neurogênese , Fosfopiruvato Hidratase/metabolismo , Polimicrogiria/patologia , Ratos , Ratos Wistar , Síndrome
20.
Cytogenet Genome Res ; 160(4): 177-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369810

RESUMO

Nonmosaic trisomy involving 19p13.3p13.2 is a very uncommon abnormality. At present, only 12 cases with this genetic condition have been reported in the literature. However, the size of the trisomic fragment is heterogeneous and thus, the clinical spectrum is variable. Herein, we report the clinical and cytogenetic characterization of a 5-year-old boy with nonmosaic trisomy 19p13.3p13.2 (7.38 Mb), generated by a derivative Y chromosome resulting from a de novo unbalanced translocation t(Y;19)(q12;p13.2). We demonstrated the integrity of the euchromatic regions in the abnormal Y chromosome to confirm the pure trisomy 19p. Our patient shares some clinical features described in other reported patients with pure trisomy 19p, such as craniofacial anomalies, developmental delay, and heart defects. Different to previous reports, our case exhibits frontal pachygyria and polymicrogyria. These additional features contribute to further delineate the clinical spectrum of trisomy 19p13.3p13.2.


Assuntos
Cromossomos Humanos Par 19/genética , Cromossomos Humanos Y/genética , Lisencefalia/genética , Polimicrogiria/genética , Translocação Genética/genética , Trissomia/genética , Pré-Escolar , Humanos , Lisencefalia/patologia , Masculino , Mosaicismo , Pais , Polimicrogiria/patologia , Trissomia/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA