Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Eur J Pharm Sci ; 200: 106844, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38977205

RESUMO

Repaglinide (RPG) belongs to the class of drugs known as meglitinides and is used for improving and maintaining glycemic control in the treatment of patients with Type 2 diabetes. RPG is a Class II drug (BCS) because of its high permeability and low water solubility. It also undergoes hepatic first-pass metabolism. The oral bioavailability of RPG is low (about 56 %) due to these drawbacks. Our aim in this study is to prepare two different nano-sized drug carrier systems containing RPG (nanoparticle: RPG-PLGA-Zein-NPs or nanoemulsion: RPG-NE) and to carry out a pharmacokinetic study for these formulations. We prepared NPs using PLGA and Zein. In addition, a single NE formulation was developed using Tween 80 and Pluronic F68 as surfactants and Labrasol as co-surfactant. The droplet size values of the blank-NE and RPG-NE formulations were found to be less than 120 nm. The mean particle sizes of blank-Zein-PLGA-NPs and RPG-Zein-PLGA-NPs were less than 260 nm. The Cmax and tmax values of RPG-Zein-PLGA-NPs and RPG-NE (523 ± 65 ng/mL and 770 ± 91 ng/mL; 1.41 ± 0.46 h and 1.61 ± 0.37 h, respectively) were meaningfully higher than those of free RPG (280 ± 33 ng/mL; 0.72 ± 0.28 h) (p < 0.05). The AUC0-∞ values calculated for RPG-Zein-PLGA-NPs and RPG-NE were approximately 4.04 and 5.05 times higher than that calculated for free RPG. These nanosized drug delivery systems were useful in increasing the oral bioavailability of RPG. Moreover, the NE formulation was more effective than the NP formulation in improving the oral bioavailability of RPG (p < 0.05).


Assuntos
Carbamatos , Emulsões , Hipoglicemiantes , Nanopartículas , Piperidinas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Carbamatos/farmacocinética , Carbamatos/química , Carbamatos/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Masculino , Piperidinas/farmacocinética , Piperidinas/administração & dosagem , Piperidinas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Tamanho da Partícula , Ratos , Zeína/química , Zeína/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Disponibilidade Biológica , Tensoativos/química , Tensoativos/farmacocinética , Ratos Sprague-Dawley , Ratos Wistar , Poloxâmero/química , Poloxâmero/farmacocinética , Glicerídeos/química , Glicerídeos/farmacocinética , Composição de Medicamentos/métodos
2.
Biomed Chromatogr ; 38(8): e5901, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816948

RESUMO

Oral bioavailability of glibenclamide (Glb) was appreciably improved by the formation of an amorphous solid dispersion with Poloxamer-188 (P-188). Poloxamer-188 substantially enhanced the solubility and thereby the dissolution rate of the biopharmaceutics classification system (BCS) class II drug Glb and simultaneously exhibited a better stabilizing effect of the amorphous solid dispersion prepared by the solvent evaporation method. The physical state of the dispersed Glb in the polymeric matrix was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscope and Fourier transform infrared studies. In vitro drug release in buffer (pH 7.2) revealed that the amorphous solid dispersion at a Glb-P-188 ratio of 1:6 (SDE4) improved the dissolution of Glb by 90% within 3 h. A pharmacokinetic study of the solid dispersion formulation SDE4 in Wistar rats showed that the oral bioavailability of the drug was greatly increased as compared with the market tablet formulation, Daonil®. The formulation SDE4 resulted in an AUC0-24h ~2-fold higher. The SDE4 formulation was found to be stable during the study period of 6 months.


Assuntos
Disponibilidade Biológica , Glibureto , Poloxâmero , Ratos Wistar , Animais , Glibureto/farmacocinética , Glibureto/química , Glibureto/sangue , Glibureto/administração & dosagem , Ratos , Masculino , Poloxâmero/química , Poloxâmero/farmacocinética , Estabilidade de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Varredura Diferencial de Calorimetria , Solubilidade
3.
Biomed Chromatogr ; 36(2): e5265, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34648212

RESUMO

Poloxamer (PL)188 is a commonly used pharmaceutical excipient with unique physicochemical properties. In this study, an MSALL quantitative method for the determination of PL188 in rat plasma by UHPLC-Q-TOF/MS was developed and validated. PL188 was analyzed on PLRP-S reversed-phase column (50 × 4.6 mm, 8 µm, 1,000 Å) with mobile phase 0.1% formic acid-water and 0.1% formic acid in acetonitrile-isopropanol (2:3, v/v). The liner range was 0.1-10.0 µg/ml. A pharmacokinetic study was performed on rats at a dose of 5 mg/kg by intravenous injection. The pharmacokinetic parameters of intravenous injection were as follows: half-life was 2.0 ± 1.1 h, volume of distribution was 5.1 ± 3.2 L/kg, area under the concentration-time curve was 3.0 ± 0.6 µg/L h and clearance was 1.7 ± 0.3 L/h/kg. The results indicated that PL188 could be rapidly distributed to tissues with a high clearance rate. This study can provide a good reference for the further study of PL188.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Poloxâmero/análise , Poloxâmero/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Limite de Detecção , Modelos Lineares , Masculino , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
4.
J Sep Sci ; 44(20): 3822-3829, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435744

RESUMO

Poloxamer is a commonly used pharmaceutical excipient. It is a high molecular polymer formed using polypropylene oxide and polyethylene oxide units. Specifically, poloxamer 124 is one of the smaller molecular weight in the poloxamer series; however, its pharmacokinetic behaviors in vivo are still unclear. In this study, a method for quantifying poloxamer 124 in rat plasma through ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was developed. The intravenous dosage of PL124 was 10 mg/kg. Plasma was collected at different times. The calibration curve was linear in the range of 0.1-5 µg/mL for the poloxamer 124 (r ≥ 0.9956) with the lower limit of quantitation of 0.1 µg/ml. The relative standard deviation of the intraday and interday precisions was below 8.0%, and the relative error of the accuracy was within ±12.0%. The extraction recovery, matrix effect, and stability were satisfactory in rat plasma. The validated method was successfully applied to a pharmacokinetic study of poloxamer 124 in rats. Results indicated that poloxamer 124 could be rapidly absorbed and eliminated through caudal vein injection. This study is helpful for the further study of poloxamer 124.


Assuntos
Poloxâmero/análise , Poloxâmero/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
5.
J Biomater Appl ; 35(9): 1109-1118, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33632005

RESUMO

Monoolein cubic phase immobilizing hydrophobically modified gelatin (HmGel) in its water channel was prepared by a melt-hydration method. The cubic phase was micronized into cubosomes by using hydrophobically modified quaternized cellulose nanofiber (HmQCNF) as a stabilizer. The phase transition temperature of the cubic phase was about 68-70 °C. Small angle X-ray diffraction revealed that HmGel-loaded cubosome stabilized with HmCNF was a diamond type of cubic phase. HmGel-loaded cubosomes stailized with HmQCNF were dependent on the pH value in terms of the release of their payload (i.e, methylene blue) much more strongly than HmGel-loaded cubosomes stabilized with Pluronic F127.


Assuntos
Corantes/farmacocinética , Gelatina/química , Nanofibras/química , Varredura Diferencial de Calorimetria , Celulose/química , Corantes/química , Portadores de Fármacos/química , Glicerídeos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Azul de Metileno/química , Azul de Metileno/farmacocinética , Microscopia/métodos , Poloxâmero/química , Poloxâmero/farmacocinética , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
6.
Int J Pharm ; 595: 120245, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484925

RESUMO

Resveratrol is a very promising anti-oxidant drug candidate with low oral bioavailability due to its intrinsic poor water solubility, intestinal efflux and metabolization mechanisms. Resveratrol solubility high-throughput screening with different carriers was performed showing an enhancement above 2000-fold with Soluplus® and Tween® 80. The former was selected as a carrier at the ratio of resveratrol: Soluplus® (1:2). Then, third-generation solid dispersions were developed with Gelucire® and poloxamer 407 at 5 and 15% to resveratrol: Soluplus® (1:2). All formulations enhanced solubility around 2-fold when compared to resveratrol: Soluplus® (1:2) solid dispersion. Caco-2 cells permeability studies showed that both surfactants increased drug permeability and the fraction recovered (2-fold) suggesting that these could reduce efflux mechanism and metabolism. Formulation with 15% poloxamer 407 demonstrated most promising results and was selected for further studies. In in vivo studies, resveratrol:Soluplus®: poloxamer 407 (1:2-15%) third generation solid dispersion presented an AUCo-t of 279 ± 54 ng.h/mL and a Cmax of 134 ± 78 ng/mL, 2.5 fold higher than solid dispersion without poloxamer 407. This work reports the development of third-generation solid dispersion that significantly improved resveratrol bioavailability. This was accomplished by an increased solubility and most probably by reducing intestinal efflux and metabolism mechanisms.


Assuntos
Antioxidantes/farmacocinética , Composição de Medicamentos/métodos , Poloxâmero/química , Polietilenoglicóis/química , Polivinil/química , Resveratrol/farmacocinética , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Disponibilidade Biológica , Células CACO-2 , Varredura Diferencial de Calorimetria , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Masculino , Microscopia Eletrônica de Varredura , Permeabilidade , Poloxâmero/administração & dosagem , Poloxâmero/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polivinil/administração & dosagem , Polivinil/farmacocinética , Ratos , Ratos Wistar , Resveratrol/administração & dosagem , Resveratrol/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Mol Pharm ; 18(3): 952-965, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400546

RESUMO

Pharmacokinetic (PK) profiles of a range of bedaquiline (BDQ) long-acting injectable (LAI) microsuspensions in rats after parenteral (i.e., intramuscular and subcutaneous) administration were correlated with the in vitro intrinsic dissolution rate (IDR) and thermodynamic solubility of BDQ in media varying in surfactant type and concentration to better understand the impact of different nonionic surfactants on the in vivo performance of BDQ LAI microsuspensions. All LAI formulations had a similar particle size distribution. The investigated surfactants were d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), poloxamer 338, and poloxamer 188. Furthermore, the relevance of medium complexity by using a biorelevant setup to perform in vitro measurements was assessed by comparing IDR and thermodynamic solubility results obtained in biorelevant media and formulation vehicle containing different surfactants in varying concentrations. In the presence of a surfactant, both media could be applied to obtain in vivo representative dissolution and solubility data because the difference between the biorelevant medium and formulation vehicle was predominantly nonsignificant. Therefore, a more simplistic medium in the presence of a surfactant was preferred to obtain in vitro measurements to predict the in vivo PK performance of LAI aqueous suspensions. The type of surfactant influenced the PK profiles of BDQ microsuspensions in rats, which could be the result of a surfactant effect on the IDR and/or thermodynamic solubility of BDQ. Overall, two surfactant groups could be differentiated: TPGS and poloxamers. Most differences between the PK profiles (i.e., maximum concentration observed, time of maximum concentration observed, and area under the curve) were observed during the first 21 days postdose, the time period during which particles in the aqueous suspension are expected to dissolve.


Assuntos
Diarilquinolinas/química , Diarilquinolinas/farmacocinética , Suspensões/química , Suspensões/farmacocinética , Água/química , Animais , Química Farmacêutica/métodos , Excipientes/química , Excipientes/farmacocinética , Masculino , Poloxâmero/química , Poloxâmero/farmacocinética , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química , Tensoativos/farmacocinética , Termodinâmica , Vitamina E/química , Vitamina E/farmacocinética
8.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992931

RESUMO

We previously designed an ophthalmic dispersion containing indomethacin nanocrystals (IMC-NCs), showing that multiple energy-dependent endocytoses led to the enhanced absorption of drugs from ocular dosage forms. In this study, we attempted to prepare Pluronic F-127 (PLF-127)-based in situ gel (ISG) incorporating IMC-NCs, and we investigated whether the instillation of the newly developed ISG incorporating IMC-NCs prolonged the precorneal resident time of the drug and improved ocular bioavailability. The IMC-NC-incorporating ISG was prepared using the bead-mill method and PLF-127, which yielded a mean particle size of 50-150 nm. The viscosity of the IMC-NC-incorporating ISG was higher at 37 °C than at 10 °C, and the diffusion and release of IMC-NCs in the IMC-NC-incorporating ISG were decreased by PLF-127 at 37 °C. In experiments using rabbits, the retention time of IMC levels in the lacrimal fluid was enhanced with PLF-127 in the IMC-NC-incorporating ISG, whereby the IMC-NC-incorporating ISG with 5% and 10% PLF-127 increased the transcorneal penetration of the IMCs. In contrast to the results with optimal PLF-127 (5% and 10%), excessive PLF-127 (15%) decreased the uptake of IMC-NCs after instillation. In conclusion, we found that IMC-NC-incorporating ISG with an optimal amount of PLF-127 (5-10%) resulted in higher IMC corneal permeation after instillation than that with excessive PLF-127, probably because of the balance between higher residence time and faster diffusion of IMC-NCs on the ocular surface. These findings provide significant information for developing ophthalmic nanomedicines.


Assuntos
Córnea/metabolismo , Indometacina , Nanopartículas , Poloxâmero , Animais , Indometacina/química , Indometacina/farmacocinética , Indometacina/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Permeabilidade , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/farmacologia , Coelhos
9.
Eur J Pharm Biopharm ; 154: 8-17, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32634569

RESUMO

An acid-base neutralization technique has generated interest for the ability to achieve an enhanced dissolution of pH-dependent weakly basic or acidic poorly water-soluble drugs. However, the underlying nanonization mechanism, following acid-base neutralization, requires further elucidation. We hypothesized that the nanosuspensions (NSPs) via nanonization of drug particles could be attributed to the "salt-induced effect" and surfactant-driven micellization after acid-base neutralization. Rebamipide (RBM) and valsartan (VAL) were chosen as model drugs owing to poor water solubility and pH-dependent aqueous solubility. The drug NSP was rapidly obtained via salt formation (NaCl) after neutralization of the drug in basic NaOH solution and poloxamer 407 (POX 407) in acidic HCl solution. The NSP surrounded by NaCl salt was further stabilized by POX 407. The resulting NaCl salt modulated the critical micelle aggregation of POX 407, stabilizing the drug-loaded NSP in a cage of salt and micellar surfactant. In non-assisted homogenization, size analysis indicated the relationship between salt concentration and size reduction. Fourier transform infrared (FTIR) spectra revealed that the existence of hydrogen bonding between the drug and surfactant after neutralization, attributed to NSP size reduction. Changes in drug crystallinity to the nano-amorphous state were confirmed by powder X-ray diffraction (PXRD). Overall, the salt-induced drug NSP synergistically enhanced the dissolution rate, narrowing a gap between drug dissolution profiles in different pH environments.


Assuntos
Química Farmacêutica/métodos , Nanopartículas/química , Nanotecnologia/métodos , Poloxâmero/síntese química , Cloreto de Sódio/síntese química , Água/metabolismo , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Nanopartículas/metabolismo , Tamanho da Partícula , Poloxâmero/farmacocinética , Cloreto de Sódio/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Suspensões/síntese química , Suspensões/farmacocinética , Difração de Raios X/métodos
10.
Biomater Sci ; 8(12): 3392-3403, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32377654

RESUMO

The use of nanoscale materials (NMs) could cause problems such as cytotoxicity, genomic aberration, and effects on human health, but the impacts of NM exposure during pregnancy remain uncharacterized in the context of clinical applications. It was sought to determine whether nanomaterials pass through the maternal-fetal junction at any stage of pregnancy. Quantum dots (QDs) coated with heparinized Pluronic 127 nanogels and polyethyleneimine (PEI) were administered to pregnant mice. The biodistribution of QDs, as well as their biological impacts on maternal and fetal health, was evaluated. Encapsulation of QDs with a nanogel coating produces a petal-like nanotracer (PNt), which could serve as a nano-carrier of genes or drugs. PNts were injected through the tail vein and accumulated in the liver, kidneys, and lungs. QD accumulation in reproductive organs (uterus, placenta, and fetus) differed among phases of pregnancy. In phase I (7 days of pregnancy), the QDs did not accumulate in the placenta or fetus, but by phase III (19 days) they had accumulated at high levels in both tissues. Karyotype analysis revealed that the PNt-treated pups did not have genetic abnormalities when dams were treated at any phase of pregnancy. PNts have the potential to serve as carriers of therapeutic agents for the treatment of the mother or fetus and these results have a significant impact on the development and application of QD-based NPs in pregnancy.


Assuntos
Portadores de Fármacos/administração & dosagem , Heparina/administração & dosagem , Poloxâmero/administração & dosagem , Polietilenoimina/administração & dosagem , Pontos Quânticos/administração & dosagem , Animais , Portadores de Fármacos/farmacocinética , Feminino , Heparina/farmacocinética , Humanos , Cariótipo , Troca Materno-Fetal , Células-Tronco Mesenquimais , Camundongos Endogâmicos ICR , Poloxâmero/farmacocinética , Polietilenoimina/farmacocinética , Gravidez , Distribuição Tecidual
11.
Colloids Surf B Biointerfaces ; 193: 111078, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32422561

RESUMO

Surfactants can improve the hydrophobicity of poorly water-soluble drugs and increase the stability of microparticles by reducing surface tension. This study describes that surfactant-engineered florfenicol instant microparticles (FIMs) increase bioavailability through a micellar solubilization mechanism. The FIMs were prepared by a modified emulsification method, and the optimal prescription was obtained by a combination of single factor investigation and response surface methodology. The microparticles prepared in this study reduce the polymer materials while increasing the drug content. FIM has a smaller particle size and modification of poloxamer, resulting in better solubility and higher bioavailability. The in vitro solubility of FIM is 1.43 times higher than that of the bulk drug, and the dissolution equilibrium can be achieved in 10 minutes. Compared with florfenicol, FIM showed a decrease in Tmax in the plasma concentration curve, with a peak concentration of 1.43 times and an area of 1.41 times. Considering the advantages of in vitro/in vivo performance and ease of preparation, FIMs may have great application prospects in pharmacy research.


Assuntos
Poloxâmero/farmacocinética , Tianfenicol/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Tamanho da Partícula , Poloxâmero/administração & dosagem , Poloxâmero/química , Coelhos , Solubilidade , Propriedades de Superfície , Tianfenicol/administração & dosagem , Tianfenicol/sangue , Tianfenicol/farmacocinética
12.
Br J Cancer ; 123(3): 369-377, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457364

RESUMO

BACKGROUND: Minimally invasive intratumoural administration of thermoresponsive hydrogels, that transition from liquid to gel in response to temperature, has been proposed as a potential treatment modality for solid tumours. The aim of this study was to assess the inherent cytotoxicity of a poloxamer-based thermoresponsive hydrogel in a murine xenograft model of lung cancer. METHODS: In vitro viability assessment was carried out in a lung cancer (A549) and non-cancerous (Balb/c 3T3 clone A31) cell line. Following intratumoural administration of saline or the thermoresponsive hydrogel to an A549 xenograft model in female Athymic Nude-Foxn1nu mice (n = 6/group), localisation was confirmed using IVIS imaging. Tumour volume was assessed using callipers measurements over 14 days. Blood serum was analysed for liver and kidney damage and ex vivo tissue samples were histologically assessed. RESULTS: The thermoresponsive hydrogel demonstrated a dose-dependent cancer cell-specific toxicity in vitro and was retained in situ for at least 14 days in the xenograft model. Tumour volume increase was statistically significantly lower than saline treated control at day 14 (n = 6, p = 0.0001), with no associated damage of hepatic or renal tissue observed. CONCLUSIONS: Presented is a poloxamer-based thermoresponsive hydrogel, suitable for intratumoural administration and retention, which has demonstrated preliminary evidence of local tumour control, with minimal off-site toxicity.


Assuntos
Hidrogéis/administração & dosagem , Neoplasias Pulmonares/terapia , Poloxâmero/administração & dosagem , Células A549 , Técnicas de Ablação , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Hidrogéis/efeitos adversos , Hidrogéis/farmacocinética , Neoplasias Pulmonares/sangue , Camundongos , Poloxâmero/efeitos adversos , Poloxâmero/farmacocinética , Termodinâmica , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Pharm ; 581: 119279, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240806

RESUMO

Loading of gatifloxacin in contact lenses affects critical lens properties (optical and swelling) owing to drug precipitation in the contact lens matrix. The presence of Pluronic® F-68 in the packaging solution creates in-situ micelles in the contact lens to dissolve gatifloxacin precipitates and provide sustained drug release. The micelles further improved the drug uptake from the drug-packaging solution to create an equilibrium of drug between the lens matrix and the packaging solution. In this study, we optimized gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and gatifloxacin loading capacity as well as sustained drug delivery. Optimization of gatifloxacin-pluronic-loaded contact lens was carried out using a 32 factorial design by tailoring the concentration of Pluronic® F-68 in the packaging solution (X1) and the amount of gatifloxacin in the monomer solution (X2) to achieve the desired lens properties. The optimized batch (X1 = 0.3%w/v and X2 = 0.3%w/v) showed an optical transmittance of 92.84%, swelling of 92.36% and gatifloxacin loading capacity of 92.56 µg. The in vitro flux data of the optimized batch (GT-Pl-CL) showed sustained release up to 72 h, whereas soaked contact lenses (SM-CL) and direct gatifloxacin-loaded contact lenses (DL-CL) showed a sustained release up to 48 h. The in vivo gatifloxacin release data for rabbit tear fluid showed sustained release with a high gatifloxacin level for the GT-Pl-CL lens in comparison to the SM-CL and the eye drop solution. This study demonstrates the application of the 32 full factorial design to optimize gatifloxacin-pluronic-loaded contact lenses to achieve the desired optical transmittance, swelling, and drug loading capacity.


Assuntos
Lentes de Contato Hidrofílicas , Sistemas de Liberação de Medicamentos/métodos , Gatifloxacina/farmacocinética , Absorção Ocular/efeitos dos fármacos , Soluções Oftálmicas/farmacocinética , Poloxâmero/farmacocinética , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Excipientes/administração & dosagem , Excipientes/química , Excipientes/farmacocinética , Feminino , Gatifloxacina/administração & dosagem , Gatifloxacina/química , Masculino , Absorção Ocular/fisiologia , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/química , Poloxâmero/administração & dosagem , Poloxâmero/química , Coelhos
14.
Toxicology ; 436: 152437, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169474

RESUMO

Mild cognitive impairment in Parkinson's disease (PD-MCI) is considered as a nonmotor clinical symptom in Parkinson's disease (PD). Microglia-mediated inflammation contributes to cognitive function impairment. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic (DA) neurons degeneration in PD. But whether P188 could ameliorate cognitive impairment in PD is still illusive. In the present study, we showed in a mouse model that paraquat (10 mg/kg) and maneb (30 mg/kg) (P + M) treatment intraperitoneally twice a week for 6 consecutive weeks resulted in cognitive deficits and synapse loss in hippocampus, together with DA neuron damage in the substantia nigra pars compacta (SNpc). P188 (0.8 g/kg) injection via tail vein 30 min after P + M administration significantly restored DA neuron numbers in SNpc and synapse density in hippocampus, and alleviated P + M-mediated cognitive function impairment in novel object recognition task and morris water maze task (MWM). Pathological synapse loss might be attributed to increased microglial phagocytic activity and cell density, and P188 prevented P + M-induced phagocytic state changes of microglia, such as increase in cell body size and decrease in process length, and upregulated microglia abundance in hippocampus. Consistently, P188 attenuated P + M-mediated increased mRNA levels of microglia proliferation related CSF1r and CSF2ra, microglial engulfment associated CD68, ICAM1, and ICAM2, and pro-inflammatory IL-6, IL-1ß, CD11b, and TNF-α in hippocampus. Together, these findings suggest that the biocompatible polymer P188 blunts microglia activation which may promote synaptic loss and exacerbate cognitive function in a mouse model of PD-MCI.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Hipocampo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Parte Compacta da Substância Negra/efeitos dos fármacos , Poloxâmero/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Maneb , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural , Paraquat , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/psicologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Fagocitose/efeitos dos fármacos , Poloxâmero/farmacocinética , Reconhecimento Psicológico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
15.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093358

RESUMO

In this work, we developed a solid lipid nanoparticle (SLN) formulation with (+)-limonene 1,2-epoxide and glycerol monostearate (Lim-SLNs), stabilized with Poloxamer® 188 in aqueous dispersion to modify the release profile of the loaded monoterpene derivative. We also evaluated the role of SLNs in lipid peroxidation and cytotoxicity in a spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (the HaCaT cell line). For the cell viability assay, the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used. Lim-SLNs with a loading capacity and encapsulation efficiency of 0.39% and 63%, respectively, were produced by high pressure homogenization. A mean particle size of 194 ± 3.4 nm and polydispersity index of 0.244 were recorded for the loaded Lim-SLNs, as compared to 203 ± 1.5 nm (PI 0.213) for the non-loaded (blank) SLNs. The loading of the monoterpene derivative into glycerol monostearate SLNs fitted into the zero-order kinetics, and ameliorated both lipid peroxidation and cytotoxicity in a keratinocyte cell line. A promising formulation for antioxidant and anti-tumoral activities is here proposed.


Assuntos
Antioxidantes , Monoterpenos Cicloexânicos , Queratinócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Monoglicerídeos , Nanopartículas/química , Poloxâmero , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Linhagem Celular , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacocinética , Monoterpenos Cicloexânicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Monoglicerídeos/química , Monoglicerídeos/farmacocinética , Monoglicerídeos/farmacologia , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/farmacologia
16.
J Microencapsul ; 37(3): 220-229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32039640

RESUMO

Aim: A novel folated pluronic F127 (FA-F127) was synthesised, so as to modify liposomes with FA group on the surface, and evaluate the effects of FA-F127 modification on the properties of the modified liposomes.Methods: FA was linked to one end of pluronic F127, via the terminal OH group, to obtain FA-F127 and the structure was characterised. FA-F127 modified curcumin liposomes (cur-FA-F127-Lps) were prepared. The physicochemical characteristics of cur-FA-F127-Lps, including morphology and particle size, were studied. The in vitro cytotoxicity of cur-FA-F127-Lps against KB cancer cells was determined by MTT tests.Results: The effects of FA-F127 modification on the average particle size, PDI, curcumin encapsulation efficiency and microstructure were not significant. Compared with nonfolated F127 liposomes (cur-F127-Lps), cur-FA-F127-Lps exhibited significantly higher cytotoxicity towards KB cells.Conclusions: Folic acid modified liposomes provide a novel strategy to improve the chemotherapeutic efficacy of hydrophobic bioactive compounds.


Assuntos
Curcumina , Citotoxinas , Neoplasias/tratamento farmacológico , Poloxâmero , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Humanos , Lipossomos , Neoplasias/metabolismo , Neoplasias/patologia , Poloxâmero/análogos & derivados , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/farmacologia
17.
Mater Sci Eng C Mater Biol Appl ; 108: 110462, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923986

RESUMO

Breast cancer is a serious public health problem that causes thousands of deaths annually. Chemotherapy continues to play a central role in the management of breast cancer but is associated with extreme off-target toxicity. Therefore, treatments that directly target the tumor and display reduced susceptibility to resistance could improve the outcome and quality of life for patients suffering from this disease. Photodynamic therapy is a targeted treatment based on the use of light to activate a photosensitizer (PS) that then interacts with molecular oxygen and other biochemical substrates to generate cytotoxic levels of Reactive Oxygen Species. Currently approved PS also tends to have poor aqueous solubility that can cause problems when delivered intravenously. In order to circumvent this limitation, in this manuscript, we evaluate the potential of a phthalocyanine-loaded nanostructured lipid carrier (NLC) functionalized with folic acid (FA). To prepare the FA labelled NLC, the polymer PF127 was first esterified with FA and emulsified with an oil phase containing polyoxyethylene 40 stearate, capric/caprylic acid triglycerides, ethoxylated hydrogenated castor oil 40 and the PS zinc phthalocyanine. The resulting PS loaded FA-NLC had a hydrodynamic diameter of 180 nm and were stable in suspension for >90 days. Interestingly, the amount of singlet oxygen generated upon light activation for the PS loaded FA-NLC was substantially higher than the free PS, yet at a lower PS concentration. The PS was released from the NLC in a sustained manner with 4.13 ±â€¯0.58% and 27.7 ±â€¯3.16% after 30 min and 7 days, respectively. Finally, cytotoxicity assays showed that NLC in the concentrations of 09.1 µM of PS present non-toxic with >80 ±â€¯6.8% viable and after 90 s of the light-exposed the results show a statistically significant decrease in cell viability (57 ±â€¯4%). The results obtained allow us to conclude that the functionalized NLC incorporated with PS associated with the PDT technique have characteristics that make them potential candidates for the alternative treatment of breast cancer.


Assuntos
Portadores de Fármacos , Ácido Fólico , Indóis , Lipídeos , Nanoestruturas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Isoindóis , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Células MCF-7 , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Poloxâmero/química , Poloxâmero/farmacocinética , Poloxâmero/farmacologia
18.
Drug Deliv Transl Res ; 10(4): 1019-1031, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31858442

RESUMO

Non-invasive nose-to-brain delivery presents a competitive strategy for effective drug targeting. This strategy can potentially evade the blood-brain barrier (BBB) depending on the pathway the drug and/or drug/micelle composite travels, thereby allowing direct drug delivery to the brain. This delivery strategy was employed for lurasidone, a clinically USFDA-approved neurotherapeutic molecule in bipolar disorders and schizophrenia treatments. The aim of this study was to develop mixed polymeric micelles of lurasidone HCl (LH) for targeted brain delivery via intranasal route. Lurasidone HCl-loaded mixed micelles (LHMM) were prepared by solvent evaporation method and optimized by 32 factorial design to quantify the effects of excipients on micelle size and entrapment efficiency. Fourier transform infrared spectroscopy helped in scrutinizing drug-excipient interactions whereas transmission electron microscopy images showed particle size and shape. Further, LHMM and LHMM hydrogel were evaluated for in vitro diffusion, histopathology, ex vivo permeation, in vivo pharmacokinetics and stability studies. Optimized LHMM exhibited 175 nm particle size and 97.8% entrapment efficiency with improved in vitro drug diffusion (81%). LHMM hydrogel showed 79% ex vivo drug permeation without any significant signs of nasociliary toxicity to sheep nasal mucosa. Single dose in vivo pharmacokinetic studies showed improved therapeutic concentration of drug in the brain post intranasal administration with 9.5 ± 0.21 µg/mL Cmax and T1/2 of 19.1 ± 0.08 h as compared to pure drug. LHMM, when administered by intranasal route, demonstrated significant increase in the drug targeting efficiency as well as potential (%DTE and %DTP) of drug as compared to pure lurasidone. Thus, nanosized mixed micelles were useful in effective brain delivery of lurasidone HCl via intranasal route. Graphical abstract.


Assuntos
Antipsicóticos/administração & dosagem , Encéfalo/metabolismo , Cloridrato de Lurasidona/administração & dosagem , Micelas , Poloxâmero/administração & dosagem , Polietilenoglicóis/administração & dosagem , Administração Intranasal , Animais , Antipsicóticos/química , Antipsicóticos/farmacocinética , Encefalopatias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Cloridrato de Lurasidona/química , Cloridrato de Lurasidona/farmacocinética , Masculino , Mucosa Nasal/metabolismo , Poloxâmero/química , Poloxâmero/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ratos Wistar , Ovinos
19.
AAPS PharmSciTech ; 20(6): 251, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300911

RESUMO

Polymersomes are versatile nanostructures for protein delivery with hydrophilic core suitable for large biomolecule encapsulation and protective stable corona. Nonetheless, pharmaceutical products based on polymersomes are not available in the market, yet. Here, using commercially available copolymers, we investigated the encapsulation of the active pharmaceutical ingredient (API) L-asparaginase, an enzyme used to treat acute lymphoblastic leukemia, in polymersomes through a quality-by-design (QbD) approach. This allows for streamlining of processes required for improved bioavailability and pharmaceutical activity. Polymersomes were prepared by bottom-up (temperature switch) and top-down (film hydration) methods employing the diblock copolymers poly(ethylene oxide)-poly(lactic acid) (PEG45-PLA69, PEG114-PLA153, and PEG114-PLA180) and the triblock Pluronic® L-121 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEG5-PPO68-PEG5). Quality Target Product Profile (QTPP), Critical Quality Attributes (CQAs), Critical Process Parameters (CPPs), and the risk assessment were discussed for the early phase of polymersome development. An Ishikawa diagram was elaborated focusing on analytical methods, raw materials, and processes for polymersome preparation and L-asparaginase encapsulation. PEG-PLA resulted in diluted polymersomes systems. Nonetheless, a much higher yield of Pluronic® L-121 polymersomes of 200 nm were produced by temperature switch, reaching 5% encapsulation efficiency. Based on these results, a risk estimation matrix was created for an initial risk assessment, which can help in the future development of other polymersome systems with biological APIs nanoencapsulated.


Assuntos
Antineoplásicos/síntese química , Asparaginase/síntese química , Nanoestruturas/química , Poloxâmero/síntese química , Polietilenoglicóis/síntese química , Antineoplásicos/farmacocinética , Asparaginase/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Poloxâmero/farmacocinética , Polietilenoglicóis/farmacocinética , Propilenoglicóis/síntese química , Propilenoglicóis/farmacocinética
20.
Colloids Surf B Biointerfaces ; 181: 426-436, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176115

RESUMO

The current study was designed to enhance the brain bioavailability and to extract maximum therapeutic benefit from a novel antidepressant drug, agomelatine. For this purpose, a thermoresponsive in situ gel was prepared by dissolving 20% w/v of Poloxamer-407 in agomelatine containing nanoemulsion. To impart mucoadhesive property, 0.5% w/v concentration of chitosan was ensured in the final formulation, named as Ago-NE-gel+0.5%chitosan. The gelling point and mucoadhesive strength of Ago-NE-gel+0.5%chitosan were found to be 28 ± 1 °C, and 6246.27 dynes/cm2 respectively. The size of free micelles of Poloxamer-407 was recorded graphically at 18.43 ± 0.95 nm whereas the size of sterically stabilized Ago-NE was observed at 142.58 ± 4.21 nm. The viscosity and pH of Ago-NE-gel+0.5%chitosan were found to be 2439 ± 23 cP (at 35 ± 1 °C temperature) and 5.8 ± 0.2 respectively. The developed formulation was found safe on nasal mucosa during the toxicity study. CLSM based brain distribution study suggested that Ago-NE-gel+0.5%chitosan is more competent to deliver the drug into the brain as compared to agomelatine-suspension. After intranasal administration of Ago-NE-gel+0.5%chitosan in Wistar rats, the AUC0-8h in brain and plasma were found to be 1418.591 ± 71.87 and 473.901 ± 32.42 ng.h/ml respectively. The hypothesis conceived at the beginning of this research work was delivered as 2.82 folds enhanced bioavailability of agomelatine in the brain. The behavioral studies confirmed that the antidepressant activity of agomelatine can be improved by loading the drug into a mucoadhesive-nanoemulsion-gel system followed by its intranasal administration.


Assuntos
Acetamidas/farmacocinética , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Lipídeos/farmacocinética , Poloxâmero/farmacocinética , Acetamidas/química , Animais , Encéfalo/metabolismo , Coloides/química , Coloides/farmacocinética , Lipídeos/química , Microscopia Confocal , Tamanho da Partícula , Poloxâmero/química , Ratos , Ratos Wistar , Propriedades de Superfície , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA