Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Bull World Health Organ ; 101(12): 808-812, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38024246

RESUMO

Problem: A decrease in vaccine coverage in conflict-affected areas has placed Yemen at higher risk of polio outbreaks caused by vaccine-derived poliovirus strains. Approach: In response to polio outbreaks, the Yemeni health ministry and partners initiated multiple vaccination campaigns to deliver vaccines to children. We also implemented several measures to enhance communication, education, health promotion and hygiene, especially in camps for internally displaced people. Local setting: In 2009, Yemen achieved polio-free status and maintained it until 2019. However, the ongoing political conflict since 2015, coupled with challenges in delivering the polio vaccine to conflict-affected areas, resulted in two polio outbreaks: 35 cases caused by vaccine-derived poliovirus strain 1 between 2019 and 2021, and 230 cases due to vaccine-derived poliovirus strain 2 between November 2021 and December 2022. Relevant changes: In response to the first outbreak, by the end of 2020, we vaccinated 7.2 million children through nationwide vaccination campaigns, except in Sa'ada governorate due to a ban by the authorities. By the end of 2021, 3 800 313 children younger than 5 years had received polio vaccines. For the second outbreak, by the end of 2022, 4 463 389 vaccines had been given to children younger than 10 years, and 1 217 423 to those younger than 5 years. Lessons learnt: Vaccination campaigns in conflict-affected areas with low vaccine coverage remain crucial in eradicating polio. Efforts are needed to reach vulnerable groups such as displaced populations. Advocacy, communication and social mobilization actions help ensure broader public inclusion and participation in vaccination efforts to prevent polio outbreaks.


Assuntos
Poliomielite , Vacinas contra Poliovirus , Poliovirus , Criança , Humanos , Iêmen/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/fisiologia , Surtos de Doenças/prevenção & controle
2.
J Infect Dis ; 228(Suppl 6): S427-S445, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849401

RESUMO

Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.


Assuntos
Infecções por Enterovirus , Picornaviridae , Poliovirus , Animais , Humanos , Picornaviridae/genética , Poliovirus/fisiologia , Rhinovirus , Enterovirus Humano B/fisiologia
3.
Nucleic Acids Res ; 51(16): 8850-8863, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486760

RESUMO

The genomes of positive-strand RNA viruses serve as a template for both protein translation and genome replication. In enteroviruses, a cloverleaf RNA structure at the 5' end of the genome functions as a switch to transition from viral translation to replication by interacting with host poly(C)-binding protein 2 (PCBP2) and the viral 3CDpro protein. We determined the structures of cloverleaf RNA from coxsackievirus and poliovirus. Cloverleaf RNA folds into an H-type four-way junction and is stabilized by a unique adenosine-cytidine-uridine (A•C-U) base triple involving the conserved pyrimidine mismatch region. The two PCBP2 binding sites are spatially proximal and are located on the opposite end from the 3CDpro binding site on cloverleaf. We determined that the A•C-U base triple restricts the flexibility of the cloverleaf stem-loops resulting in partial occlusion of the PCBP2 binding site, and elimination of the A•C-U base triple increases the binding affinity of PCBP2 to the cloverleaf RNA. Based on the cloverleaf structures and biophysical assays, we propose a new mechanistic model by which enteroviruses use the cloverleaf structure as a molecular switch to transition from viral protein translation to genome replication.


Assuntos
Enterovirus , Genoma Viral , Poliovirus , RNA Viral , Humanos , Enterovirus/genética , Enterovirus/fisiologia , Células HeLa , Conformação de Ácido Nucleico , Poliovirus/genética , Poliovirus/fisiologia , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
4.
PLoS Pathog ; 18(10): e1010906, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306280

RESUMO

As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.


Assuntos
Infecções por Enterovirus , Enterovirus , Poliovirus , Humanos , Enterovirus/metabolismo , Biotinilação , Poliovirus/fisiologia , Replicação Viral , Proteínas Virais/metabolismo , Poliproteínas/metabolismo , Antivirais/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo
5.
Mucosal Immunol ; 15(1): 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34239028

RESUMO

A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.


Assuntos
Poliomielite/imunologia , Poliovirus/fisiologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Criança , Humanos , Imunidade nas Mucosas , Imunoglobulina A/sangue , Vacinação , Eliminação de Partículas Virais
6.
PLoS Pathog ; 17(9): e1009277, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570820

RESUMO

During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition. We also experimentally examined virus and DI replication kinetics during co-infection, and used these data to infer model parameters. Our model identifies, and our experimental measurements confirm, that the efficiencies of DI genome replication and encapsidation are two most critical parameters determining the outcome of WT replication. However, an equilibrium can be established which enables WT to replicate, albeit to reduced levels.


Assuntos
Coinfecção/virologia , Vírus Defeituosos , Modelos Teóricos , Poliovirus , Replicação Viral/fisiologia , Vírus Defeituosos/fisiologia , Humanos , Poliovirus/fisiologia
7.
Sci Rep ; 11(1): 9622, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953215

RESUMO

Viruses experience selective pressure on the timing and order of events during infection to maximize the number of viable offspring they produce. Additionally, they may experience variability in cellular environments encountered, as individual eukaryotic cells can display variation in gene expression among cells. This leads to a dynamic phenotypic landscape that viruses must face to replicate. To examine replication dynamics displayed by viruses faced with this variable landscape, we have developed a method for fitting a stochastic mechanistic model of viral infection to time-lapse imaging data from high-throughput single-cell poliovirus infection experiments. The model's mechanistic parameters provide estimates of several aspects associated with the virus's intracellular dynamics. We examine distributions of parameter estimates and assess their variability to gain insight into the root causes of variability in viral growth dynamics. We also fit our model to experiments performed under various drug treatments and examine which parameters differ under these conditions. We find that parameters associated with translation and early stage viral replication processes are essential for the model to capture experimentally observed dynamics. In aggregate, our results suggest that differences in viral growth data generated under different treatments can largely be captured by steps that occur early in the replication process.


Assuntos
Modelos Biológicos , Poliovirus/fisiologia , Imagem com Lapso de Tempo , Replicação Viral/fisiologia , Interações Hospedeiro-Patógeno , Humanos
8.
Sci Rep ; 11(1): 6746, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762624

RESUMO

Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1-transmitted cases have been largely eliminated except for limited regions. However, vaccine-derived PV, pathogenically reverted live PV vaccine strains, has become a serious issue. For the global eradication of polio, the World Health Organization is conducting the third edition of the Global Action Plan, which is requesting stringent control of potentially PV-infected materials. To facilitate the mission, we generated a PV-nonsusceptible Vero cell subline, which may serve as an ideal replacement of standard Vero cells to isolate emerging/re-emerging viruses without the risk of generating PV-infected materials.


Assuntos
Poliovirus/fisiologia , Células Vero/virologia , Tropismo Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Técnicas de Cultura de Células , Células Cultivadas , Chlorocebus aethiops , Saúde Global , Humanos , Poliomielite/epidemiologia , Poliomielite/virologia , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Replicação Viral , Organização Mundial da Saúde
9.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622727

RESUMO

Genome transfer from a virus into a cell is a critical early step in viral replication. Enveloped viruses achieve the delivery of their genomes into the cytoplasm by merging the viral membrane with the cellular membrane via a conceptually simple mechanism called membrane fusion. In contrast, genome translocation mechanisms in nonenveloped viruses, which lack viral membranes, remain poorly understood. Although cellular assays provide useful information about cell entry and genome release, it is difficult to obtain detailed mechanistic insights due both to the inherent technical difficulties associated with direct visualization of these processes and to the prevalence of nonproductive events in cellular assays performed at a very high multiplicity of infection. To overcome these issues, we developed an in vitro single-particle fluorescence assay to characterize genome release from a nonenveloped virus (poliovirus) in real time using a tethered receptor-decorated liposome system. Our results suggest that poliovirus genome release is a complex process that consists of multiple rate-limiting steps. Interestingly, we found that the addition of exogenous wild-type capsid protein VP4, but not mutant VP4, enhanced the efficiency of genome translocation. These results, together with prior structural analysis, suggest that VP4 interacts with RNA directly and forms a protective, membrane-spanning channel during genome translocation. Furthermore, our data indicate that VP4 dynamically interacts with RNA, rather than forming a static tube for RNA translocation. This study provides new insights into poliovirus genome translocation and offers a cell-free assay that can be utilized broadly to investigate genome release processes in other nonenveloped viruses.IMPORTANCE The initial transfer of genomic material from a virus into a host cell is a key step in any viral infection. Consequently, understanding how viruses deliver their genomes into cells could reveal attractive therapeutic targets. Although conventional biochemical and cellular assays have provided useful information about cell entry, the mechanism used to deliver the viral genomes across the cellular membrane into the cytoplasm is not well characterized for nonenveloped viruses such as poliovirus. In this study, we developed a fluorescence imaging assay to visualize poliovirus genome release using a synthetic vesicle system. Our results not only provide new mechanistic insights into poliovirus genome translocation but also offer a cell-free assay to bridge gaps in understanding of this process in other nonenveloped viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/fisiologia , Imagem Óptica/métodos , Poliovirus/genética , Poliovirus/fisiologia , RNA Viral/metabolismo , Internalização do Vírus , Proteínas do Capsídeo/genética , Sistemas Computacionais , Células HeLa , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Lipossomos/metabolismo
10.
Expert Rev Vaccines ; 20(4): 449-460, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599178

RESUMO

OBJECTIVES: The emergence of human pathogens with pandemic potential motivates rapid vaccine development. We explore the role of vaccines in control and eradication of a novel emerging pathogen. METHODS: We hypothetically simulate emergence of a novel wild poliovirus (nWPV) in 2020 assuming an immunologically naïve population. Assuming different nonpharmaceutical interventions (NPIs), we explore the impacts of vaccines resembling serotype-specific oral poliovirus vaccine (OPV), novel OPV (nOPV), or inactivated poliovirus vaccine (IPV). RESULTS: Vaccines most effectively change the trajectory of an emerging disease when disseminated early, rapidly, and widely in the background of ongoing strict NPIs, unless the NPIs successfully eradicate the emerging pathogen before it establishes endemic transmission. Without strict NPIs, vaccines primarily reduce the burden of disease in the remaining susceptible individuals and in new birth cohorts. Live virus vaccines that effectively compete with the nWPVs can reduce disease burdens more than other vaccines. When relaxation of existing NPIs occurs at the time of vaccine introduction, nWPV transmission can counterintuitively increase in the short term. CONCLUSIONS: Vaccines can increase the probability of disease eradication in the context of strict NPIs. However, successful eradication will depend on specific immunization strategies used and a global commitment to eradication.


Assuntos
Erradicação de Doenças/métodos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio Oral/administração & dosagem , Poliovirus/efeitos dos fármacos , Erradicação de Doenças/tendências , Surtos de Doenças/prevenção & controle , Saúde Global/tendências , Humanos , Poliovirus/fisiologia , Vacinação/métodos , Vacinação/tendências
11.
Viruses ; 12(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353144

RESUMO

Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.


Assuntos
Proteínas de Transporte/química , Conformação Proteica em alfa-Hélice , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Humanos , Complexos Multiproteicos , Poliomielite/virologia , Poliovirus/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
12.
Viruses ; 12(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883046

RESUMO

Significantly divergent polioviruses (VDPV) derived from the oral poliovirus vaccine (OPV) from Sabin strains, like wild polioviruses, are capable of prolonged transmission and neuropathology. This is mainly shown for VDPV type 2. Here we describe a molecular-epidemiological investigation of a case of VDPV type 3 circulation leading to paralytic poliomyelitis in a child in an orphanage, where OPV has not been used. Samples of feces and blood serum from the patient and 52 contacts from the same orphanage were collected twice and investigated. The complete genome sequencing was performed for five polioviruses isolated from the patient and three contact children. The level of divergence of the genomes of the isolates corresponded to approximately 9-10 months of evolution. The presence of 61 common substitutions in all isolates indicated a common intermediate progenitor. The possibility of VDPV3 transmission from the excretor to susceptible recipients (unvaccinated against polio or vaccinated with inactivated poliovirus vaccine, IPV) with subsequent circulation in a closed children's group was demonstrated. The study of the blood sera of orphanage residents at least twice vaccinated with IPV revealed the absence of neutralizing antibodies against at least two poliovirus serotypes in almost 20% of children. Therefore, a complete rejection of OPV vaccination can lead to a critical decrease in collective immunity level. The development of new poliovirus vaccines that create mucosal immunity for the adequate replacement of OPV from Sabin strains is necessary.


Assuntos
Poliomielite/virologia , Poliovirus/fisiologia , Anticorpos Antivirais/sangue , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Orfanatos/estatística & dados numéricos , Poliomielite/sangue , Poliomielite/epidemiologia , Poliomielite/transmissão , Poliovirus/genética , Poliovirus/isolamento & purificação , Vacina Antipólio Oral/administração & dosagem , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/imunologia , Federação Russa/epidemiologia
13.
Biologicals ; 67: 75-80, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807609

RESUMO

Effective decontamination procedures are critical to the successful manufacture and control of poliovirus vaccines to minimize the risk to personnel and the environment. Polio viruses have been reported to be more resistant to disinfectants than many other viruses. We assessed the efficacy of sodium hypochlorite-containing disinfectants for decontamination for three poliovirus serotypes to implement decontamination procedures that are fully compliant with the WHO GAP III and Health authorities' requirements. A 10.4 log reduction was observed with a 0.63% sodium hypochlorite solution in a suspension with high protein and high poliovirus concentrations diluted 10-fold compared with a 6 log reduction in an undiluted sample. Treatment efficacy increased with sodium hypochlorite content and decreased with sample protein content. The surface tests showed that two 1-min treatments, 5-min apart, with a 0.63% Chl sodium hypochlorite solution effectively reduced the concentration of all poliovirus serotypes by 10 log10, irrespective of the protein and virus concentration in the sample. Sodium hypochlorite solutions lower than 0.52% were less effective for complete inactivation of poliovirus. In conclusion, we demonstrated that a high level of virus reduction (>10 log10) can be achieved with sodium hypochlorite solutions with poliovirus in suspension and dried on surfaces.


Assuntos
Descontaminação/métodos , Desinfetantes/farmacologia , Poliomielite/prevenção & controle , Poliovirus/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Humanos , Controle de Infecções/métodos , Poliomielite/virologia , Poliovirus/classificação , Poliovirus/fisiologia , Reprodutibilidade dos Testes , Sorogrupo , Soluções/farmacologia , Especificidade da Espécie , Carga Viral/efeitos dos fármacos
14.
J Appl Microbiol ; 129(6): 1530-1540, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32681543

RESUMO

AIMS: A continuous quench-flow (CQF) reactor was developed to collect samples at the reaction times of less than one second. The reactor is applied to determine ozone disinfection kinetics of poliovirus and to study whether EMA-qPCR can assess the viral infectivity after ozone disinfection. METHODS: Ozone disinfection of poliovirus was conducted in the developed CQF, and the disinfection kinetics were tested in the range of 0·7-5·0 s at ozone concentration of 0·08 and 0·25 mg l-1 . Inactivation, damage on viral genome and damage on capsid integrity were determined by plaque assay, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and ethidium monoazide treatment coupled with RT-qPCR (EMA-qPCR), respectively. RESULTS: By using CQF, 2·18 and 2·76 log10 reductions were observed at the reaction time of 0·7 s and ozone concentration of 0·08 and 0·25 mg l-1 , respectively, followed by tailing. Ozone disinfection kinetics of poliovirus 1 were better fit by the efficiency factor Hom model than by the Chick-Watson model, or the modified Chick-Watson model. Kinetics observed were similar between RT-qPCR and EMA-qPCR assays at the reaction times of <2·0 s and ozone concentrations of 0·08 and 0·25 mg l-1 . At reaction times > 5 s, viral concentration evaluated by EMA-qPCR was reduced in comparison to stable RT-qPCR results. Both assays still underestimated the virus inactivation. CONCLUSION: The simple developed reactor can be used to investigate viral ozone disinfection kinetics and to elucidate inactivation characteristics or mechanisms at very short exposure times. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed CQF reactor is beneficial for better understanding of virus inactivation by ozone, and the reactor can be used to better elucidate disinfection kinetics and mechanisms for future research. This work constitutes an important contribution to the existing knowledge of the application and limitation of the EMA/PMA-qPCR to assess virus infectivity after ozone disinfection.


Assuntos
Desinfecção , Ozônio/farmacologia , Poliovirus/efeitos dos fármacos , Poliovirus/fisiologia , Azidas , Capsídeo/efeitos dos fármacos , Desinfecção/métodos , Genoma Viral/efeitos dos fármacos , Cinética , Poliovirus/genética , Poliovirus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Ensaio de Placa Viral , Inativação de Vírus
15.
J Hematol Oncol ; 13(1): 76, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532329

RESUMO

Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness. CD155 has also been established as an immunomodulatory receptor, able to both activate NK cells through interactions with CD226 (DNAM-1) and CD96 and inhibit them through interaction with TIGIT. However, NK cell TIGIT expression has been shown to be upregulated in cancer, establishing CD155 as a predominantly inhibitory receptor within the context of GBM and other solid tumors, and rendering it of interest as a potential target for antigen-specific NK cell-based immunotherapy. This review will explore the function of CD155 within GBM as it relates to tumor migration and NK cell immunoregulation, as well as pre-clinical and clinical targeting of CD155/TIGIT and the potential that this pathway holds for the development of emerging NK cell-based immunotherapies.


Assuntos
Glioblastoma/terapia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Invasividade Neoplásica/imunologia , Receptores Virais/antagonistas & inibidores , Animais , Antígenos CD/imunologia , Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Antineoplásicos Imunológicos/uso terapêutico , Adesão Celular , Movimento Celular , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Células Matadoras Naturais/transplante , Camundongos , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica , Terapia Viral Oncolítica , Poliovirus/fisiologia , Vírus Reordenados/fisiologia , Receptores Imunológicos/imunologia , Receptores Imunológicos/fisiologia , Receptores Virais/imunologia , Rhinovirus/fisiologia , Microambiente Tumoral/imunologia
16.
Sci Rep ; 10(1): 7939, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409751

RESUMO

Enteroviruses support cell-to-cell viral transmission prior to their canonical lytic spread of virus. Poliovirus (PV), a prototype for human pathogenic positive-sense RNA enteroviruses, and picornaviruses in general, transport multiple virions en bloc via infectious extracellular vesicles, 100~1000 nm in diameter, secreted from host cells. Using biochemical and biophysical methods we identify multiple components in secreted microvesicles, including mature PV virions; positive-sense genomic and negative-sense replicative, template viral RNA; essential viral replication proteins; and cellular proteins. Using cryo-electron tomography, we visualize the near-native three-dimensional architecture of secreted infectious microvesicles containing both virions and a unique morphological component that we describe as a mat-like structure. While the composition of these mat-like structures is not yet known, based on our biochemical data they are expected to be comprised of unencapsidated RNA and proteins. In addition to infectious microvesicles, CD9-positive exosomes released from PV-infected cells are also infectious and transport virions. Thus, our data show that, prior to cell lysis, non-enveloped viruses are secreted within infectious vesicles that also transport viral unencapsidated RNAs, viral and host proteins. Understanding the structure and function of these infectious particles helps elucidate the mechanism by which extracellular vesicles contribute to the spread of non-enveloped virus infection.


Assuntos
Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/virologia , Poliovirus/fisiologia , Células HeLa , Humanos , Poliovirus/genética , RNA Viral/metabolismo
17.
Mater Sci Eng C Mater Biol Appl ; 112: 110890, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409045

RESUMO

Maghemite (Fe2O3-NPs) nanoparticles were synthesized by a convenient, green and cost effective method using aqueous fruit extracts of Hyphaene thebaica. Different techniques like FTIR, XRD, UV-Vis, Raman, HR-TEM, EDS. SAED, Zeta potential were used to establish the nature of Fe2O3-NPs, while the therapeutic properties were studied using different biological assays including antiviral, antibacterial, antifungal, antioxidant and enzyme inhibition assays. XRD pattern revealed sharp peaks and a crystalline nature of Fe2O3-NPs. HR-TEM revealed quasi-spherical and cuboidal morphologies, while the particle size in ~10 nm. FTIR indicated a sharp peak centered at ~444 cm-1 which is the characteristic FeO band vibration. SAED pattern indicated the crystalline nature while EDS also confirmed the synthesis of Fe2O3 NPs. Zeta potential was obtained in different solvents and physiological buffers indicating highest value in water (-26.5 mV) and lowest in DMSO (-15.8 mV). Tested bacterial strains, Bacillus subtilis was found to be inhibited significantly. Aspergillus flavus appeared to be susceptible to all of the tested concentration of Fe2O3 NPs. Maximum 40.78% FRSA was obtained at 400 µg/mL. Cell culture based studies on RD cells and L20B cells indicated reduction in viability of cells with increase concentration of Fe2O3 NPs. Moderate inhibition of polio virus-1 and polio virus-2 was observed, after culturing the virus in the L20B cells. Excellent Protein Kinase (PK) inhibition was revealed. Hemolytic potential and cytotoxic potential was indicated to be dose dependent. In conclusion, the present report for the first time reports the synthesis of Fe2O3 NPs from H. thebaica fruits and reveals their biomedical potential including antiviral potential.


Assuntos
Arecaceae/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Extratos Vegetais/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Arecaceae/metabolismo , Aspergillus flavus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Frutas/metabolismo , Química Verde , Hemólise/efeitos dos fármacos , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Oxirredução , Tamanho da Partícula , Poliovirus/efeitos dos fármacos , Poliovirus/fisiologia
18.
Virology ; 546: 20-24, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452414

RESUMO

Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown that bacteria promote oral infection with a variety of enteric viruses. However, it is unknown whether antibiotics have microbiota-independent antiviral effects for enteric viruses or whether antibiotics influence extra-intestinal, systemic infection. Here, we examined the effects of antibiotics on systemic enteric virus infection by performing intraperitoneal injections of either coxsackievirus B3 (CVB3) or poliovirus followed by quantification of viral titers. We found that antibiotic treatment reduced systemic infection for both viruses. Interestingly, antibiotics reduced CVB3 titers in germ-free mice, suggesting that antibiotic treatment alters CVB3 infection through a microbiota-independent mechanism. Overall, these data provide further evidence that antibiotics can have noncanonical effects on viral infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Coxsackievirus/microbiologia , Enterovirus/efeitos dos fármacos , Microbiota , Poliomielite/microbiologia , Poliovirus/efeitos dos fármacos , Animais , Infecções por Coxsackievirus/virologia , Enterovirus/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Poliomielite/virologia , Poliovirus/fisiologia
19.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852778

RESUMO

Enteric viruses infect the gastrointestinal tract, and bacteria can promote replication and transmission of several enteric viruses. Viruses can be inactivated by exposure to heat or bleach, but poliovirus, coxsackievirus B3, and reovirus can be stabilized by bacteria or bacterial polysaccharides, limiting inactivation and aiding transmission. We previously demonstrated that certain N-acetylglucosamine (GlcNAc)-containing polysaccharides can stabilize poliovirus. However, the detailed virus-glycan binding specificity and glycan chain length requirements, and thus the mechanism of virion stabilization, have been unclear. A previous limitation was our lack of defined-length glycans to probe mechanisms and consequences of virus-glycan interactions. Here, we generated a panel of polysaccharides and oligosaccharides to determine the properties required for binding and stabilization of poliovirus. Poliovirus virions are nonenveloped icosahedral 30-nm particles with 60 copies of each of four capsid proteins, VP1 to VP4. VP1 surrounds the 5-fold axis, and our past work indicates that this region likely contains the glycan binding site. We found that relatively short GlcNAc oligosaccharides, such as a six-unit GlcNAc oligomer, can bind poliovirus but fail to enhance virion stability. Virion stabilization required binding of long GlcNAc polymers of greater than 20 units. Our data suggest a model where GlcNAc polymers of greater than 20 units bind and bridge adjacent 5-fold axes, thus aiding capsid rigidity and stability. This study provides a deeper understanding of enteric virus-bacterial glycan interactions, which are important for virion environmental stability and transmission.IMPORTANCE Enteric viruses are transmitted through the fecal-oral route, but how enteric viruses survive in the environment is unclear. Previously, we found that bacterial polysaccharides enhance poliovirus stability against heat or bleach inactivation, but the specific molecular requirements have been unknown. Here, we showed that certain short-chain oligosaccharides can bind to poliovirus but do not increase virion stability. Long-chain polysaccharides bind and may bridge adjacent sites on the viral surface, thus increasing capsid rigidity and stability. This work defines the unique interactions of poliovirus and glycans, which provides insight into virion environmental stability and transmission.


Assuntos
Enterovirus/metabolismo , Oligossacarídeos/metabolismo , Poliovirus/fisiologia , Polissacarídeos , Vírion/fisiologia , Animais , Bactérias/metabolismo , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Lipopolissacarídeos/metabolismo , Células Vero
20.
Genes (Basel) ; 10(12)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775299

RESUMO

Using the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV) as our model system, we have shown that Lys-359 in motif-D functions as a general acid in the mechanism of nucleotidyl transfer. A K359H (KH) RdRp derivative is slow and faithful relative to wild-type enzyme. In the context of the KH virus, RdRp-coding sequence evolves, selecting for the following substitutions: I331F (IF, motif-C) and P356S (PS, motif-D). We have evaluated IF-KH, PS-KH, and IF-PS-KH viruses and enzymes. The speed and fidelity of each double mutant are equivalent. Each exhibits a unique recombination phenotype, with IF-KH being competent for copy-choice recombination and PS-KH being competent for forced-copy-choice recombination. Although the IF-PS-KH RdRp exhibits biochemical properties within twofold of wild type, the virus is impaired substantially for recombination in cells. We conclude that there are biochemical properties of the RdRp in addition to speed and fidelity that determine the mechanism and efficiency of recombination. The interwoven nature of speed, fidelity, the undefined property suggested here, and recombination makes it impossible to attribute a single property of the RdRp to fitness. However, the derivatives described here may permit elucidation of the importance of recombination on the fitness of the viral population in a background of constant polymerase speed and fidelity.


Assuntos
Substituição de Aminoácidos , Poliovirus/fisiologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Aptidão Genética , Células HeLa , Humanos , Modelos Moleculares , Poliovirus/enzimologia , Poliovirus/genética , RNA Polimerase Dependente de RNA/química , Recombinação Genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA