Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.734
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710902

RESUMO

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Assuntos
Monitoramento Ambiental , Nitratos , Rios , Poluentes Químicos da Água , Irã (Geográfico) , Poluentes Químicos da Água/análise , Medição de Risco , Humanos , Rios/química , Nitratos/análise , Fosfatos/análise , Áreas Alagadas , Poluição Química da Água/estatística & dados numéricos , Nutrientes/análise , Recursos Hídricos
2.
Environ Monit Assess ; 196(6): 551, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748260

RESUMO

Kathajodi, the principal southern distributary of the Mahanadi River, is the vital source of irrigation and domestic water use for densely populated Cuttack city which receives anthropogenic wastes abundantly. This study assesses the contamination level and primary health status of urban wastewater, and its receiving river Kathajodi based on the physicochemical quality indices employing inductively coupled plasma mass spectroscopy and aligning with guidelines from the United States Environmental Protection Agency (USEPA) and WHO. The high WQI, HPI, and HEI in the catchment area (KJ2, KJ3, and KJ4) indicate poor water quality due to the influx of domestic waste through the primary drainage system and effluents of healthcare units. A high BOD (4.33-19.66 mg L-1) in the catchment indicates high organic matter, animal waste, bacteriological contamination, and low DO, resulting in deterioration of water quality. CR values beyond limits (1.00E - 06 to 1.00E - 04) in three locations of catchment due to higher Cd, Pb, and As indicate significant carcinogenic risk, while high Mn, Cu, and Al content is responsible for several non-carcinogenic ailments and arsenic-induced physiological disorders. The elevated heavy metals Cd, Cu, Fe, Mn, Ni, and Zn, in Kathajodi, could be due to heavy coal combustion, vehicle exhaust, and industrial waste. On the other hand, Cu, Fe, K, and Al could be from agricultural practices, weathered rocks, and crustal materials. Positive significant (p ≤ 0.05) Pearson correlations between physicochemical parameters indicate their common anthropogenic origin and similar chemical characteristics. A strong correlation of PCA between elements and physiological parameters indicates their role in water quality deterioration. Assessing the surface water quality and heavy metal contents from this study will offer critical data to policymakers for monitoring and managing public health concerns.


Assuntos
Monitoramento Ambiental , Metais Pesados , Rios , Águas Residuárias , Poluentes Químicos da Água , Qualidade da Água , Índia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Rios/química , Metais Pesados/análise , Humanos , Medição de Risco , Cidades , Poluição Química da Água/estatística & dados numéricos
3.
Bull Environ Contam Toxicol ; 112(5): 73, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691196

RESUMO

Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.


Assuntos
Monitoramento Ambiental , Microplásticos , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Densidade Demográfica , Sudeste Asiático , Tailândia , Vietnã , Poluição Química da Água/estatística & dados numéricos , Plásticos/análise , Indonésia , Sedimentos Geológicos/química
4.
Radiology ; 311(1): e240020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652027

RESUMO

Gadolinium-based contrast agents (GBCAs) have augmented the capabilities of MRI, which has led to their widespread and increasing use in radiology practice. GBCAs are introduced into the environment through disposal of unused product and elimination after intravenous injection, both primarily via liquid dispersion into the environment. This human introduction of gadolinium into the environment, referred to as anthropogenic gadolinium, is associated with the detection of gadolinium in water systems, raising concerns for potential adverse impact and prompting certain mitigation actions. This article summarizes the existing knowledge and problem scope, conveys the relevant underlying chemical principles of chelate dissociation, and offers an inferred perspective that the magnitude of the problem is most unlikely to cause human harm. The merits and limitations regarding possible mitigation tactics, such as collecting urine after GBCA administration, use of lower-dose high-relaxivity macrocyclic GBCAs, and the option for virtual contrast-enhanced examinations, will be discussed. Finally, the potential for monitoring gadolinium uptake in bone will be presented, and recommendations for future research will be offered. © RSNA, 2024 See also the article by Ibrahim et al in this issue. See also the article by McKee et al in this issue.


Assuntos
Meios de Contraste , Gadolínio , Poluição Química da Água , Imageamento por Ressonância Magnética
5.
Environ Sci Pollut Res Int ; 31(19): 28306-28320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536572

RESUMO

Evaluation of the ecological health of rivers requires a focused examination of how biological indicators respond to chemical stressors to offer key insights for effective conservation strategies. We examined the influence of stressors on aquatic ecosystems by analyzing various ecological entities and biotic integrity metrics of fish communities. A nonmetric multidimensional scaling (NMDS) approach was applied to determine scores based on 19 fish ecological entities (FEs) and a fish-based multi-metric index of biotic integrity (mIBI-F). The composition of fish communities in reference clusters differed from the disturbed clusters due to instream chemical stressors. These chemical stressors, including high levels of nutrients, organic matter, and ionic/suspended solids, were linked to variation in the key indicator FEs, whose guild identities were closely associated with instream chemical degradation. The scores of FEs (abundance weighted) and mIBI-F metrics in the first NMDS axis (NMDS1) were significantly linked with chemical health indicators (p < 0.001), such as total phosphorus (R2 = 0.67 and 0.47), electrical conductivity (R2 = 0.59 and 0.49), and chlorophyll-a (R2 = 0.48 and 0.25). These NMDS1 scores showed better accuracy than the conventional mIBI-F score in capturing river ecological health linked with chemical health status as determined by a multi-metric index of water pollution. Our study suggests that based on the ordination approach, the biological integrity of these systems reflected the chemical health.


Assuntos
Monitoramento Ambiental , Peixes , Rios , Poluentes Químicos da Água , Rios/química , Animais , Monitoramento Ambiental/métodos , Ecossistema , Poluição Química da Água
6.
Mar Pollut Bull ; 195: 115538, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37742513

RESUMO

Sea anemones have often been used as bioindicators of contamination because they are semisessile organisms that rarelly leave their niche, which is why they are conducive to affecting the ecosystem at the local level. The objective of this work is to determine whether the concentrations of heavy metals and trace elements in the anemone Anemonia sulcata vary depending on the source of contamination present. In 2021 seventy specimens were collected at five sampling points and fourteen specimens were collected in each point (Control Zone, Thermal Power Plant, Sewage Pipe, Harbour and Tourism) in 2021, on the island of Tenerife. All the areas studied characterized by a pollution condition had higher concentrations of metals and trace elements than the control area. The anemones from Harbour presented a greater number of metals with a higher concentration than the other study areas.


Assuntos
Metais Pesados , Anêmonas-do-Mar , Oligoelementos , Poluição Química da Água , Animais , Ecossistema , Biomarcadores Ambientais , Monitoramento Ambiental , Metais Pesados/análise , Anêmonas-do-Mar/química , Oligoelementos/análise , Poluição Química da Água/análise , Espanha
7.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526819

RESUMO

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Assuntos
Indústria Química , Rios , Poluentes da Água , Poluição Química da Água , Poluentes da Água/análise , Poluentes da Água/toxicidade , Qualidade da Água , Peixe-Zebra/crescimento & desenvolvimento , Animais , China , Distribuição Aleatória , Rios/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Amônia/análise , Fósforo/análise , Estações do Ano
8.
Environ Sci Pollut Res Int ; 30(43): 97253-97266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587399

RESUMO

Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 µg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.


Assuntos
Irrigação Agrícola , Biodegradação Ambiental , Enrofloxacina , Poluição Química da Água , Araceae/metabolismo , Enrofloxacina/metabolismo , Enrofloxacina/toxicidade
9.
Environ Int ; 179: 108140, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595537

RESUMO

Antibiotics are emerging pollutants that have detrimental effects on both target and non-target organisms in the environment. However, current methods for environmental risk assessment primarily focus on the risk to non-target organisms in ecosystems, overlooking a crucial risk of antibiotics - the induction of resistance in targeted bacteria. To address this oversight, we have incorporated resistance (R) risk with persistence, bioaccumulation and toxicity (PBT) to establish a more comprehensive PBTR (persistence, bioaccumulation, toxicity, and resistance) framework for antibiotic-specific risk assessment. Using the PBTR framework, we evaluated 74 antibiotics detected in Chinese seawater from 2000 to 2021, and identified priority antibiotics. Our analysis revealed that the priority antibiotics with R risk accounted for the largest proportion (50% to 70%), followed by P risk (40% to 58%), T risk (16% to 35%) and B risk (0 to 13%). To further categorize these priority antibiotics, we assigned them a risk level according to their fulfillment of criteria related to P, B, T, and R. Antibiotics meeting all four indicators were classified as Grade I, representing the highest risk level. Grade II and Grade III were assigned to antibiotics meeting three or two indicators, respectively. Antibiotics meeting only one indicator were classified as Grade IV, representing the lowest risk level. The majority of priority antibiotics fell into Grade IV, indicating low risk (55% to 79%), followed by Grade III (16% to 45%). The highest risk antibiotic identified in this study was clindamycin (CLIN), categorized as Grade II, in the East China Sea. Our findings aligned with previous studies for 25 antibiotics, affirming the validity of the PBTR framework. Moreover, we identified 13 new priority antibiotics, highlighting the advancement of this approach. This study provides a feasible screening strategy and monitoring recommendations for priority antibiotics in Chinese seawater.


Assuntos
Antibacterianos , Bioacumulação , Resistência Microbiana a Medicamentos , Água do Mar , Poluentes Químicos da Água , Antibacterianos/efeitos adversos , Antibacterianos/análise , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Ecossistema , Água do Mar/análise , Poluição Química da Água , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacologia , Poluentes Químicos da Água/toxicidade , China
10.
Environ Sci Technol ; 57(46): 18193-18202, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37406199

RESUMO

In this study, we introduce the count-based Morgan fingerprint (C-MF) to represent chemical structures of contaminants and develop machine learning (ML)-based predictive models for their activities and properties. Compared with the binary Morgan fingerprint (B-MF), C-MF not only qualifies the presence or absence of an atom group but also quantifies its counts in a molecule. We employ six different ML algorithms (ridge regression, SVM, KNN, RF, XGBoost, and CatBoost) to develop models on 10 contaminant-related data sets based on C-MF and B-MF to compare them in terms of the model's predictive performance, interpretation, and applicability domain (AD). Our results show that C-MF outperforms B-MF in nine of 10 data sets in terms of model predictive performance. The advantage of C-MF over B-MF is dependent on the ML algorithm, and the performance enhancements are proportional to the difference in the chemical diversity of data sets calculated by B-MF and C-MF. Model interpretation results show that the C-MF-based model can elucidate the effect of atom group counts on the target and have a wider range of SHAP values. AD analysis shows that C-MF-based models have an AD similar to that of B-MF-based ones. Finally, we developed a "ContaminaNET" platform to deploy these C-MF-based models for free use.


Assuntos
Algoritmos , Aprendizado de Máquina , Poluição Química da Água , Água/química , Poluição Química da Água/análise
11.
Water Res ; 242: 120176, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301001

RESUMO

The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Poluição Química da Água , Humanos , Bioacumulação , Ecossistema , Monitoramento Ambiental , Retardadores de Chama/análise , Água Doce , Éteres Difenil Halogenados , Poluição Química da Água/análise
12.
Mar Pollut Bull ; 193: 115199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356130

RESUMO

Sediment pollution in coastal and marine environments has emerged as a pressing concern due to its far-reaching ecological, environmental, and human health impacts. This Special Issue of the Marine Pollution Bulletin assembles a diverse range of studies investigating sediment pollution, its causes, and potential mitigation strategies, covering topics such as geophysical assessment of anthropogenic activities, biological responses to pollution, contamination, and ecological risk assessments, and microplastics in coastal sediments. The findings emphasize the need for effective monitoring, management, and interdisciplinary research to address the multifaceted challenges posed by sediment pollution. As the global population grows and human activities expand, it is essential to prioritize sustainable practices and policies to minimize anthropogenic impacts on coastal and marine ecosystems. By advancing collective knowledge and sharing best practices, we can work towards ensuring a healthier and more resilient future for these crucial ecosystems and the lives they support.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluição Química da Água , Sedimentos Geológicos/química , Poluição Química da Água/estatística & dados numéricos , Água do Mar/química , Microplásticos/análise , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 331(Pt 1): 121791, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201567

RESUMO

Urban streams display consistent ecological symptoms that commonly express degraded biological, physical, and chemical conditions: the urban stream syndrome (USS). Changes linked to the USS result in consistent declines in the abundance and richness of algae, invertebrates, and riparian vegetation. In this paper, we assessed the impacts of extreme ionic pollution from an industrial effluent in an urban stream. We studied the community composition of benthic algae and benthic invertebrates and the indicator traits of riparian vegetation. The dominant pool of benthic algae, benthic invertebrates and riparian species were considered as euryece. However, ionic pollution impacted these three biotic compartments' communities, disrupting these tolerant species assemblages. Indeed, after the effluent, we observed the higher occurrence of conductivity-tolerant benthic taxa, like Nitzschia palea or Potamopyrgus antipodarum and plant species reflecting nitrogen and salt contents in soils. Providing insights into organisms' responses and resistance to heavy ionic pollution, this study sheds light on how industrial environmental perturbations could alter the ecology of freshwater aquatic biodiversity and riparian vegetation.


Assuntos
Monitoramento Ambiental , Invertebrados , Rios , Poluição Química da Água , Animais , Biodiversidade , Ecossistema , Plantas , Rios/química , Poluição Química da Água/estatística & dados numéricos
14.
J Hazard Mater ; 457: 131695, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257375

RESUMO

The study on micro/nanoplastic pollution should embrace complexity. Here, we aim to develop an aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts (ACAM) to evaluate the effects of micro/nanoplastics on aquatic ecosystems from the global environmental change (GEC) and systematic perspective. A case study for freshwater systems in Saskatchewan, Canada was conducted to evaluate the comprehensive effects of multiple GEC factors (polystyrene-nanoplastics (PS-NPs), N, P, salinity, dissolved organic matter (DOM), pH, hardness) on Asterococcus superbus based on ten ecologically relevant endpoints. It is found that at the cellular level, PS-NPs and N had an antagonistic interaction on microalgal growth in the Saskatchewan freshwater ecosystem; at the molecular level, the PS-NP-induced changes in lipid composition in microalgae were regulated by P, DOM, and pH. The significance ranking of factor effects suggested that instead of PS-NPs pollution, the fluctuations in pH level, DOM and N concentrations should be paid attention to first in Saskatchewan. Under the combined impact of PS-NPs and other GEC factors, microalgae at station 14 (Qu'Appelle River near highway 56) might have the minimum growth rate with [-0.048, 0.094] d-1 in Saskatchewan. These findings demonstrate the efficacy of the developed ACAM in a more comprehensive and context-specific assessment of MNP risks, providing new insight for the management of MNP pollution.


Assuntos
Microplásticos , Poluição Química da Água , Ecossistema , Água Doce/química , Poliestirenos/química , Rios , Poluentes Químicos da Água/química , Poluição Química da Água/estatística & dados numéricos , Política Ambiental
15.
Environ Pollut ; 331(Pt 2): 121834, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209894

RESUMO

Microplastics are regarded as emergent contaminants posing a serious threat to the marine ecosystem. It is time-consuming and labor-intensive to determine the number of microplastics in different seas using traditional sampling and detection methods. Machine learning can provide a promising tool for prediction, but there is a lack of research on this. To screen high-performance models for the prediction of microplastic abundance in the marine surface water and explore the influencing factors, three ensemble learning models, random forest (RF), gradient boosted decision tree (GBDT), and extreme gradient boosting (XGBoost), were developed and compared. A total of 1169 samples were collected, and multi-classification prediction models were constructed with 16 features of the data as inputs and six classes of microplastic abundance intervals as outputs. Our results show that the XGBoost model has the best performance of prediction, with a total accuracy rate of 0.719 and an ROC AUC (Receiver Operating Characteristic curve, Area Under Curve) value of 0.914. Seawater phosphate (PHOS) and seawater temperature (TEMP) have negative effects on the abundance of microplastics in surface seawater, while the distance between the sampling point and the coast (DIS), wind stress (WS), human development index (HDI), and sampling latitude (LAT) have positive effects. This work not only predicts the abundance of microplastics in different seas but also offers a framework for the use of machine learning in the study of marine microplastics.


Assuntos
Aprendizado de Máquina , Microplásticos , Plásticos , Poluentes Químicos da Água , Poluição Química da Água , Humanos , Ecossistema , Oceanos e Mares , Água , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos
16.
Environ Toxicol Pharmacol ; 100: 104122, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031830

RESUMO

5-fluorouracil (5-FU) and methotrexate (MTX) are among the most widely consumed antineoplastic drugs worldwide. These drugs are known as emerging pollutants, once after consumption are excreted by feces and/or urine in a mixture of compounds and metabolites, entering the aquatic environment due to low efficiency in drug removal by effluent treatment plants. Considering that these substances may interact with the DNA, causing metabolic and morphological changes, leading to cell death, the present study aimed to investigate the potential impact of a long-term exposure to these antineoplastic drugs in environmentally relevant concentrations, on testicular morphophysiology of rats. Male Wistar rats (70 days old) were distributed into 4 groups (n = 10 / group): control, received only vehicle; MTX, received methotrexate at 10ngL-1 in drinking water; 5-FU received 5-fluorouracil at 10ngL-1 in drinking water; and MTX+ 5FU, received the combination of MTX and 5-FU at 10ngL-1 each. The treatment period was from postnatal day (PND)70 to PND160, when the animals were euthanized for evaluation of testicular toxicity and changes in endocrine signaling. In these experimental conditions, both drugs acted as endocrine disruptors causing cytotoxic effects in the testes of exposed rats, altering the structural pattern of seminiferous tubules and leading to oxidative stress even at environmental concentrations.


Assuntos
Antineoplásicos , Disruptores Endócrinos , Animais , Masculino , Ratos , Antineoplásicos/toxicidade , Água Potável , Fluoruracila/toxicidade , Metotrexato/toxicidade , Ratos Wistar , Disruptores Endócrinos/toxicidade , Poluição Química da Água
17.
Environ Int ; 174: 107883, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37001213

RESUMO

BACKGROUND: Prenatal nitrate exposure from household tap water has been associated with increased risk of fetal growth restriction, preterm birth, birth defects, and childhood cancer. We aim to examine the association between maternal consumption of drinking-water nitrate during pregnancy and small-for-gestational-age (SGA) in a nationwide study of Danish-born children, as only one prior study has examined this association. METHODS: We linked individual-level household estimates of nitrate in tap water and birth registry data to all live singleton Danish births during 1991-2015 from Danish-born parents where the mother resided in Denmark throughout the pregnancy. Exposure was both binned into four categories and modeled as an ln-transformed continuous variable. SGA was defined as the bottom 10% of births by birth weight per sex and gestational week. Multiple logistic regression models with generalized estimating equations were used to account for siblings born to the same mother while controlling for relevant confounders. RESULTS: In the cohort of 1,078,892 births, the median pregnancy nitrate exposure was 1.9 mg/L nitrate. Compared to the reference group (≤2 mg/L), we found an increased risk of SGA in the second category (>2-5 mg/L) (OR = 1.04, 95% CI: 1.03-1.06) and third category (>5-25 mg/L) (OR = 1.02, 95% CI: 1.00-1.04) but not in the highest (>25 mg/L). There was strong (p = 0.002) evidence of an increase in SGA with nitrate in the model with continuous exposure (OR = 1.02, 95% CI: 1.01-1.04 per 10-fold increase in nitrate). Results were robust when restricting to households with nitrate levels at or below the current Danish and European Union regulatory drinking water standard (50 mg/L nitrate). CONCLUSIONS: Our findings suggest that exposure from nitrate in household tap water, even below current regulatory standards, may increase risk of SGA, raising concerns of whether current allowable nitrate levels in drinking water protect children from SGA.


Assuntos
Água Potável , Nitratos , Nascimento Prematuro , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Dinamarca/epidemiologia , Água Potável/efeitos adversos , Água Potável/análise , Retardo do Crescimento Fetal/epidemiologia , Nitratos/efeitos adversos , Nitratos/análise , Efeitos Tardios da Exposição Pré-Natal , Exposição Materna/estatística & dados numéricos , Poluição Química da Água/estatística & dados numéricos
18.
J Vet Med Sci ; 85(5): 557-564, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36948643

RESUMO

The purpose of this study was to survey and compare the amounts of elements in the serum of stranded sea turtles from the Gulf of Thailand and the Andaman Sea. The sea turtles from the Gulf of Thailand had Ca, Mg, P, S, Se, and Si concentrations significantly higher than those in sea turtles from the Andaman Sea. The Ni and Pb concentrations of sea turtles from the Gulf of Thailand was higher, but not significantly so, than in sea turtles from the Andaman Sea. Rb was detected only in sea turtles from the Gulf of Thailand. This may have been related to the industrial activities in Eastern Thailand. The concentration of Br in the sea turtles from the Andaman Sea were significantly higher than those in sea turtles from the Gulf of Thailand. The higher serum concentration of Cu in hawksbill (H) and olive ridley turtles (O) than in green turtles may be due to hemocyanin, as an important component in the blood of crustaceans. The higher Fe concentration in the serum from green turtles than for H and O may be due to chlorophyll, which is an important component of chloroplasts in eel grass. Co was not found in the serum of green turtles but was found in the serum of H and O. The monitoring of important elements in sea turtles may be used as a tool to assess the levels of pollution in marine ecosystems.


Assuntos
Monitoramento Ambiental , Oligoelementos , Tartarugas , Poluentes Químicos da Água , Animais , Ecossistema , Tailândia , Oligoelementos/metabolismo , Tartarugas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220010, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744558

RESUMO

Human activity is changing global environments at an unprecedented rate, imposing new ecological and evolutionary ramifications on wildlife dynamics, including host-parasite interactions. Here we investigate how an emerging concern of modern human activity, pharmaceutical pollution, influences the spread of disease in a population, using the water flea Daphnia magna and the bacterial pathogen Pasteuria ramosa as a model system. We found that exposure to different concentrations of fluoxetine-a widely prescribed psychoactive drug and widespread contaminant of aquatic ecosystems-affected the severity of disease experienced by an individual in a non-monotonic manner. The direction and magnitude of any effect, however, varied with both the infection outcome measured and the genotype of the pathogen. By contrast, the characteristics of unexposed animals, and thus the growth and density of susceptible hosts, were robust to fluoxetine. Using our data to parameterize an epidemiological model, we show that fluoxetine is unlikely to lead to a net increase or decrease in the likelihood of an infectious disease outbreak, as measured by a pathogen's transmission rate or basic reproductive number. Instead, any given pathogen genotype may experience a twofold change in likely fitness, but often in opposing directions. Our study demonstrates that changes in pharmaceutical pollution give rise to complex genotype-by-environment interactions in its influence of disease dynamics, with repercussions on pathogen genetic diversity and evolution. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Assuntos
Doenças Transmissíveis , Fluoxetina , Preparações Farmacêuticas , Poluição Química da Água , Animais , Humanos , Ecossistema , Fluoxetina/toxicidade , Interações Hospedeiro-Patógeno
20.
Chem Commun (Camb) ; 59(22): 3193-3205, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36826793

RESUMO

We propose novel chemometers - passive equilibrium samplers of, e.g., silicone - as an integrative tool for the assessment of hydrophobic organic compounds in multimedia environments. The traditional way of assessing levels of organic pollutants across different environmental compartments is to compare the chemical concentration normalized to the major sorptive phase in two or more media. These sorptive phases for hydrophobic organic compounds differ between compartments, e.g., lipids in biota and organic carbon in sediments. Hence, comparability across media can suffer due to differences in sorptive capacities, but also extraction protocols and bioavailability. Chemometers overcome these drawbacks; they are a common, universal and well-defined polymer reference phase for sampling of a large range of nonpolar organic pollutants in different matrices like biota, sediment and water. When bringing the chemometer into direct contact with the sample, the chemicals partition between the sample and the polymer until thermodynamic equilibrium partitioning is established. At equilibrium, the chemical concentrations in the chemometers can be determined and directly compared between media, e.g., between organisms of different trophic levels or inhabiting different areas, between organs within an organism or between biotic and abiotic compartments, amongst others. Chemometers hence allow expressing the data on a common basis, as the equilibrium partitioning concentrations in the polymer, circumventing normalizations. The approach is based on chemical activity rather than total concentrations, and as such, gives a measure of the "effective concentration" of a compound or a mixture. Furthermore, chemical activity is the main driver for partitioning, biouptake and toxicity. As an additional benefit, the extracts of the chemometers only require limited cleanup efforts, avoiding introduction of a bias between chemicals of different persistence, and can be submitted to both chemical analysis and/or bioanalytical profiling.


Assuntos
Poluição Química da Água , Multimídia , Compostos Orgânicos , Polímeros , Poluentes Ambientais/análise , Poluentes Ambientais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA