Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Am J Clin Dermatol ; 25(4): 541-557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649621

RESUMO

Merkel cell carcinoma (MCC) is a rare skin cancer characterized by neuroendocrine differentiation. Its carcinogenesis is based either on the integration of the Merkel cell polyomavirus or on ultraviolet (UV) mutagenesis, both of which lead to high immunogenicity either through the expression of viral proteins or neoantigens. Despite this immunogenicity resulting from viral or UV-associated carcinogenesis, it exhibits highly aggressive behavior. However, owing to the rarity of MCC and the lack of epidemiologic registries with detailed clinical data, there is some uncertainty regarding the spontaneous course of the disease. Historically, advanced MCC patients were treated with conventional cytotoxic chemotherapy yielding a median response duration of only 3 months. Starting in 2017, four programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors-avelumab, pembrolizumab, nivolumab (utilized in both neoadjuvant and adjuvant settings), and retifanlimab-have demonstrated efficacy in treating patients with disseminated MCC on the basis of prospective clinical trials. However, generating clinical evidence for rare cancers, such as MCC, is challenging owing to difficulties in conducting large-scale trials, resulting in small sample sizes and therefore lacking statistical power. Thus, to comprehensively understand the available clinical evidence on various immunotherapy approaches for MCC, we also delve into the epidemiology and immune biology of this cancer. Nevertheless, while randomized studies directly comparing immune checkpoint inhibitors and chemotherapy in MCC are lacking, immunotherapy shows response rates comparable to those previously reported with chemotherapy but with more enduring responses. Notably, adjuvant nivolumab has proven superiority to the standard-of-care therapy (observation) in the adjuvant setting.


Assuntos
Carcinoma de Célula de Merkel , Inibidores de Checkpoint Imunológico , Neoplasias Cutâneas , Carcinoma de Célula de Merkel/terapia , Carcinoma de Célula de Merkel/epidemiologia , Carcinoma de Célula de Merkel/imunologia , Carcinoma de Célula de Merkel/diagnóstico , Humanos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Poliomavírus das Células de Merkel/imunologia
2.
J Virol ; 97(4): e0190722, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36946735

RESUMO

Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-ß antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.


Assuntos
Carcinoma de Célula de Merkel , Interferons , Infecções por Polyomavirus , Transdução de Sinais , Infecções Tumorais por Vírus , Poliomavírus das Células de Merkel/imunologia , Interferons/fisiologia , Transdução de Sinais/imunologia , Infecções por Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Carcinoma de Célula de Merkel/imunologia , Imunidade Inata/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Expressão Gênica/imunologia , Replicação Viral/genética
3.
Front Immunol ; 12: 738486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733278

RESUMO

Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.


Assuntos
Envelhecimento/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Imunoglobulina G/sangue , Imunossenescência , Poliomavírus das Células de Merkel/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Epitopos , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno , Humanos , Masculino , Poliomavírus das Células de Merkel/patogenicidade , Pessoa de Meia-Idade , Adulto Jovem
4.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281220

RESUMO

Merkel cell polyomavirus (MCPyV) large tumor (LT) antigen is a DNA binding protein essential for viral gene transcription and genome replication. MCPyV LT interacts with multiple E3 ligases in a phosphorylation-dependent manner, limiting its own viral replication by enhancing LT protein degradation, which is a unique mechanism for MCPyV latency. Thus, identifying LT ubiquitination sites is an important step toward understanding the biological role of these virus-host interactions that can potentially result in viral oncogenesis. The ubiquitin (Ub) attachment sites in LT were predicted by using Rapid UBIquitination (RUBI), a sequence-based ubiquitination web server. Using an immunoprecipitation approach, the lysine (Lys, K) 585 residue in LT is identified as the ubiquitin conjugation site. Lysine 585 is deleted from tumor-derived truncated LTs (tLTs), resulting in stable expression of tLTs present in cancers. Substitution of lysine 585 to arginine (Arg, R) increased LT protein stability, but impaired MCPyV origin replication, due to a loss of ATP hydrolysis activity. These findings uncover a never-before-identified ubiquitination site of LT and its importance not only in the regulation of protein turnover, but also in MCPyV genome replication.


Assuntos
Antígenos Virais de Tumores/metabolismo , Poliomavírus das Células de Merkel/imunologia , Trifosfato de Adenosina/metabolismo , Células HEK293 , Humanos , Poliomavírus das Células de Merkel/metabolismo , Estabilidade Proteica , Ubiquitinação , Replicação Viral
5.
Front Immunol ; 12: 676627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168646

RESUMO

Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, has been detected in Merkel cell carcinoma (MCC) and in normal tissues. Since MCPyV infection occurs in both MCC-affected patients and healthy subjects (HS), innovative immunoassays for detecting antibodies (abs) against MCPyV are required. Herein, sera from HS were analyzed with a novel indirect ELISA using two synthetic peptides mimicking MCPyV capsid protein epitopes of VP1 and VP2. Synthetic peptides were designed to recognize IgGs against MCPyV VP mimotopes using a computer-assisted approach. The assay was set up evaluating its performance in detecting IgGs anti-MCPyV on MCPyV-positive (n=65) and -negative (n=67) control sera. Then, the ELISA was extended to sera (n=548) from HS aged 18-65 yrs old. Age-specific MCPyV-seroprevalence was investigated. Performance evaluation indicated that the assay showed 80% sensitivity, 91% specificity and 83.9% accuracy, with positive and negative predictive values of 94.3% and 71%, respectively. The ratio expected/obtained data agreement was 86%, with a Cohen's kappa of 0.72. Receiver-operating characteristic (ROC) curves analysis indicated that the areas under the curves (AUCs) for the two peptides were 0.82 and 0.74, respectively. Intra-/inter-run variations were below 9%. The overall prevalence of serum IgGs anti-MCPyV in HS was 62.9% (345/548). Age-specific MCPyV-seroprevalence was 63.1% (82/130), 56.7% (68/120), 64.5% (91/141), and 66.2% (104/157) in HS aged 18-30, 31-40, 41-50 and 51-65 yrs old, respectively (p>0.05). Performance evaluation suggests that our indirect ELISA is reliable in detecting IgGs anti-MCPyV. Our immunological data indicate that MCPyV infection occurs asymptomatically, at a relatively high prevalence, in humans.


Assuntos
Anticorpos Antivirais/sangue , Ensaios Enzimáticos/métodos , Imunoglobulina G/sangue , Poliomavírus das Células de Merkel/imunologia , Vírus Oncogênicos/imunologia , Infecções por Polyomavirus/sangue , Infecções por Polyomavirus/diagnóstico , Infecções Tumorais por Vírus/sangue , Infecções Tumorais por Vírus/diagnóstico , Adulto , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Proteínas do Capsídeo/imunologia , Simulação por Computador , Confiabilidade dos Dados , Diagnóstico por Computador , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/virologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Infecções Tumorais por Vírus/virologia
6.
J Invest Dermatol ; 141(8): 1897-1905, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863500

RESUMO

Merkel cell carcinoma (MCC) is a rare skin malignancy that is a paradigm cancer for solid tumor immunotherapy. MCCs associated with Merkel cell polyomavirus (virus-positive MCC [VP-MCC]) or chronic UV exposure (virus-negative MCC [VN-MCC]) are anti-PD(L)1 responsive, despite VP-MCC's low mutational burden. This suggests that antigen quality, not merely mutation quantity, dictates immunotherapy responsiveness, and cell-based therapies targeting optimal antigens may be effective. Despite VP-MCC's antigenic homogeneity, diverse T-cell infiltration patterns are observed, implying microenvironment plasticity and multifactorial contributions to immune recognition. Moreover, VP-MCC exemplifies how antitumor adaptive immunity can provide tumor burden biomarkers for early detection and disease monitoring.


Assuntos
Carcinoma de Célula de Merkel/imunologia , Poliomavírus das Células de Merkel/imunologia , Infecções por Polyomavirus/imunologia , Neoplasias Cutâneas/imunologia , Infecções Tumorais por Vírus/imunologia , Imunidade Adaptativa , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/imunologia , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/terapia , Carcinoma de Célula de Merkel/virologia , Resistencia a Medicamentos Antineoplásicos , Epitopos de Linfócito T/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/terapia , Infecções por Polyomavirus/virologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/virologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/terapia , Infecções Tumorais por Vírus/virologia
7.
J Virol ; 95(13): e0221120, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33883226

RESUMO

Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.


Assuntos
Citocinas/imunologia , Fibroblastos/imunologia , Imunidade Inata/imunologia , Poliomavírus das Células de Merkel/imunologia , Pele/imunologia , Sistemas CRISPR-Cas/genética , Carcinoma de Célula de Merkel/patologia , Células Cultivadas , Citocinas/biossíntese , Fibroblastos/virologia , Células HEK293 , Humanos , Imunidade Inata/genética , Interferons/biossíntese , Interferons/imunologia , Proteínas de Membrana/genética , Poliomavírus das Células de Merkel/crescimento & desenvolvimento , NF-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infecções por Polyomavirus/imunologia , Pele/citologia , Infecções Tumorais por Vírus/imunologia
8.
Front Immunol ; 11: 592721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362774

RESUMO

Virus positive Merkel cell carcinoma (VP-MCC) is an aggressive but immunogenic skin malignancy driven by Merkel cell polyomavirus (MCPyV) T antigen (TAg). Since adoptive T cell transfer (ACT) can be effective against virus-driven malignancies, we set out to develop a methodology for generating MCPyV TAg specific T cells. MCPyV is a common, asymptomatic infection and virus-exposed healthy donors represent a potential source of MCPyV TAg specific T cells for ACT. Virus specific T cells were generated using monocyte-derived dendritic cells (moDCs) pulsed with MCPyV TAg peptide libraries and co-cultured with autologous T cells in supplemented with pro-inflammatory and homeostatic cytokines for 14 days. Specific reactivity was observed predominantly within the CD4+ T cell compartment in the cultures generated from 21/46 random healthy donors. Notably, responses were more often seen in donors aged 50 years and older. TAg specific CD4+ T cells specifically secreted Th1 cytokines and upregulated CD137 upon challenge with MCPyV TAg peptide libraries and autologous transduced antigen presenting cells. Expanded T cells from healthy donors recognized epitopes of both TAg splice variants found in VP-MCC tumors, and minimally expressed exhaustion markers. Our data show that MCPyV specific T cells can be expanded from healthy donors using methods appropriate for the manufacture of clinical grade ACT products.


Assuntos
Transferência Adotiva , Carcinoma de Célula de Merkel/terapia , Poliomavírus das Células de Merkel/imunologia , Infecções por Polyomavirus/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Infecções Tumorais por Vírus/imunologia , Transferência Adotiva/métodos , Fatores Etários , Idoso , Antígenos de Neoplasias/imunologia , Biomarcadores , Carcinoma de Célula de Merkel/etiologia , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epitopos/imunologia , Antígenos HLA , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/virologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Doadores de Tecidos , Pesquisa Translacional Biomédica , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/virologia
9.
Biochem J ; 477(14): 2721-2733, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32639530

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer with high rates of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases. MCPyV-induced tumourigenesis is largely dependent on the expression of the small tumour antigen (ST). Recent findings implicate MCPyV ST expression in the highly metastatic nature of MCC by promoting cell motility and migration, through differential expression of cellular proteins that lead to microtubule destabilisation, filopodium formation and breakdown of cell-cell junctions. However, the molecular mechanisms which dysregulate these cellular processes are yet to be fully elucidated. Here, we demonstrate that MCPyV ST expression activates p38 MAPK signalling to drive cell migration and motility. Notably, MCPyV ST-mediated p38 MAPK signalling occurs through MKK4, as opposed to the canonical MKK3/6 signalling pathway. In addition, our results indicate that an interaction between MCPyV ST and the cellular phospatase subunit PP4C is essential for its effect on p38 MAPK signalling. These results provide novel opportunities for the treatment of metastatic MCC given the intense interest in p38 MAPK inhibitors as therapeutic agents.


Assuntos
Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/patogenicidade , Neoplasias Cutâneas/virologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase 4/metabolismo , Poliomavírus das Células de Merkel/imunologia , Fosfoproteínas Fosfatases/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
Cancer Immunol Res ; 8(5): 648-659, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179557

RESUMO

Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag-specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1-8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70-110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag-expressing DCs was documented. Recovery of MCPyV oncoprotein-specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.


Assuntos
Antígenos Virais de Tumores/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Célula de Merkel/imunologia , Epitopos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Adulto , Idoso , Antígenos Virais de Tumores/metabolismo , Carcinogênese/imunologia , Carcinoma de Célula de Merkel/terapia , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/terapia , Adulto Jovem
11.
Mol Carcinog ; 59(7): 807-821, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219902

RESUMO

Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent ansd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.


Assuntos
Carcinoma de Célula de Merkel/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Vacinas/imunologia , Animais , Antígenos Virais de Tumores/imunologia , Carcinoma de Célula de Merkel/terapia , Carcinoma de Célula de Merkel/virologia , Humanos , Imunoterapia/métodos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/virologia , Linfócitos T/imunologia
12.
Proc Natl Acad Sci U S A ; 116(40): 20104-20114, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527246

RESUMO

Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20 Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor.


Assuntos
Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/etiologia , Carcinoma de Célula de Merkel/metabolismo , Poliomavírus das Células de Merkel/genética , Fenótipo , Infecções por Polyomavirus/complicações , Fatores de Transcrição SOXB1/genética , Antígenos Virais de Tumores/imunologia , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Transformação Celular Viral , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos , Células de Merkel/metabolismo , Poliomavírus das Células de Merkel/imunologia , Neuritos/metabolismo , Neurônios/metabolismo , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/virologia , Fatores de Transcrição SOXB1/metabolismo , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
13.
Cancer Immunol Res ; 7(10): 1727-1739, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405946

RESUMO

Although CD4+ T cells likely play key roles in antitumor immune responses, most immuno-oncology studies have been limited to CD8+ T-cell responses due to multiple technical barriers and a lack of shared antigens across patients. Merkel cell carcinoma (MCC) is an aggressive skin cancer caused by Merkel cell polyomavirus (MCPyV) oncoproteins in 80% of cases. Because MCPyV oncoproteins are shared across most patients with MCC, it is unusually feasible to identify, characterize, and potentially augment tumor-specific CD4+ T cells. Here, we report the identification of CD4+ T-cell responses against six MCPyV epitopes, one of which included a conserved, essential viral oncogenic domain that binds/disables the cellular retinoblastoma (Rb) tumor suppressor. We found that this epitope (WEDLT209-228) could be presented by three population-prevalent HLA class II alleles, making it a relevant target in 64% of virus-positive MCC patients. Cellular staining with a WEDLT209-228-HLA-DRB1*0401 tetramer indicated that specific CD4+ T cells were detectable in 78% (14 of 18) of evaluable MCC patients, were 250-fold enriched within MCC tumors relative to peripheral blood, and had diverse T-cell receptor sequences. We also identified a modification of this domain that still allowed recognition by these CD4+ T cells but disabled binding to the Rb tumor suppressor, a key step in the detoxification of a possible therapeutic vaccine. The use of these new tools for deeper study of MCPyV-specific CD4+ T cells may provide broader insight into cancer-specific CD4+ T-cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Carcinogênese/imunologia , Carcinoma de Célula de Merkel/imunologia , Epitopos/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Voluntários Saudáveis , Humanos , Oligopeptídeos/imunologia , Proteína do Retinoblastoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
PLoS Pathog ; 15(1): e1007543, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689667

RESUMO

Merkel cell polyomavirus (MCPyV) accounts for 80% of all Merkel cell carcinoma (MCC) cases through expression of two viral oncoproteins: the truncated large T antigen (LT-t) and small T antigen (ST). MCPyV ST is thought to be the main driver of cellular transformation and has also been shown to increase LT protein levels through the activity of its Large-T Stabilization Domain (LSD). The ST LSD was reported to bind and sequester several ubiquitin ligases, including Fbw7 and ß-TrCP, and thereby stabilize LT-t and several other Fbw7 targets including c-Myc and cyclin E. Therefore, the ST LSD is thought to contribute to transformation by promoting the accumulation of these oncoproteins. Targets of Fbw7 and ß-TrCP contain well-defined, conserved, phospho-degrons. However, as neither MCPyV LT, LT-t nor ST contain the canonical Fbw7 phospho-degron, we sought to further investigate the proposed model of ST stabilization of LT-t and transformation. In this study, we provide several lines of evidence that fail to support a specific interaction between MCPyV T antigens and Fbw7 or ß-TrCP by co-immunoprecipitation or functional consequence. Although MCPyV ST does indeed increase LT protein levels through its Large-T Stabilization domain (LSD), this is accomplished independently of Fbw7. Therefore, our study indicates a need for further investigation into the role and mechanism(s) of MCPyV T antigens in viral replication, latency, transformation, and tumorigenesis.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Poliomavírus das Células de Merkel/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/metabolismo , Células HEK293 , Humanos , Ligases/metabolismo , Células de Merkel , Poliomavírus das Células de Merkel/imunologia , Poliomavírus das Células de Merkel/patogenicidade , Proteínas Oncogênicas/metabolismo , Infecções por Polyomavirus/metabolismo , Domínios Proteicos , Infecções Tumorais por Vírus/virologia , Ubiquitina/metabolismo , Replicação Viral , Proteínas Contendo Repetições de beta-Transducina/metabolismo
15.
Hum Pathol ; 84: 52-61, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30240768

RESUMO

Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer, with approximately 80% of cases related to Merkel cell polyomavirus (MCPyV). Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) are the key rate-limiting enzymes of the tryptophan-to-kynurenine metabolic pathway. With aryl hydrocarbon receptor (AhR), an intracellular transcription factor, they play a role in escaping the immunosurveillance process in several cancers. IDO1/TDO2/AhR expression associated with the MCPyV status and prognosis in MCC was investigated. Samples included 24 MCPyV-positive MCCs, 12 MCPyV-negative MCCs with squamous cell carcinoma, and 7 MCPyV-negative pure MCCs. They were stained immunohistochemically with IDO1, TDO2, and AhR antibodies and analyzed. Higher IDO1 expression in MCC tumor cells was found in MCPyV-negative than in MCPyV-positive MCC (P < .001). The tumor microenvironment (TME) in MCPyV-negative MCC expressed higher TDO2 than in MCPyV-positive MCC (P < .001). Kaplan-Meier and log-rank tests showed that MCC with lower IDO1 expression in tumor cells and with lower TDO2 and AhR expressions in TME had better overall survival than otherwise (P = .043, .008, and .035, respectively); lower TDO2 expression in TME was also associated with longer disease-specific survival (P = .016). This suggests that IDO1, TDO2, and AhR express differentially in tumor cells or TME and play different roles in tumorigenesis between MCPyV-positive and MCPyV-negative MCC that may affect the MCC biology. Evaluating IDO1/TDO2/AhR expression is important for selecting the most likely patients with MCC for immunotherapies targeting the IDO1/TDO2-AhR pathway.


Assuntos
Carcinoma de Célula de Merkel/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Neoplasias Cutâneas/imunologia , Triptofano Oxigenase/imunologia , Microambiente Tumoral/imunologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/virologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Poliomavírus das Células de Merkel/imunologia , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/imunologia , Prognóstico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/imunologia
16.
J Invest Dermatol ; 139(4): 807-817, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30399362

RESUMO

The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.


Assuntos
Carcinoma de Célula de Merkel/tratamento farmacológico , Ácidos Graxos Monoinsaturados/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Infecções por Polyomavirus/tratamento farmacológico , Serina C-Palmitoiltransferase/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Infecções Tumorais por Vírus/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Poliomavírus das Células de Merkel/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/patologia , RNA Neoplásico/genética , Serina C-Palmitoiltransferase/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/patologia
17.
J Immunother Cancer ; 6(1): 131, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482247

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive skin cancer that frequently responds to anti-PD-1 therapy. MCC is associated with sun exposure and, in 80% of cases, Merkel cell polyomavirus (MCPyV). MCPyV-specific T and B cell responses provide a unique opportunity to study cancer-specific immunity throughout PD-1 blockade therapy. METHODS: Immune responses were assessed in patients (n = 26) with advanced MCC receiving pembrolizumab. Peripheral blood mononuclear cells (PBMC) were collected at baseline and throughout treatment. MCPyV-oncoprotein antibodies were quantified and T cells were assessed for MCPyV-specificity via tetramer staining and/or cytokine secretion. Pre-treatment tumor biopsies were analyzed for T cell receptor clonality. RESULTS: MCPyV oncoprotein antibodies were detectable in 15 of 17 (88%) of virus-positive MCC (VP-MCC) patients. Antibodies decreased in 10 of 11 (91%) patients with responding tumors. Virus-specific T cells decreased over time in patients who had a complete response, and increased in patients who had persistent disease. Tumors that were MCPyV(+) had a strikingly more clonal (less diverse) intratumoral TCR repertoire than virus-negative tumors (p = 0.0001). CONCLUSIONS: Cancer-specific T and B cell responses generally track with disease burden during PD-1 blockade, in proportion to presence of antigen. Intratumoral TCR clonality was significantly greater in VP-MCC than VN-MCC tumors, suggesting expansion of a limited number of dominant clones in response to fewer immunogenic MCPyV antigens. In contrast, VN-MCC tumors had lower clonality, suggesting a diverse T cell response to numerous neoantigens. These findings reveal differences in tumor-specific immunity for VP-MCC and VN-MCC, both of which often respond to anti-PD-1 therapy.


Assuntos
Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/etiologia , Poliomavírus das Células de Merkel/imunologia , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores Tumorais , Carcinoma de Célula de Merkel/diagnóstico , Humanos , Imunomodulação/efeitos dos fármacos , Ativação Linfocitária/imunologia , Terapia de Alvo Molecular , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
18.
Curr Opin Virol ; 32: 71-79, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278284

RESUMO

Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.


Assuntos
Carcinogênese , Poliomavírus das Células de Merkel/fisiologia , Papillomaviridae/fisiologia , Infecções Tumorais por Vírus/virologia , Carcinoma de Célula de Merkel/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Evasão da Resposta Imune , Hospedeiro Imunocomprometido , Poliomavírus das Células de Merkel/imunologia , Papillomaviridae/imunologia , Latência Viral/imunologia
19.
Nat Commun ; 9(1): 3868, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250229

RESUMO

Understanding mechanisms of late/acquired cancer immunotherapy resistance is critical to improve outcomes; cellular immunotherapy trials offer a means to probe complex tumor-immune interfaces through defined T cell/antigen interactions. We treated two patients with metastatic Merkel cell carcinoma with autologous Merkel cell polyomavirus specific CD8+ T cells and immune-checkpoint inhibitors. In both cases, dramatic remissions were associated with dense infiltration of activated CD8+s into the regressing tumors. However, late relapses developed at 22 and 18 months, respectively. Here we report single cell RNA sequencing identified dynamic transcriptional suppression of the specific HLA genes presenting the targeted viral epitope in the resistant tumor as a consequence of intense CD8-mediated immunologic pressure; this is distinguished from genetic HLA-loss by its reversibility with drugs. Transcriptional suppression of Class I loci may underlie resistance to other immunotherapies, including checkpoint inhibitors, and have implications for the design of improved immunotherapy treatments.


Assuntos
Carcinoma de Célula de Merkel/terapia , Genes MHC Classe I/genética , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/genética , Infecções por Polyomavirus/terapia , Neoplasias Cutâneas/terapia , Evasão Tumoral/genética , Infecções Tumorais por Vírus/terapia , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/imunologia , Carcinoma de Célula de Merkel/virologia , Receptores Coestimuladores e Inibidores de Linfócitos T/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Genes MHC Classe I/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Masculino , Poliomavírus das Células de Merkel/imunologia , Poliomavírus das Células de Merkel/isolamento & purificação , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/virologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/virologia , Neoplasias Testiculares/imunologia , Neoplasias Testiculares/secundário , Neoplasias Testiculares/virologia , Transcrição Gênica/imunologia , Transplante Autólogo/métodos , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
20.
PLoS Pathog ; 14(9): e1007276, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188954

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC.


Assuntos
Antígenos Virais de Tumores/fisiologia , Carcinoma de Célula de Merkel/etiologia , Poliomavírus das Células de Merkel/patogenicidade , Infecções por Polyomavirus/etiologia , Neoplasias Cutâneas/etiologia , Infecções Tumorais por Vírus/etiologia , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Carcinoma de Célula de Merkel/enzimologia , Carcinoma de Célula de Merkel/secundário , Movimento Celular , Células HEK293 , Humanos , Junções Intercelulares/patologia , Junções Intercelulares/fisiologia , Proteínas de Membrana/metabolismo , Poliomavírus das Células de Merkel/imunologia , Poliomavírus das Células de Merkel/fisiologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Infecções por Polyomavirus/enzimologia , Infecções por Polyomavirus/patologia , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/enzimologia , Infecções Tumorais por Vírus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA