Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Curr Microbiol ; 81(3): 87, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311653

RESUMO

Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease. Upon inoculation, T. asperellum mainly colonized within the phloem of the roots in soybean seedlings, while I. laceratus mainly in the xylem and phloem of the roots. Physiological parameters, such as plant height, root length, and fresh weight, were significantly increased in soybean seedlings co-inoculated with T. asperellum and I. laceratus. Moreover, the expression of key genes related to N and P absorption and metabolism was also increased, leading to improved N and P utilization efficiency in soybean seedlings. These results indicate that the two fungi may have complementary roles in promoting plant growth, co-inoculation with T. asperellum and I. laceratus can enhance the growth and nutrient uptake of soybean. These findings suggest that T. asperellum and I. laceratus have the potential to be used as bio-fertilizers to improve soybean growth and yield.


Assuntos
Basidiomycota , Hypocreales , Polyporales , Trichoderma , Plântula , Fósforo/metabolismo , Glycine max , Nitrogênio/metabolismo , Basidiomycota/metabolismo , Polyporales/metabolismo , Trichoderma/fisiologia
2.
Int J Biol Macromol ; 259(Pt 1): 128872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154720

RESUMO

Microparticle-enhanced cultivation was used to enhance the production of exopolysaccharides (EPSs) from Antrodia cinnamomea. The structure and antibacterial activity of two EPSs produced by A. cinnamomea treated with Al2O3 [EPS-Al (crude) and EPS-Al-p (purified)] and without Al2O3 [EPS-C (crude) and EPS-C-p (purified)] were compared. It was observed that the addition of 4 g/L Al2O3 at 0 h resulted in the highest EPS yield of 1.46 g/L, possible attributed to the enhanced permeability of the cell membrane. The structural analysis revealed that EPS-C-p and EPS-Al-p had different structures. EPS-C-p was hyperbranched and spherical with a Mw of 10.8 kDa, while EPS-Al-p was irregular and linear with a Mw of 12.5 kDa. The proportion of Man in EPS-Al-p decreased, while those of Gal and Glc increased when compared to EPS-C-p. The total molar ratios of 6-Glcp and 4-Glcp in EPS-Al-p are 1.45 times that of EPS-C-p. Moreover, EPSs could alter bacterial cell morphology, causing intracellular substance leakage and growth inhibition, with EPS-Al having a stronger antibacterial activity than EPS-C. In conclusion, A. cinnamomea treated with Al2O3 could produce more EPSs, changing monosaccharide composition and glycosidic linkage profile, which could exert stronger antibacterial activity than that produced by untreated A. cinnamomea.


Assuntos
Antrodia , Polyporales , Humanos , Polyporales/metabolismo , Monossacarídeos/análise , Antrodia/química , Polissacarídeos Bacterianos/química
3.
J Agric Food Chem ; 71(23): 9070-9079, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261783

RESUMO

Soy whey is becoming a worldwide issue as a liquid waste stream that is often discarded after tofu, soy protein, and soy-based dairy alternative manufacturing. This study established a model to produce a bioflavor and mycoprotein using fermentation of soy whey by a basidiomycete Ischnoderma benzoinum. Under the dedicated control of a fermentation system, an intense almond-like and sweetish aroma was perceived by a trained sensory panel (n = 10) after fermentation of pure soy whey within 20 h. By application of direct immersion-stir bar sorptive extraction combined with gas chromatography-mass spectrometry-olfactometry (DI-SBSE-GC-MS-O), around 1.0 mg/L benzaldehyde and 1.1 mg/L 4-methoxybenzaldehyde imparting a pleasant almond-like odor note were determined in the fermented soy whey with I. benzoinum. Concurrently, a certain of amount of the dry mass of I. benzoinum was accumulated with 73.2 mg/g crude protein and seven essential amino acids.


Assuntos
Polyporales , Alimentos de Soja , Soro do Leite/metabolismo , Proteínas do Soro do Leite/metabolismo , Alimentos de Soja/análise , Polyporales/metabolismo , Odorantes/análise
4.
J Agric Food Chem ; 71(21): 8104-8111, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204864

RESUMO

In contrast to O2, H2O2 as the cosubstrate for lytic polysaccharide monooxygenases (LPMOs) exhibits great advantages in industrial settings for cellulose degradation. However, H2O2-driven LPMO reactions from natural microorganisms have not been fully explored and understood. Herein, secretome analysis unraveled the H2O2-driven LPMO reaction in the efficient lignocellulose-degrading fungus Irpex lacteus, including LPMOs with different oxidative regioselectivities and various H2O2-generating oxidases. Biochemical characterization of H2O2-driven LPMO catalysis showed orders of magnitude improvement in catalytic efficiency compared to that of O2-driven LPMO catalysis for cellulose degradation. Significantly, H2O2 tolerance of LPMO catalysis in I. lacteus was an order of magnitude higher than that in other filamentous fungi. In addition, natural reductants, gallic acid, in particular, presented in lignocellulosic biomass could sufficiently maintain LPMO catalytic reactions. Moreover, the H2O2-driven LPMO catalysis exhibited synergy with canonical endoglucanases for efficient cellulose degradation. Taken together, these findings demonstrate the great application potential of the H2O2-driven LPMO catalysis for upgrading cellulase cocktails to further improve cellulose degradation efficiency.


Assuntos
Basidiomycota , Polyporales , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/metabolismo , Polyporales/metabolismo , Oxigenases de Função Mista/metabolismo , Basidiomycota/metabolismo
5.
Appl Environ Microbiol ; 89(5): e0027223, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098943

RESUMO

Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.


Assuntos
Phanerochaete , Polyporales , Árvores , Proteômica , Genoma Fúngico , Polyporales/metabolismo , Genômica , Phanerochaete/genética
6.
Environ Sci Pollut Res Int ; 30(20): 58436-58449, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36991205

RESUMO

Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd­induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.


Assuntos
Ganoderma , Polyporaceae , Polyporales , Reishi , Humanos , Animais , Reishi/genética , Reishi/metabolismo , Acetilcisteína/farmacologia , Cádmio/metabolismo , Polyporaceae/genética , Polyporaceae/metabolismo , Polyporales/genética , Polyporales/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Ganoderma/metabolismo
7.
Environ Microbiol ; 25(8): 1393-1408, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36959722

RESUMO

White-rot fungi efficiently degrade wood lignin; however, the mechanisms involved remain largely unknown. Recently, a forward genetics approach to identify several genes in Pleurotus ostreatus (Agaricales) in which mutations cause defects in wood lignin degradation was used. For example, pex1 encodes a peroxisome biogenesis factor and gat1 encodes a putative Agaricomycetes-specific DNA-binding transcription factor. In this study, we examined the effects of single-gene mutations in pex1 or gat1 on wood lignin degradation in another white-rot fungus, Gelatoporia (Ceriporiopsis) subvermispora (Polyporales), to investigate conserved and derived degradation mechanisms in white-rot fungi. G. subvermispora pex1 and gat1 single-gene mutant strains were generated from a monokaryotic wild-type strain, FP-90031-Sp/1, using plasmid-based CRISPR/Cas9. As in P. ostreatus, Gsgat1 mutants were nearly unable to degrade lignin sourced from beech wood sawdust medium (BWS), while Gspex1 mutants exhibited a delay in lignin degradation. We also found that the transcripts of lignin-modifying enzyme-encoding genes, mnp4, mnp5, mnp6, mnp7, and mnp11, which predominantly accumulate in FP-90031-Sp/1 cultured with BWS, were greatly downregulated in Gsgat1 mutants. Taken together, the results suggest that Gat1 may be a conserved regulator of the ligninolytic system of white-rot fungi and that the contribution of peroxisomes to the ligninolytic system may differ among species.


Assuntos
Pleurotus , Polyporales , Lignina/metabolismo , Sistemas CRISPR-Cas , Polyporales/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220033, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633275

RESUMO

Terpenoids represent the largest structural family of natural products (NPs) and have various applications in the pharmaceutical, food and fragrance industries. Their diverse scaffolds are generated via a multi-step cyclization cascade of linear isoprene substrates catalysed by terpene synthases (TPSs). Bisabolene NPs, which are sesquiterpenes (C15), have wide applications in medicines and biofuels and serve as bioactive substances in ecology. Despite the discovery of some canonical class I TPSs that synthesize bisabolenes from plants, bacteria and insects, it remained unknown whether any bisabolene synthases from fungi could produce bisabolenes as a main product. Antrodia cinnamomea, a Basidiomycota fungus, is a medicinal mushroom indigenous to Taiwan and a known prolific producer of bioactive terpenoids, but little is known regarding the enzymes involved in the biosynthetic pathways. Here, we applied a genome mining approach against A. cinnamomea and discovered two non-canonical UbiA-type TPSs that both synthesize (+)-(S,Z)-α-bisabolene (1). It was determined that two tailoring enzymes, a P450 monooxygenase and a methyltransferase, install a C14-methyl ester on the bisabolene scaffold. In addition, four new bisabolene derivatives, 2 and 4-6, were characterized from heterologous reconstitution in Saccharomyces cerevisiae. Our study uncovered enzymatic tools to generate structurally diverse bisabolene NPs. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Polyporales , Sesquiterpenos , Terpenos/metabolismo , Fungos , Polyporales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Chemosphere ; 312(Pt 1): 137338, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423718

RESUMO

White-rot basidiomycetes are the only microorganisms able to produce both hydrolytic (cellulases and hemicellulases) and oxidative (ligninolytic) enzymes for degrading all lignocellulose constituents. Their enzymatic machinery makes them ideal for the discovery of novel enzymes with desirable properties. In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic potential. Secretomics and biochemical analyses were employed to study the strain's enzymatic arsenal, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of biomass, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant with ion-exchange chromatography. Characterization of purified laccases revealed their ability to oxidize a wide variety of phenolic and non-phenolic substrates. AbiLac1 was found to oxidize polystyrene powder, showing high depolymerization potential, based on radical chain scission mechanism as evidenced by molecular weight decrease. The results of the present study demonstrate the biotechnological potential of the unexplored enzymatic machinery of white-rot basidiomycetes, including the design of improved lignocellulolytic cocktails, as well as the degradation and/or valorization of plastic waste materials.


Assuntos
Basidiomycota , Polyporales , Lacase/metabolismo , Poliestirenos/metabolismo , Polyporales/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo
10.
Org Lett ; 24(31): 5669-5673, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904977

RESUMO

Tremulane sesquiterpenoids are key secondary metabolites of the basidiomycete Irpex lacteus, which displays structural diversity and various bioactivities. However, tremulane sesquiterpene synthases have not been reported to date. The tremulane sesquiterpene synthase of I. lacteus was characterized by genome mining, heterologous expression, an in vitro assay, and substrate feeding. Moreover, the structures of the corresponding products were elucidated by NMR spectroscopy and X-ray diffraction analysis.


Assuntos
Basidiomycota , Polyporales , Sesquiterpenos , Polyporales/química , Polyporales/genética , Polyporales/metabolismo , Sesquiterpenos/química
11.
J Diabetes Res ; 2022: 9537741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242882

RESUMO

BACKGROUND: Several experimental studies have suggested beneficial effects of Ceriporia lacerata on glucose metabolism. However, there has been no human study assessing the effects of C. lacerata on glucose metabolism. Therefore, we investigated whether C. lacerata improves glucose control and insulin resistance in type 2 diabetes patients. METHODS: Ninety patients diagnosed with type 2 diabetes (T2DM) for more than 6 months were enrolled. Subjects were randomly divided into placebo (n = 45) or C. lacerata (n = 45) groups and then assigned to take placebo or C. lacerata capsules (500 mg/capsule) for a 12-week intervention period. Biochemical markers, including fasting glucose, 2-hour postprandial plasma glucose, and lipid profile levels, as well as insulin, c-peptide, and Hba1c, were measured. Furthermore, insulin sensitivity indices, such as HOMA-IR, HOMA-beta, and QUICKI, were assessed before and after the 12-week administration. RESULTS: Eighty-four patients completed the study. There were no significant differences in fasting, postprandial glucose, HbA1c, or lipid parameters. HOMA-IR and QUICKI indices were improved at week 12 in the C. lacerata group, especially in subjects with HOMA-IR of 1.8 or more (p < 0.05). Fasting, postprandial c-peptide, and insulin levels decreased at week 12 in the C. lacerata group (p < 0.05). These significant differences were not observed in the placebo group. CONCLUSION: Twelve-week administration of C. lacerata in T2DM patients resulted in significant improvement in insulin resistance, especially in those with lower insulin sensitivity. A larger population study with a longer follow-up period and an effort to elucidate the mechanism is warranted to further assess the effects of C. lacerata on T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistência à Insulina/fisiologia , Extratos Vegetais/farmacologia , Polyporales/metabolismo , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico
12.
Microbiol Spectr ; 10(1): e0203221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196809

RESUMO

Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.


Assuntos
Cromossomos , Genômica , Polyporales/genética , Polyporales/metabolismo , Sequenciamento Completo do Genoma , Agaricales , Basidiomycota , Carpóforos/genética , Humanos , Micélio , Metabolismo Secundário/genética , Análise de Sequência de DNA , Transcriptoma
13.
Biomolecules ; 11(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572556

RESUMO

In the present study, the polysaccharide-hydrolyzing secretomes of Irpex lacteus (Fr.) Fr. (1828) BCC104, Pycnoporus coccineus (Fr.) Bondartsev and Singer (1941) BCC310, and Schizophyllum commune Fr. (1815) BCC632 were analyzed in submerged fermentation conditions to elucidate the effect of chemically and structurally different carbon sources on the expression of cellulases and xylanase. Among polymeric substrates, crystalline cellulose appeared to be the best carbon source providing the highest endoglucanase, total cellulase, and xylanase activities. Mandarin pomace as a growth substrate for S. commune allowed to achieve comparatively high volumetric activities of all target enzymes while wheat straw induced a significant secretion of cellulase and xylanase activities of I. lacteus and P. coccineus. An additive effect on the secretion of cellulases and xylanases by the tested fungi was observed when crystalline cellulose was combined with mandarin pomace. In I. lacteus the cellulase and xylanase production is inducible in the presence of cellulose-rich substrates but is suppressed in the presence of an excess of easily metabolizable carbon source. These enzymes are expressed in a coordinated manner under all conditions studied. It was shown that the substitution of glucose in the inoculum medium with Avicel provides accelerated enzyme production by I. lacteus and higher cellulase and xylanase activities of the fungus. These results add new knowledge to the physiology of basidiomycetes to improve cellulase production.


Assuntos
Basidiomycota/enzimologia , Carbono/farmacologia , Polissacarídeos/metabolismo , Basidiomycota/efeitos dos fármacos , Reatores Biológicos/microbiologia , Carbono/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Hidrólise , Cinética , Polímeros/farmacologia , Polyporales/metabolismo , Açúcares/metabolismo , Triticum/metabolismo
14.
Folia Microbiol (Praha) ; 66(6): 1039-1046, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34346036

RESUMO

The JS7 strain, isolated from an old forest tree, produces extracellular enzymes that decolorize synthetic and natural melanin from human hair. Phylogenetic analysis based on the internal transcribed spacer (ITS) sequence indicated that JS7 belongs to the genus Irpex. The JS7 strain has laccase activity while it lacks manganese and lignin peroxidase activity, which suggests that the JS7 strain melanin decolorization activity originated from laccase. Laccase production from the Irpex sp. JS7 improved three-fold in the presence of veratryl alcohol, compared to without an inducer. The optimum pH and temperature for melanin decolorization were 7.5 and 40 °C, respectively. The crude enzyme half-life at 25 °C was about 100 days, and it had high storage stability. The melanin decolorization reaction rate by the crude enzyme conformed to typical enzyme kinetic principles. In the presence of syringaldehyde as a redox mediator, the melanin decolorization rate was 75% within 5 days, similar to the decolorization percentage obtained using the enzyme alone. Based on these results, the Irpex sp. JS7 enzyme is suitable for use in melanin decolorization by whitening agents in the cosmetics industry.


Assuntos
Lacase , Polyporales , Humanos , Lacase/genética , Lacase/metabolismo , Melaninas/metabolismo , Oxirredução , Filogenia , Polyporales/metabolismo
15.
mBio ; 12(4): e0204021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399614

RESUMO

Brown rot fungi release massive amounts of carbon from forest deadwood, particularly at high latitudes. These fungi degrade wood by generating small reactive oxygen species (ROS) to loosen lignocellulose, to then selectively remove carbohydrates. The ROS mechanism has long been considered the key adaptation defining brown rot wood decomposition, but recently, we found preliminary evidence that fungal glycoside hydrolases (GHs) implicated in early cell wall loosening might have been adapted to tolerate ROS stress and to synergize with ROS to loosen woody lignocellulose. In the current study, we found more specifically that side chain hemicellulases that help in the early deconstruction of the lignocellulosic complex are significantly more tolerant of ROS in the brown rot fungus Rhodonia placenta than in a white rot fungus (Trametes versicolor) and a soft rot fungus (Trichoderma reesei). Using proteomics to understand the extent of tolerance, we found that significant oxidation of secreted R. placenta proteins exposed to ROS was less than half of the oxidation observed for T. versicolor or T. reesei. The principal oxidative modifications observed in all cases were monooxidation and dioxidation/trioxidation (mainly in methionine and tryptophan residues), some of which were critical for enzyme activity. At the peptide level, we found that GHs in R. placenta were the least ROS affected among our tested fungi. These results confirm and describe underlying mechanisms of tolerance in early-secreted brown rot fungal hemicellulases. These enzymatic adaptations may have been as important as nonenzymatic ROS pathway adaptations in brown rot fungal evolution. IMPORTANCE Brown rot fungi play a critical role in carbon recycling and are of industrial interest. These fungi typically use reactive oxygen species (ROS) to indiscriminately "loosen" wood cell walls at the outset of decay. Brown rot fungi avoid oxidative stress associated with this ROS step by delaying the expression/secretion of many carbohydrate-active enzymes, but there are exceptions, notably some side chain hemicellulases, implicated in loosening lignocellulose. In this study, we provide enzyme activity and secretomic evidence that these enzymes in the brown rot model Rhodonia placenta are more ROS tolerant than the white and soft rot isolates tested. For R. placenta, and perhaps all brown rot lineages, these ROS tolerance adaptions may have played a long-overshadowed role in enabling brown rot.


Assuntos
Fungos/metabolismo , Secretoma , Estresse Fisiológico , Madeira/metabolismo , Madeira/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Lignina/metabolismo , Oxirredução , Polyporales/metabolismo
16.
Microb Biotechnol ; 14(5): 2140-2151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310858

RESUMO

Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH. O. rivulosa laccase variants with redox mediators oxidized both the dimeric lignin model compound and biorefinery poplar lignin. Significant structural changes, such as selective benzylic α-oxidation, were detected by nuclear magnetic resonance analysis, although no polymerization of lignin was observed by gel permeation chromatography. This suggests that especially rOrLcc2-D206N is a promising candidate for lignin-related applications.


Assuntos
Lacase , Polyporales , Fungos/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Oxirredução , Polyporales/metabolismo
17.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067678

RESUMO

Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3ß-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Ergosterol/análogos & derivados , Ergosterol/farmacologia , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Polyporales/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Carbohydr Res ; 503: 108299, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33836411

RESUMO

Abuse of antibiotics makes antibiotic-resistance become a huge challenge in bacterial infection treatment. The discovery of new antibiotics is of great significance to human health. In this study, the antibacterial mechanism of Sparassis crispa polysaccharides (SCPs) was explored. The SCPs isolated from Sparassis crispa was composed of fucose, glucose and galactose with a molar ratio of 0.043 : 0.652: 0.305. Bacteriostatic tests showed SCPs inhibited the growth of Staphylococcus aureus better than Escherichia coli's, and damage to bacteria was observed under scanning electron microscopy. Metabolomic analysis based on HPLC-Q-TOF/MS indicated that SCPs disrupted metabolism of the glycolysis and tricarboxylic acid cycle pathways in S. aureus. The variations of fructose-1,6-diphosphate, 1,3-diphosphoglycerol, succinate and oxaloacetate were significant, whose systematic changes accompanied with decrease of ATP in cells indicated that SCPs could exert antibacterial effects by inducing dysfunction of catabolism and energy metabolism. Our research confirmed the antibacterial properties of SCPs and provided a perspective for understanding antibacterial mechanism of polysaccharides from natural products through metabolomics technology.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Metabolômica , Polyporales/química , Polissacarídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/análise , Antibacterianos/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/crescimento & desenvolvimento , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Polyporales/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento
19.
Pol J Microbiol ; 70(1): 131-136, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815534

RESUMO

In dual culture confrontation assays, basidiomycete Irpex lacteus efficiently antagonized Fusarium spp., Colletotrichum spp., and Phytophthora spp. phytopathogenic strains, with growth inhibition percentages between 16.7-46.3%. Antibiosis assays evaluating the inhibitory effect of soluble extracellular metabolites indicated I. lacteus strain inhibited phytopathogens growth between 32.0-86.7%. Metabolites in the extracellular broth filtrate, identified by UPLC-QTOF mass spectrometer, included nine terpenes, two aldehydes, and derivatives of a polyketide, a quinazoline, and a xanthone, several of which had antifungal activity. I. lacteus strain and its extracellular metabolites might be valuable tools for phytopathogenic fungi and oomycete biocontrol of agricultural relevance.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Oomicetos/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Polyporales/química , Aldeídos/química , Aldeídos/metabolismo , Aldeídos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Fusarium/crescimento & desenvolvimento , Espectrometria de Massas , Oomicetos/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Polyporales/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia
20.
J Basic Microbiol ; 61(5): 419-429, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721360

RESUMO

The study investigated the characteristics of aerobic degradation of tetrabromobisphenol A (TBBPA) by Irpex lacteus F17 (I. lacteus F17) under four different cometabolic substrates (phenol, glucose, sodium pyruvate, and sodium citrate). The biodegradation of TBBPA by I. lacteus F17 could be enhanced via cometabolism, and glucose (8 g/L) was confirmed to be the optimum carbon source. For different initial solution pH ranging from 3.0 to 8.0, the results showed that I. lacteus F17 could be applied to biodegrade TBBPA in a wide pH range of 4.0-8.0, and the degradation rate could reach the maximum 75.31%, while the debromination rate reached the maximum 12.40% under pH 5.0. In addition, it has been confirmed that Mn2+ (50 µmol/L) could promote the secretion of manganese peroxidase and TBBPA biodegradation efficiency. Seven intermediates were identified by gas chromatography-mass spectrometry analysis, and the possible degradation pathways were proposed, which indicated the biodegradation of TBBPA might be subjected to debromination, ß-scission, hydroxylation, deprotonation, and oxidation reactions.


Assuntos
Biodegradação Ambiental , Bifenil Polibromatos/metabolismo , Polyporales/metabolismo , Aerobiose , Concentração de Íons de Hidrogênio , Manganês/farmacologia , Oxirredução , Peroxidases/análise , Peroxidases/metabolismo , Polyporales/efeitos dos fármacos , Polyporales/genética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA