Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.059
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776134

RESUMO

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Assuntos
Polissacarídeos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Glicosilação , Animais , Suínos , Polissacarídeos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Receptores de Superfície Celular/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Envelope Viral/metabolismo
3.
Food Res Int ; 187: 114395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763655

RESUMO

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Assuntos
Antioxidantes , Chenopodium quinoa , Esterificação , Chenopodium quinoa/química , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Pectinas/química , Polissacarídeos/química , Prebióticos , Animais , Camundongos , Alimento Funcional , Células RAW 264.7 , NF-kappa B/metabolismo
4.
Food Res Int ; 187: 114428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763678

RESUMO

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Assuntos
Glucose , Metabolismo dos Lipídeos , Nanopartículas , Polissacarídeos , Rubus , Selênio , Humanos , Selênio/química , Células Hep G2 , Polissacarídeos/farmacologia , Polissacarídeos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Glucose/metabolismo , Nanopartículas/química , Rubus/química , Tamanho da Partícula , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
Carbohydr Polym ; 338: 122172, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763719

RESUMO

Polysaccharide-based hydrogels are promising for many biomedical applications including drug delivery, wound healing, and tissue engineering. We illustrate herein self-healing, injectable, fast-gelling hydrogels prepared from multi-reducing end polysaccharides, recently introduced by the Edgar group. Simple condensation of reducing ends from multi-reducing end alginate (M-Alg) with amines from polyethylene imine (PEI) in water affords a dynamic, hydrophilic polysaccharide network. Trace amounts of acetic acid can accelerate the gelation time from hours to seconds. The fast-gelation behavior is driven by rapid Schiff base formation and strong ionic interactions induced by acetic acid. A cantilever rheometer enables real-time monitoring of changes in viscoelastic properties during hydrogel formation. The reversible nature of these crosslinks (imine bonds, ionic interactions) provides a hydrogel with low toxicity in cell studies as well as self-healing and injectable properties. Therefore, the self-healing, injectable, and fast-gelling M-Alg/PEI hydrogel holds substantial promise for biomedical, agricultural, controlled release, and other applications.


Assuntos
Alginatos , Hidrogéis , Polissacarídeos , Alginatos/química , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Polissacarídeos/química , Polietilenoimina/química , Humanos , Reologia , Animais , Bases de Schiff/química , Injeções , Camundongos
6.
Carbohydr Polym ; 338: 122199, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763725

RESUMO

Deep eutectic solvents (DES) emerge as promising alternatives to conventional solvents, offering outstanding extraction capabilities, low toxicity, eco-friendliness, straightforward synthesis procedures, broad applicability, and impressive recyclability. DES are synthesized by combining two or more components through various synthesis procedures, such as heat-assisted mixing/stirring, grinding, freeze drying, and evaporation. Polysaccharides, as abundant natural materials, are highly valued for their biocompatibility, biodegradability, and sustainability. These versatile biopolymers can be derived from various natural sources such as plants, algae, animals, or microorganisms using diverse extraction techniques. This review explores the synthesis procedures of DES, their physicochemical properties, characterization analysis, and their application in polysaccharide extraction. The extraction optimization strategies, parameters affecting DES-based polysaccharide extraction, and separation mechanisms are comprehensively discussed. Additionally, this review provides insights into recently developed molecular guides for DES screening and the utilization of artificial neural networks for optimizing DES-based extraction processes. DES serve as excellent extraction media for polysaccharides from different sources, preserving their functional features. They are utilized both as extraction solvents and as supporting media to enhance the extraction abilities of other solvents. Continued research aims to improve DES-based extraction methods and achieve selective, energy-efficient processes to meet the demands of this expanding field.


Assuntos
Solventes Eutéticos Profundos , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Solventes Eutéticos Profundos/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Animais , Solventes/química , Fracionamento Químico/métodos , Plantas/química
7.
J Mass Spectrom ; 59(6): e5034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726698

RESUMO

Glycosylation is an incredibly common and diverse post-translational modification that contributes widely to cellular health and disease. Mass spectrometry is the premier technique to study glycoproteins; however, glycoproteomics has lagged behind traditional proteomics due to the challenges associated with studying glycosylation. For instance, glycans dissociate by collision-based fragmentation, thus necessitating electron-based fragmentation for site-localization. The vast glycan heterogeneity leads to lower overall abundance of each glycopeptide, and often, ion suppression is observed. One of the biggest issues facing glycoproteomics is the lack of reliable software for analysis, which necessitates manual validation and serves as a massive bottleneck in data processing. Here, I will discuss each of these challenges and some ways in which the field is attempting to address them, along with perspectives on how I believe we should move forward.


Assuntos
Glicômica , Glicoproteínas , Espectrometria de Massas , Proteômica , Proteômica/métodos , Glicômica/métodos , Espectrometria de Massas/métodos , Glicoproteínas/análise , Glicoproteínas/química , Humanos , Glicosilação , Polissacarídeos/análise , Polissacarídeos/química , Glicopeptídeos/análise , Glicopeptídeos/química , Software , Processamento de Proteína Pós-Traducional , Animais
8.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731484

RESUMO

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Assuntos
Antioxidantes , Emulsificantes , Emulsões , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Emulsões/química , Emulsificantes/química , Emulsificantes/farmacologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Química Verde , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Fabaceae/química , Masculino , Tamanho da Partícula , Movimento Celular/efeitos dos fármacos
9.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731509

RESUMO

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Assuntos
Cápsulas , Composição de Medicamentos , Óleos Voláteis , Proteínas de Plantas , Polissacarídeos , Salvia , Sementes , Vicia faba , Polissacarídeos/química , Sementes/química , Vicia faba/química , Composição de Medicamentos/métodos , Óleos Voláteis/química , Proteínas de Plantas/química , Salvia/química , Cápsulas/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
10.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731534

RESUMO

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Assuntos
Proliferação de Células , Polissacarídeos , Neoplasias Gástricas , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Peso Molecular , Caryophyllaceae/química
11.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
12.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731576

RESUMO

In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.


Assuntos
Fibras na Dieta , Fibras na Dieta/análise , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solubilidade , Celulase/química , Celulase/metabolismo , Peso Molecular , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação
13.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731598

RESUMO

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Assuntos
Abelmoschus , Antioxidantes , Extratos Vegetais , Raízes de Plantas , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Higiene da Pele/métodos , Ramnose/química , Galactose , Ácidos Hexurônicos/química , Fenóis/química , Fenóis/análise , Fenóis/farmacologia , Humanos
14.
Food Res Int ; 186: 114371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729729

RESUMO

In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.


Assuntos
Emulsões , Lactobacillus plantarum , Polissacarídeos , Probióticos , Proteínas de Soja , Peixe-Zebra , Proteínas de Soja/química , Animais , Polissacarídeos/química , Lactobacillus plantarum/metabolismo , Glycine max/química , Viscosidade
15.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711081

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Assuntos
Fermentação , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Biomassa , Técnicas de Cultura Celular por Lotes , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese
16.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732217

RESUMO

The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules. In this paper we analysed the efficacy of Microbial-Polysaccharides (M-PS) derived from mature muds obtained at different maturation temperatures, both within and outside the codified traditional mud maturation range. M-PSs were extracted from six mature muds produced by five spas of the Euganean Thermal District and investigated for their chemical properties, monosaccharide composition and in vivo anti-inflammatory potential, using the zebrafish model organism. Additionally, mature muds were characterized for their microbiota composition using Next-Generation Sequencing. The results showed that all M-PSs exhibit similar anti-inflammatory potential, referable to their comparable chemical composition. This consistency was observed despite changes in cyanobacteria populations, suggesting a possible role of the entire microbial community in shaping the properties of these biomolecules. These findings highlight the importance of scientific research in untangling the origins of the therapeutic efficacy of Euganean Thermal muds in the treatment of chronic inflammatory conditions.


Assuntos
Anti-Inflamatórios , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Itália , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Microbiota/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Peloterapia
17.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732527

RESUMO

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Assuntos
Microbioma Gastrointestinal , Hippophae , Polissacarídeos , Animais , Hippophae/química , Polissacarídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/microbiologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/metabolismo , Sulfato de Dextrana , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Frutas/química , Ácidos Graxos Voláteis/metabolismo
18.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732552

RESUMO

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Echinacea , Microbioma Gastrointestinal , NF-kappa B , Polissacarídeos , Receptor 4 Toll-Like , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Echinacea/química , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico
19.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732614

RESUMO

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Estresse Oxidativo , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Polissacarídeos/farmacologia , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células HT29 , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico
20.
Biomacromolecules ; 25(5): 3122-3130, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696355

RESUMO

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Assuntos
Dextranos , Peptídeos , Polimerização , Dextranos/química , Peptídeos/química , Peptídeos/síntese química , Polímeros/química , Polímeros/síntese química , Óxidos N-Cíclicos/química , Anidridos/química , Polissacarídeos/química , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA