Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.566
Filtrar
1.
Sci Rep ; 14(1): 23515, 2024 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384942

RESUMO

The presence of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds in beauty salons has raised concerns about potential health risks. This study aimed to measure the levels of BTEX compounds in the air of beauty salons in Lahijan, Iran and assess the associated health risks. Air samples were collected from 15 beauty salons, and the concentrations of BTEX compounds were measured according to 1501 NIOSH standard method. The results showed that the mean concentrations of benzene (20.62 µg/m3), toluene (18.3 µg/m3), ethylbenzene (38.36 µg/m3), and O and P-xylene (27.35, 23.6 µg/m3) were above the recommended levels. The indoor to outdoor ratios for benzene, toluene, ethylbenzene, O and P-xylene were 3.04, 2.36, 3.75, 4.89, and 6.54, respectively. Also, the toluene/benzene (T/B) ratio in indoor and outdoor was 20.9 and 2.68 respectively. Almost half of the technicians (49.12%) reported adverse health effects, including joint pain, itchy eyes and nose, and respiratory allergies. The IARC guideline suggests that there is a potential risk of cancer development for individuals in all salons with LCR values exceeding 10-6, but the HQ index values indicate no non-carcinogenic risk. The findings suggest that beauty salon workers and customers are at risk of developing health problems from exposure to BTEX compounds. Effective risk management strategies, such as proper ventilation, use of personal protective equipment, and substitution of harmful chemicals with safer alternatives, to minimize exposure and protect the health of salon workers and customers recommended.


Assuntos
Derivados de Benzeno , Exposição Ocupacional , Tolueno , Xilenos , Humanos , Derivados de Benzeno/análise , Derivados de Benzeno/efeitos adversos , Medição de Risco , Tolueno/análise , Tolueno/efeitos adversos , Xilenos/análise , Xilenos/toxicidade , Xilenos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Irã (Geográfico) , Benzeno/análise , Benzeno/toxicidade , Benzeno/efeitos adversos , Feminino , Adulto , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Monitoramento Ambiental , Masculino , Beleza , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/toxicidade
2.
Part Fibre Toxicol ; 21(1): 43, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39434148

RESUMO

Millions of United States (U.S.) troops deployed to the Middle East and Southwest Asia were exposed to toxic airborne hazards and/or open-air burn pits. Burn pit emissions contain particulate matter combined with toxic gasses and heavy metals. Ongoing research has demonstrated that exposures to the airborne hazards from military burn pits have profound and lasting health and wellness consequences. Research on the long-term health consequences of exposure to open burn pits has been limited. Work continues to understand the scope of the health impacts and the underlying pathobiology following exposures and to establish care standards. The U.S. Sergeant First Class Heath Robinson Honoring our Promise to Address Comprehensive Toxics (PACT) Act was signed into law August 2022. This act expands the benefits and services to U.S. Veterans exposed to toxicants, requires the Veterans Health Administration to provide toxic exposure screening, and supports increased research, education, and treatment due to toxic occupational exposures. This review highlights the state of the science related to military burn pit exposures research with an emphasis on pulmonary health. Clinical data demonstrate areas of reduced or delayed pulmonary ventilation and lung pathologies such as small airways scarring, diffuse collagen deposition and focal areas of ossification. Identification and characterization of foreign matter deposition in lung tissues are reported, including particulate matter, silica, titanium oxides, and polycyclic aromatic hydrocarbons. These data are consistent with toxic exposures and with the symptoms reported by post-deployment Veterans despite near-normal non-invasive pulmonary evaluations. On-going work toward new methods for non-invasive pulmonary diagnoses and disease monitoring are described. We propose various studies and databases as resources for clinical and health outcomes research. Pre-clinical research using different burn pit modeling approaches are summarized, including oropharyngeal aspiration, intranasal inhalation, and whole-body exposure chamber inhalation. These studies focus on the impacts of specific toxic substances as well as the effects of short-term and sustained insults over time on the pulmonary systems.


Assuntos
Exposição por Inalação , Militares , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Estados Unidos , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Animais , Queima de Resíduos a Céu Aberto
3.
Toxicol Ind Health ; 40(11): 596-604, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163360

RESUMO

This study aimed to estimate workers' occupational lifetime exposure to chrysotile and examine the respiratory symptoms and lung cancer risk. A total of 112 workers were interviewed about their occupational histories. Exposure modeling using information on the determinants of exposure was used to estimate chrysotile emissions. The cumulative lifetime exposure was then assessed for each worker. Respiratory symptoms were obtained using a validated questionnaire. Lung cancer mortality rate was also predicted using a model. Almost all the workers were male and young (mean age = 30 years, SD = 7). The estimated lifetime occupational chrysotile inhalation exposure ranged from 0.0001 to 0.0486 f/mL.years (median = 0.0018 f/mL.years, IQR = 0.486). A high prevalence of cough symptom (11.7%), and low estimated cancer risk (<1%) were reported. In conclusion, the lung cancer risk among our cohort of workers was at a low level because of lower cumulative lifetime occupational chrysotile exposure.


Assuntos
Asbestos Serpentinas , Exposição por Inalação , Neoplasias Pulmonares , Exposição Ocupacional , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/induzido quimicamente , Malásia/epidemiologia , Adulto , Asbestos Serpentinas/toxicidade , Exposição por Inalação/efeitos adversos , Feminino , Doenças Profissionais/epidemiologia , Doenças Profissionais/induzido quimicamente , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/toxicidade , Adulto Jovem , Inquéritos e Questionários , Fatores de Risco , Medição de Risco
4.
J Appl Toxicol ; 44(10): 1583-1594, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031654

RESUMO

Both nitric oxide (NO) and nitrogen dioxide (NO2) gasses are toxic to humans but are commonly found in industrial settings such as semiconductor manufacturing sites. Due to the spontaneous oxidation of NO to NO2 under ambient conditions, individuals working with NO may in fact be exposed to both gasses in the case of an accidental release. Unfortunately, most safety materials provided to NO users do not address the potential for associated NO2 toxicity, and, until now, models developed to predict health consequences following a release of NO have not appropriately considered the oxidation kinetics nor the toxicity of both NO and NO2 in their assessments. This paper describes an improved multi-module model that addresses these limitations and explores whether facilities using NO should consider adopting measures that can mitigate the simultaneous health effects of both gasses. The model predicts the morbidity (intoxication/injury), mortality (death), and treatment outcomes that may arise following an industrial NO release by first calculating the doses of both NO and NO2 received by exposed individuals and then applying newly defined toxicity parameters for NO and NO2 to assign dose-dependent probabilities for the onset of intoxication and/or death and the ability of appropriate treatment(s) to save lives. Modeling results indicate low risk to worker health in the likeliest release scenarios while identifying less likely situations that carry substantially higher risk. Moreover, these results indicate that risks to worker health can be mitigated with simple measures like maintaining reliable alarms, adequate ventilation, and on-site supplies of methylene blue, as well as encouraging quick responses by personnel. With appropriate parameterization, the improved modeling framework is generalizable to any chemical release, especially multi-hazard releases resulting from the conversion of one toxic compound into another under likely environmental conditions. By directly addressing the toxicities of multiple compounds, the improved model presents a more realistic picture of the potential health consequences of a chemical release. This generalizable framework for modeling of multi-hazard chemical releases can inform preparedness and risk mitigation strategies for NO release events.


Assuntos
Óxido Nítrico , Dióxido de Nitrogênio , Exposição Ocupacional , Óxido Nítrico/metabolismo , Humanos , Exposição Ocupacional/efeitos adversos , Dióxido de Nitrogênio/toxicidade , Saúde Ocupacional , Medição de Risco , Poluentes Ocupacionais do Ar/toxicidade
5.
Carcinogenesis ; 45(9): 630-641, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39046922

RESUMO

Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increases lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for 9 weeks (low deposition-LD and high deposition-HD) and then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume-induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose-response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo, the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with HD exposure, less overall lung lesions/tumors.


Assuntos
Cobre , Neoplasias Pulmonares , Soldagem , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Camundongos , Masculino , Exposição por Inalação/efeitos adversos , Humanos , Dano ao DNA/efeitos dos fármacos , Carcinógenos/toxicidade , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/toxicidade , Níquel/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Metilcolantreno/toxicidade
6.
Toxicology ; 506: 153874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955312

RESUMO

During the manufacture and use of aluminium (aluminum), inhalation exposure may occur. We reviewed the pulmonary toxicity of this metal including its toxicokinetics. The normal serum/plasma level based on 17 studies was 5.7 ± 7.7 µg Al/L (mean ± SD). The normal urine level based on 15 studies was 7.7 ± 5.3 µg/L. Bodily fluid and tissue levels during occupational exposure are also provided, and the urine level was increased in aluminium welders (43 ± 33 µg/L) based on 7 studies. Some studies demonstrated that aluminium from occupational exposure can remain in the body for years. Excretion pathways include urine and faeces. Toxicity studies were mostly on aluminium flakes, aluminium oxide and aluminium chlorohydrate as well as on mixed exposure, e.g. in aluminium smelters. Endpoints affected by pulmonary aluminium exposure include body weight, lung function, lung fibrosis, pulmonary inflammation and neurotoxicity. In men exposed to aluminium oxide particles (3.2 µm) for two hours, lowest observed adverse effect concentration (LOAEC) was 4 mg Al2O3/m3 (= 2.1 mg Al/m3), based on increased neutrophils in sputum. With the note that a similar but not statistically significant increase was seen during control exposure. In animal studies LOAECs start at 0.3 mg Al/m3. In intratracheal instillation studies, all done with aluminium oxide and mainly nanomaterials, lowest observed adverse effect levels (LOAELs) started at 1.3 mg Al/kg body weight (bw) (except one study with a LOAEL of ∼0.1 mg Al/kg bw). The collected data provide information regarding hazard identification and characterisation of pulmonary exposure to aluminium.


Assuntos
Alumínio , Exposição por Inalação , Pulmão , Exposição Ocupacional , Humanos , Alumínio/toxicidade , Alumínio/farmacocinética , Animais , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Toxicocinética , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/farmacocinética
7.
Part Fibre Toxicol ; 21(1): 28, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943182

RESUMO

BACKGROUND: Today, nanomaterials are broadly used in a wide range of industrial applications. Such large utilization and the limited knowledge on to the possible health effects have raised concerns about potential consequences on human health and safety, beyond the environmental burden. Given that inhalation is the main exposure route, workers exposed to nanomaterials might be at risk of occurrence of respiratory morbidity and/or reduced pulmonary function. However, epidemiological evidence regarding the association between cumulative exposure to nanomaterials and respiratory health is still scarce. This study focused on the association between cumulative exposure to nanomaterials and pulmonary function among 136 workers enrolled in the framework of the European multicentric NanoExplore project. RESULTS: Our findings suggest that, independently of lifelong tobacco smoking, ethnicity, age, sex, body mass index and physical activity habits, 10-year cumulative exposure to nanomaterials is associated to worse FEV1 and FEF25 - 75%, which might be consistent with the involvement of both large and small airway components and early signs of airflow obstruction. We further explored the hypothesis of a mediating effect via airway inflammation, assessed by interleukin (IL-)10, IL-1ß and Tumor Necrosis Factor alpha (TNF-α), all quantified in the Exhaled Breath Condensate of workers. The mediation analysis results suggest that IL-10, TNF-α and their ratio (i.e., anti-pro inflammatory ratio) may fully mediate the negative association between cumulative exposure to nanomaterials and the FEV1/FVC ratio. This pattern was not observed for other pulmonary function parameters. CONCLUSIONS: Safeguarding the respiratory health of workers exposed to nanomaterials should be of primary importance. The observed association between cumulative exposure to nanomaterials and worse pulmonary function parameters underscores the importance of implementing adequate protective measures in the nanocomposite sector. The mitigation of harmful exposures may ensure that workers can continue to contribute productively to their workplaces while preserving their respiratory health over time.


Assuntos
Exposição por Inalação , Pulmão , Nanoestruturas , Exposição Ocupacional , Humanos , Masculino , Nanoestruturas/toxicidade , Feminino , Exposição Ocupacional/efeitos adversos , Adulto , Exposição por Inalação/efeitos adversos , Pessoa de Meia-Idade , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Pulmão/imunologia , Pneumonia/induzido quimicamente , Volume Expiratório Forçado , Testes de Função Respiratória , Citocinas/metabolismo , Poluentes Ocupacionais do Ar/toxicidade , Europa (Continente)
8.
J Toxicol Environ Health A ; 87(19): 792-810, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38940434

RESUMO

Occupational exposure to welding fumes constitutes a serious health concern. Although the effects of fumes on the respiratory tract have been investigated, few apparent reports were published on their effects on the skin. The purpose of this study was to investigate the effects of exposure to welding fumes on skin cells, focusing on interleukin-24 (IL-24), a cytokine involved in the pathophysiology of skin conditions, such as atopic dermatitis and psoriasis. Treatment with welding fumes increased IL-24 expression and production levels in human dermal microvascular endothelial cells (HDMEC) which were higher than that in normal human epidermal keratinocytes. IL-24 levels in Trolox and deferoxamine markedly suppressed welding fume-induced IL-24 expression in HDMEC, indicating that oxidative stress may be involved in this cytokine expression. IL-24 released from HDMEC protected keratinocytes from welding fume-induced damage and enhanced keratinocyte migration. Serum IL-24 was higher in welding workers than in general subjects and was positively correlated with elevated serum levels of 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. In summary, welding fumes enhanced IL-24 expression in HDMEC, stimulating keratinocyte survival and migration. IL-24 expression in endothelial cells may act as an adaptive response to welding-fume exposure in the skin.


Assuntos
Movimento Celular , Sobrevivência Celular , Interleucinas , Queratinócitos , Regulação para Cima , Soldagem , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/efeitos adversos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/irrigação sanguínea , Regulação para Cima/efeitos dos fármacos
9.
J Hazard Mater ; 475: 134913, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880048

RESUMO

Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects. Surprisingly, we found high levels of PIs in indoor dust. Our analysis revealed comparable levels of PIs in dust from printing shops (geometric mean, GM: 1.33 ×103 ng/g) and control environments (GM: 874 ng/g), underscoring the widespread presence of PIs across various settings. Alarmingly, in dust samples from nail salons, PIs were detected at total concentrations ranging from 610 to 1.04 × 107 ng/g (GM: 1.87 ×105 ng/g), significantly exceeding those in the control environments (GM: 1.43 ×103 ng/g). Nail salon workers' occupational exposure to PIs through dust ingestion was estimated at 4.86 ng/kg body weight/day. Additionally, an in vitro simulated digestion test suggested that between 10 % and 42 % of PIs present in ingested dust could become bioaccessible to humans. This is the first study to report on PIs in the specific environments of nail salons and printing shops. This study highlights the urgent need for public awareness regarding the potential health risks posed by PIs to occupational workers, marking an important step towards our understanding of environmental pollution caused by PIs.


Assuntos
Poeira , Exposição Ocupacional , Poeira/análise , Exposição Ocupacional/análise , Humanos , Medição de Risco , Poluição do Ar em Ambientes Fechados/análise , Indústria da Beleza , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-38791822

RESUMO

The lifetime risk of silicosis associated with low-level occupational exposure to respirable crystalline silica remains unclear because most previous radiographic studies included workers with varying exposure concentrations and durations. This study assessed the prevalence of silicosis after lengthy exposure to respirable crystalline silica at levels ≤ 0.10 mg/m3. Vermont granite workers employed any time during 1979-1987 were traced and chest radiographs were obtained for 356 who were alive in 2017 and residing in Vermont. Work history, smoking habits and respiratory symptoms were obtained by interview, and exposure was estimated using a previously developed job-exposure matrix. Associations between radiographic findings, exposure, and respiratory symptoms were assessed by ANOVA, chi-square tests and binary regression. Fourteen workers (3.9%) had radiographic evidence of silicosis, and all had been employed ≥30 years. They were more likely to have been stone cutters or carvers and their average exposure concentrations and cumulative exposures to respirable crystalline silica were significantly higher than workers with similar durations of employment and no classifiable parenchymal abnormalities. This provides direct evidence that workers with long-term exposure to low-level respirable crystalline silica (≤0.10 mg/m3) are at risk of developing silicosis.


Assuntos
Exposição Ocupacional , Dióxido de Silício , Silicose , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/efeitos adversos , Silicose/epidemiologia , Silicose/etiologia , Exposição Ocupacional/efeitos adversos , Masculino , Vermont/epidemiologia , Pessoa de Meia-Idade , Adulto , Feminino , Seguimentos , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/efeitos adversos , Prevalência , Exposição por Inalação/efeitos adversos , Idoso
11.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597775

RESUMO

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Gasolina , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Gasolina/toxicidade , Adulto , Masculino , Turquia , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ensaio Cometa , Biomarcadores , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linfócitos/efeitos dos fármacos , Feminino , Mutagênicos/toxicidade , Benzeno/toxicidade , Benzeno/análise
12.
Arch Toxicol ; 98(7): 1991-2005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600397

RESUMO

Benzene is used worldwide as a major raw material in a number of industrial processes and also a potent airborne pollutant emitted from traffic exhaust fume. The present systematic review aimed to identify potential associations between genetic polymorphisms and occupational benzene-induced genotoxicity. For this purpose, a total of 22 selected studies were carefully analysed. Our results revealed a positive relation between gene polymorphism and genotoxicity in individuals exposed to benzene, since 17 studies (out of 22) observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes influencing, therefore, individuals' susceptibility to genomic damage induced by benzene. In other words, individuals with some genotypes may show increase or decrease DNA damage and/or higher or lower DNA-repair potential. As for the quality assessment, 17 studies (out of 22) were categorized as Strong or Moderate and, therefore, we consider our findings to be trustworthy. Taken together, such findings are consistent with the notion that benzene induces genotoxicity in mammalian cells being strongly dependent on the genetic polymorphism. Certainly, such findings are important for clarifying the role of biomarkers related to genotoxicity in human biomonitoring studies.


Assuntos
Benzeno , Dano ao DNA , Exposição Ocupacional , Polimorfismo Genético , Humanos , Benzeno/toxicidade , Exposição Ocupacional/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Mutagênicos/toxicidade
13.
Environ Res ; 250: 118515, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373547

RESUMO

Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.


Assuntos
Pulmão , Ratos Sprague-Dawley , Aço Inoxidável , Telomerase , Soldagem , Animais , Masculino , Ratos , Poluentes Ocupacionais do Ar/toxicidade , Exposição por Inalação/efeitos adversos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Aço Inoxidável/toxicidade , Telomerase/genética , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
14.
Environ Int ; 185: 108528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422874

RESUMO

BACKGROUND: Diesel exhaust and respirable dust exposures in the mining industry have not been studied in depth with respect to non-malignant respiratory disease including chronic obstructive pulmonary disease (COPD), with most available evidence coming from other settings. OBJECTIVES: To assess the relationship between occupational diesel exhaust and respirable dust exposures and COPD mortality, while addressing issues of survivor bias in exposed miners. METHODS: The study population consisted of 11,817 male workers from the Diesel Exhaust in Miners Study II, followed from 1947 to 2015, with 279 observed COPD deaths. We fit Cox proportional hazards models for the relationship between respirable elemental carbon (REC) and respirable dust (RD) exposure and COPD mortality. To address healthy worker survivor bias, we leveraged the parametric g-formula to assess effects of hypothetical interventions on both exposures. RESULTS: Cox models yielded elevated estimates for the associations between average intensity of REC and RD and COPD mortality, with hazard ratios (HR) corresponding to an interquartile range width increase in exposure of 1.46 (95 % confidence interval (CI): 1.12, 1.91) and 1.20 (95 % CI: 0.96, 1.49), respectively for each exposure. HRs for cumulative exposures were negative for both REC and RD. Based on results from the parametric g-formula, the risk ratio (RR) for COPD mortality comparing risk under an intervention eliminating REC to the observed risk was 0.85 (95 % CI: 0.55, 1.06), equivalent to an attributable risk of 15 %. The corresponding RR comparing risk under an intervention eliminating RD to the observed risk was 0.93 (95 % CI: 0.56, 1.31). CONCLUSIONS: Our findings, based on data from a cohort of nonmetal miners, are suggestive of an increased risk of COPD mortality associated with REC and RD, as well as evidence of survivor bias in this population leading to negative associations between cumulative exposures and COPD mortality in traditional regression analysis.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/toxicidade , Emissões de Veículos/análise , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Carbono/análise , Poeira/análise
15.
Int J Environ Health Res ; 34(9): 3126-3135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38146704

RESUMO

Workers in the iron casting industries are exposed to various chemicals, especially graphite in furnace process. This study aims to investigate the toxic effects of graphite particles on human lung cells. Particle characteristics were confirmed by electron microscope and light scattering. Cell viability and oxidative stress markers were measured. The expression of oxidative repair genes, namely OGG1, MTH1, and ITPA, was evaluated. The average particle size was determined to be 172.1 ± 11.96 nm. The median inhibition concentration (IC50) of graphite particles was 46.75 µg/mL. Notably, 25 and 50 µg/mL concentrations resulted in significant GSH depletion and MDA production. The high concentration of graphite particles (200 µg/mL) led to OGG1 suppression and increased MTH1 expression. Based on these findings, graphite exposure may induce toxicity in human lung cells by increasing oxidative stress. Further research is necessary to fully understand the mechanisms underlying graphite toxicity.


Assuntos
Sobrevivência Celular , Células Epiteliais , Grafite , Estresse Oxidativo , Tamanho da Partícula , Humanos , Grafite/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ferro/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/citologia , Células A549 , DNA Glicosilases/genética , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise , Metalurgia
16.
Environ Health Perspect ; 131(8): 87002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549095

RESUMO

BACKGROUND: The Diesel Exhaust in Miners Study (DEMS) was an important contributor to the International Agency for Research on Cancer reclassification of diesel exhaust as a Group I carcinogen and subsequent risk assessment. We extended the DEMS cohort follow-up by 18 y and the nested case-control study to include all newly identified lung cancer deaths and matched controls (DEMS II), nearly doubling the number of lung cancer deaths. OBJECTIVE: Our purpose was to characterize the exposure-response relationship with a focus on the effects of timing of exposure and exposure cessation. METHODS: We conducted a case-control study of lung cancer nested in a cohort of 12,315 workers in eight nonmetal mines (376 lung cancer deaths, 718 controls). Controls were selected from workers who were alive when the case died, individually matched on mine, sex, race/ethnicity, and birth year (within 5 y). Based on an extensive historical exposure assessment, we estimated respirable elemental carbon (REC), an index of diesel exposure, for each cohort member. Odds ratios (ORs) were estimated by conditional regression analyses controlling for smoking and other confounders. To evaluate time windows of exposure, we evaluated the joint OR patterns for cumulative REC within each of four preselected exposure time windows, <5, 5-9, 10-19, and ≥20 y prior to death/reference date, and we evaluated the interaction of cumulative exposure across time windows under additive and multiplicative forms for the joint association. RESULTS: ORs increased with increasing 15-y lagged cumulative exposure, peaking with a tripling of risk for exposures of ∼950 to<1,700 µg/m3-y [OR=3.23; 95% confidence interval (CI): 1.47, 7.10], followed by a plateau/decline among the heavily exposed (OR=1.85; 95% CI: 0.85, 4.04). Patterns of risk by cumulative REC exposure varied across four exposure time windows (phomogeneity<0.001), with ORs increasing for exposures accrued primarily 10-19 y prior to death (ptrend<0.001). Results provided little support for a waning of risk among workers whose exposures ceased for ≥20 y. CONCLUSION: DEMS II findings provide insight into the exposure-response relationship between diesel exhaust and lung cancer mortality. The pronounced effect of exposures occurring in the window 10-19 y prior to death, the sustained risk 20 or more years after exposure ceases, and the plateau/decline in risk among the most heavily exposed provide direction for future research on the mechanism of diesel-induced carcinogenesis in addition to having important implications for the assessment of risk from diesel exhaust by regulatory agencies. https://doi.org/10.1289/EHP11980.


Assuntos
Poluentes Ocupacionais do Ar , Neoplasias Pulmonares , Exposição Ocupacional , Humanos , Estudos de Casos e Controles , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/toxicidade , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia
17.
J Toxicol Environ Health B Crit Rev ; 26(4): 238-255, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883725

RESUMO

Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.


Assuntos
Poluentes Ocupacionais do Ar , Poluentes Ambientais , Bombeiros , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Fumaça/efeitos adversos , Material Particulado/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise
18.
Environ Mol Mutagen ; 64(3): 159-166, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762959

RESUMO

Diesel engine exhaust (DEE) is an established lung carcinogen, but the biological mechanisms of diesel-induced lung carcinogenesis are not well understood. MicroRNAs (miRNAs) are small noncoding RNAs that play a potentially important role in regulating gene expression related to lung cancer. We conducted a cross-sectional molecular epidemiology study to evaluate whether serum levels of miRNAs are altered in healthy workers occupationally exposed to DEE compared to unexposed controls. We conducted a two-stage study, first measuring 405 miRNAs in a pilot study of six DEE-exposed workers exposed and six controls. In the second stage, 44 selected miRNAs were measured using the Fireplex circulating miRNA assay that profiles miRNAs directly from biofluids of 45 workers exposed to a range of DEE (Elemental Carbon (EC), median, range: 47.7, 6.1-79.7 µg/m3 ) and 46 controls. The relationship between exposure to DEE and EC with miRNA levels was analyzed using linear regression adjusted for potential confounders. Serum levels of four miRNAs were significantly lower (miR-191-5p, miR-93-5p, miR-423-3p, miR-122-5p) and one miRNA was significantly higher (miR-92a-3p) in DEE exposed workers compared to controls. Of these miRNAs, miR-191-5p (ptrend  = .001, FDR = 0.04) and miR-93-5p (ptrend  = .009, FDR = 0.18) showed evidence of an inverse exposure-response with increasing EC levels. Our findings suggest that occupational exposure to DEE may affect circulating miRNAs implicated in biological processes related to carcinogenesis, including immune function.


Assuntos
Poluentes Ocupacionais do Ar , MicroRNAs , Exposição Ocupacional , Humanos , MicroRNAs/genética , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Epidemiologia Molecular , Estudos Transversais , Projetos Piloto , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Carcinogênese
19.
Clin Oral Investig ; 27(5): 1815-1829, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773127

RESUMO

OBJECTIVES: Dental professionals are exposed to large amounts of dust particles during routine treatment and denture processing. This article provides a narrative review to investigate the most prevalent dust-related respiratory diseases among dental professionals and to discuss the effects of dental dust on human respiratory health. MATERIALS AND METHODS: A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1990 and 2022. Any articles on the occupational respiratory health effects of dental dust were included. RESULTS: The characterization and toxicity evaluation of dental dust show a correlation between dust exposure and respiratory system injury, and the possible pathogenic mechanism of dust is to cause lung injury and abnormal repair processes. The combination use of personal protective equipment and particle removal devices can effectively reduce the adverse health effects of dust exposure. CONCLUSIONS: Dental dust should be considered an additional occupational hazard in dental practice. However, clinical data and scientific evidence on this topic are still scarce. Further research is required to quantify dust in the dental work environment and clarify its pathogenicity and potential toxicological pathways. Nonetheless, the prevention of dust exposure should become a consensus among dental practitioners. CLINICAL RELEVANCE: This review provides dental practitioners with a comprehensive understanding and preventive advice on respiratory health problems associated with dust exposure.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Odontólogos , Poeira/análise , Virulência , Papel Profissional , Sistema Respiratório
20.
Toxicol Appl Pharmacol ; 464: 116436, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813138

RESUMO

The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses.


Assuntos
Poluentes Ocupacionais do Ar , Expossoma , Lesão Pulmonar , Exposição Ocupacional , Pneumonia , Soldagem , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Ratos Endogâmicos BN , Lesão Pulmonar/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pneumonia/induzido quimicamente , Inflamação , Biomarcadores , Poluentes Ocupacionais do Ar/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA