Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 14(1): 15653, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977763

RESUMO

Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.


Assuntos
Cromossomos Humanos Y , DNA Mitocondrial , Fluxo Gênico , Variação Genética , Feminino , Humanos , Masculino , África Ocidental , População Negra/genética , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , Herança Paterna , População Africana/genética
2.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38258299

RESUMO

Fixation index (Fst) statistics provide critical insights into evolutionary processes affecting the structure of genetic variation within and among populations. Fst statistics have been widely applied in population and evolutionary genetics to identify genomic regions targeted by selection pressures. The FSTest 1.3 software was developed to estimate four Fst statistics of Hudson, Weir and Cockerham, Nei, and Wright using high-throughput genotyping or sequencing data. Here, we introduced FSTest 1.3 and compared its performance with two widely used software VCFtools 0.1.16 and PLINK 2.0. Chromosome 1 of 1000 Genomes Phase III variant data belonging to South Asian (n = 211) and African (n = 274) populations were included as an example case in this study. Different Fst estimates were calculated for each single-nucleotide polymorphism (SNP) in a pairwise comparison of South Asian against African populations, and the results of FSTest 1.3 were confirmed by VCFtools 0.1.16 and PLINK 2.0. Two different sliding window approaches, one based on a fixed number of SNPs and another based on a fixed number of base pair (bp) were conducted using FSTest 1.3 and VCFtools 0.1.16. Our results showed that regions with low coverage genotypic data could lead to an overestimation of Fst in sliding window analysis using a fixed number of bp. FSTest 1.3 could mitigate this challenge by estimating the average of consecutive SNPs along the chromosome. FSTest 1.3 allows direct analysis of VCF files with a small amount of code and can calculate Fst estimates on a desktop computer for more than a million SNPs in a few minutes. FSTest 1.3 is freely available at https://github.com/similab/FSTest.


Assuntos
População Africana , Cromossomos Humanos Par 1 , Variação Genética , Genética Populacional , População do Sul da Ásia , Humanos , Povo Asiático/genética , Evolução Biológica , Cromossomos Humanos Par 1/genética , Genômica , Genótipo , Genética Populacional/métodos , Genética Populacional/estatística & dados numéricos , População do Sul da Ásia/genética , População Africana/genética , Variação Genética/genética
4.
PLoS Genet ; 19(9): e1010931, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676865

RESUMO

f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.


Assuntos
População Africana , Demografia , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Humanos , População Negra/genética , Mapeamento Cromossômico , Genótipo , Homem de Neandertal/genética , Polimorfismo de Nucleotídeo Único/genética , População Africana/genética , Demografia/história , Variação Biológica da População/genética , Modelos Estatísticos , Viés
5.
Lancet Neurol ; 22(11): 1015-1025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633302

RESUMO

BACKGROUND: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset ß=-2·00 [SE=0·57], p=0·0005, for African ancestry; and ß=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING: The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.


Assuntos
População Africana , Doença de Parkinson , Humanos , População Negra/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Doença de Parkinson/etnologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , População Africana/genética
6.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37332016

RESUMO

Trans-ethnic genome-wide association studies have revealed that many loci identified in European populations can be reproducible in non-European populations, indicating widespread trans-ethnic genetic similarity. However, how to leverage such shared information more efficiently in association analysis is less investigated for traits in underrepresented populations. We here propose a statistical framework, trans-ethnic genetic risk score informed gene-based association mixed model (GAMM), by hierarchically modeling single-nucleotide polymorphism effects in the target population as a function of effects of the same trait in well-studied populations. GAMM powerfully integrates genetic similarity across distinct ancestral groups to enhance power in understudied populations, as confirmed by extensive simulations. We illustrate the usefulness of GAMM via the application to 13 blood cell traits (i.e. basophil count, eosinophil count, hematocrit, hemoglobin concentration, lymphocyte count, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular volume, monocyte count, neutrophil count, platelet count, red blood cell count and total white blood cell count) in Africans of the UK Biobank (n = 3204) while utilizing genetic overlap shared in Europeans (n = 746 667) and East Asians (n = 162 255). We discovered multiple new associated genes, which had otherwise been missed by existing methods, and revealed that the trans-ethnic information indirectly contributed much to the phenotypic variance. Overall, GAMM represents a flexible and powerful statistical framework of association analysis for complex traits in underrepresented populations by integrating trans-ethnic genetic similarity across well-studied populations, and helps attenuate health inequities in current genetics research for people of minority populations.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Herança Multifatorial , Humanos , Estudo de Associação Genômica Ampla/métodos , Hemoglobinas/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Células Sanguíneas , Reino Unido , População Africana/genética , População do Leste Asiático/genética , População Europeia/genética
7.
Cancer Discov ; 13(7): 1696-1719, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37140445

RESUMO

TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Genes p53 , Neoplasias , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , População Africana/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/metabolismo
8.
J Hum Genet ; 68(8): 533-541, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059825

RESUMO

CYP2A6 metabolically inactivates nicotine. Faster CYP2A6 activity is associated with heavier smoking and higher lung cancer risk. The CYP2A6 gene is polymorphic, including functional structural variants (SV) such as gene deletions (CYP2A6*4), duplications (CYP2A6*1 × 2), and hybrids with the CYP2A7 pseudogene (CYP2A6*12, CYP2A6*34). SVs are challenging to genotype due to their complex genetic architecture. Our aims were to develop a reliable protocol for SV genotyping, functionally phenotype known and novel SVs, and investigate the feasibility of CYP2A6 SV imputation from SNP array data in two ancestry populations. European- (EUR; n = 935) and African- (AFR; n = 964) ancestry individuals from smoking cessation trials were genotyped for SNPs using an Illumina array and for CYP2A6 SVs using Taqman copy number (CN) assays. SV-specific PCR amplification and Sanger sequencing was used to characterize a novel SV. Individuals with SVs were phenotyped using the nicotine metabolite ratio, a biomarker of CYP2A6 activity. SV diplotype and SNP array data were integrated and phased to generate ancestry-specific SV reference panels. Leave-one-out cross-validation was used to investigate the feasibility of CYP2A6 SV imputation. A minimal protocol requiring three Taqman CN assays for CYP2A6 SV genotyping was developed and known SV associations with activity were replicated. The first domain swap CYP2A6-CYP2A7 hybrid SV, CYP2A6*53, was identified, sequenced, and associated with lower CYP2A6 activity. In both EURs and AFRs, most SV alleles were identified using imputation (>70% and >60%, respectively); importantly, false positive rates were <1%. These results confirm that CYP2A6 SV imputation can identify most SV alleles, including a novel SV.


Assuntos
População Africana , População Europeia , Nicotina , Abandono do Hábito de Fumar , Humanos , População Africana/genética , Sequência de Bases , População Negra/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , População Europeia/genética , Genótipo , Nicotina/genética , Nicotina/metabolismo , Polimorfismo de Nucleotídeo Único , População Branca/genética , Abandono do Hábito de Fumar/etnologia
9.
Gene ; 872: 147429, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098383

RESUMO

In recent years, growing attention has become focused on the calcium selective channel TRPV6 because of the multiplicity of roles it may play in human health and disease. However, possible medical implications related to the fact that the African ancestral variant of this gene appears to be 25% more calcium-retentive than the derived Eurasian variant continue to be discounted in the genetic literature. The TRPV6 gene is expressed primarily in the intestines, the colon, the placenta, mammary and prostate glands. For this reason, transdisciplinary clues have begun to link the uncontrolled proliferation of its mRNA in TRPV6-expressing cancers to the unusually high risk of these malignancies in African-American carriers of the ancestral variant. The medical genomics community needs to become more attentive to diverse populations' relevant historical and ecological details. This is the case now more than ever as Genome Wide Association Studies wrestle to catch up with the growing number of disease causative gene variants that are turning out to be population-specific.


Assuntos
População Africana , População Negra , Canais de Cálcio , Cálcio , Canais de Cátion TRPV , Feminino , Humanos , Masculino , População Africana/genética , População Negra/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Estudo de Associação Genômica Ampla , Canais de Cátion TRPV/genética
10.
Funct Integr Genomics ; 23(1): 74, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867305

RESUMO

Brazilian quilombos are communities formed by enslaved Africans and their descendants all over the country during slavery and shortly after its abolition. Quilombos harbor a great fraction of the largely unknown genetic diversity of the African diaspora in Brazil. Thus, genetic studies in quilombos have the potential to provide important insights not only into the African roots of the Brazilian population but also into the genetic bases of complex traits and human adaptation to diverse environments. This review summarizes the main results of genetic studies performed on quilombos so far. Here, we analyzed the patterns of African, Amerindian, European, and subcontinental ancestry (within Africa) of quilombos from the five different geographic regions of Brazil. In addition, uniparental markers (from the mtDNA and the Y chromosome) studies are analyzed together to reveal demographic processes and sex-biased admixture that occurred during the formation of these unique populations. Lastly, the prevalence of known malaria-adaptive African mutations and other African-specific variants discovered in quilombos, as well as the genetic bases of health-related traits, are discussed here, together with their implication for the health of populations of African descent.


Assuntos
Aclimatação , População Africana , Nível de Saúde , Humanos , População Africana/genética , Brasil , DNA Mitocondrial , Mitocôndrias
11.
Nature ; 615(7954): 866-873, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36991187

RESUMO

The urban peoples of the Swahili coast traded across eastern Africa and the Indian Ocean and were among the first practitioners of Islam among sub-Saharan people1,2. The extent to which these early interactions between Africans and non-Africans were accompanied by genetic exchange remains unknown. Here we report ancient DNA data for 80 individuals from 6 medieval and early modern (AD 1250-1800) coastal towns and an inland town after AD 1650. More than half of the DNA of many of the individuals from coastal towns originates from primarily female ancestors from Africa, with a large proportion-and occasionally more than half-of the DNA coming from Asian ancestors. The Asian ancestry includes components associated with Persia and India, with 80-90% of the Asian DNA originating from Persian men. Peoples of African and Asian origins began to mix by about AD 1000, coinciding with the large-scale adoption of Islam. Before about AD 1500, the Southwest Asian ancestry was mainly Persian-related, consistent with the narrative of the Kilwa Chronicle, the oldest history told by people of the Swahili coast3. After this time, the sources of DNA became increasingly Arabian, consistent with evidence of growing interactions with southern Arabia4. Subsequent interactions with Asian and African people further changed the ancestry of present-day people of the Swahili coast in relation to the medieval individuals whose DNA we sequenced.


Assuntos
População Africana , Asiático , Genética Populacional , Feminino , Humanos , Masculino , População Africana/genética , Asiático/genética , História Medieval , Oceano Índico , Tanzânia , Quênia , Moçambique , Comores , História do Século XV , História do Século XVI , História do Século XVII , Índia/etnologia , Pérsia/etnologia , Arábia/etnologia , DNA Antigo/análise
12.
EBioMedicine ; 90: 104537, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001235

RESUMO

BACKGROUND: Observational studies have investigated the effect of serum lipids on kidney function, but these findings are limited by confounding, reverse causation and have reported conflicting results. Mendelian randomization (MR) studies address this confounding problem. However, they have been conducted mostly in European ancestry individuals. We, therefore, set out to investigate the effect of lipid traits on the estimated glomerular filtration rate (eGFR) based on serum creatinine in individuals of African ancestry. METHODS: We used the two-sample and multivariable Mendelian randomization (MVMR) approaches; in which instrument variables (IV's) for the predictor (lipid traits) were derived from summary-level data of a meta-analyzed African lipid GWAS (MALG, n = 24,215) from the African Partnership for Chronic Disease Research (APCDR) (n = 13,612) & the Africa Wits-IN-DEPTH partnership for Genomics studies (AWI-Gen) dataset (n = 10,603). The outcome IV's were computed from the eGFR summary-level data of African-ancestry individuals within the Million Veteran Program (n = 57,336). A random-effects inverse variance method was used in our primary analysis, and pleiotropy was adjusted for using robust and penalized sensitivity testing. The lipid predictors for the MVMR were high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG). FINDINGS: We found a significant causal association between genetically predicted low-density lipoprotein (LDL) cholesterol and eGFR in African ancestry individuals ß = 1.1 (95% CI [0.411-1.788]; p = 0.002). Similarly, total cholesterol (TC) showed a significant causal effect on eGFR ß = 1.619 (95% CI [0.412-2.826]; p = 0.009). However, the IVW estimate showed that genetically predicted HDL-C ß = -0.164, (95% CI = [-1.329 to 1.00]; p = 0.782), and TG ß = -0.934 (CI = [-2.815 to 0.947]; p = 0.33) were not significantly causally associated with the risk of eGFR. In the multivariable analysis inverse-variance weighted (MVIVW) method, there was evidence for a causal association between LDL and eGFR ß = 1.228 (CI = [0.477-1.979]; p = 0.001). A significant causal effect of Triglycerides (TG) on eGFR in the MVIVW analysis ß = -1.3 ([-2.533 to -0.067]; p = 0.039) was observed as well. All the causal estimates reported reflect a unit change in the outcome per a 1 SD increase in the exposure. HDL showed no evidence of a significant causal association with eGFR in the MVIVW method (ß = -0.117 (95% CI [-1.252 to 0.018]; p = 0.840)). We found no evidence of a reverse causal impact of eGFR on serum lipids. All our sensitivity analyses indicated no strong evidence of pleiotropy or heterogeneity between our instrumental variables for both the forward and reverse MR analysis. INTERPRETATION: In this African ancestry population, genetically predicted higher LDL-C and TC are causally associated with higher eGFR levels, which may suggest that the relationship between LDL, TC and kidney function may be U-shaped. And as such, lowering LDL_C does not necessarily improve risk of kidney disease. This may also imply the reason why LDL_C is seen to be a poorer predictor of kidney function compared to HDL. In addition, this further supports that more work is warranted to confirm the potential association between lipid traits and risk of kidney disease in individuals of African Ancestry. FUNDING: Wellcome (220740/Z/20/Z).


Assuntos
População Africana , Nefropatias , Rim , Lipídeos , Humanos , População Africana/genética , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Nefropatias/sangue , Nefropatias/etnologia , Nefropatias/genética , Nefropatias/fisiopatologia , Lipídeos/sangue , Lipídeos/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Distribuição Aleatória , Fatores de Risco , Triglicerídeos/sangue
13.
PLoS One ; 17(12): e0279132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548255

RESUMO

The Major Histocompatibility Complex (MHC) makes the largest genetic contribution to multiple sclerosis (MS) susceptibility, with 32 independent effects across the region explaining 20% of the heritability in European populations. Variation is high across populations with allele frequency differences and population-specific risk alleles identified. We sought to identify MHC-specific MS susceptibility variants and assess the effect of ancestral risk modification within 2652 Latinx and Hispanic individuals as well as 2435 Black and African American individuals. We have identified several novel susceptibility alleles which are rare in European populations including HLA-B*53:01, and we have utilized the differing linkage disequilibrium patterns inherent to these populations to identify an independent role for HLA-DRB1*15:01 and HLA-DQB1*06:02 on MS risk. We found a decrease in Native American ancestry in MS cases vs controls across the MHC, peaking near the previously identified MICB locus with a decrease of ~5.5% in Hispanics and ~0.4% in African Americans. We have identified several susceptibility variants, including within the MICB gene region, which show global ancestry risk modification and indicate ancestral differences which may be due in part to correlated environmental factors. We have also identified several susceptibility variants for which MS risk is modified by local ancestry and indicate true ancestral genetic differences; including HLA-DQB1*06:02 for which MS risk for European allele carriers is almost two times the risk for African allele carriers. These results validate the importance of investigating MS susceptibility at an ancestral level and offer insight into the epidemiology of MS phenotypic diversity.


Assuntos
Predisposição Genética para Doença , Complexo Principal de Histocompatibilidade , Esclerose Múltipla , Humanos , Alelos , Frequência do Gene , Haplótipos , Cadeias HLA-DRB1/genética , Desequilíbrio de Ligação , Complexo Principal de Histocompatibilidade/genética , Esclerose Múltipla/etnologia , Esclerose Múltipla/genética , Risco , População Europeia/genética , População Africana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA