Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833943

RESUMO

Every petroleum-processing plant produces sewage sludge containing several types of polycyclic aromatic hydrocarbons (PAHs). The degradation of PAHs via physical, biological, and chemical methods is not yet efficient. Among biological methods, the use of marine sponge symbiont bacteria is considered an alternative and promising approach in the degradation of and reduction in PAHs. This study aimed to explore the potential performance of a consortium of sponge symbiont bacteria in degrading anthracene and pyrene. Three bacterial species (Bacillus pumilus strain GLB197, Pseudomonas stutzeri strain SLG510A3-8, and Acinetobacter calcoaceticus strain SLCDA 976) were mixed to form the consortium. The interaction between the bacterial consortium suspension and PAH components was measured at 5 day intervals for 25 days. The biodegradation performance of bacteria on PAH samples was determined on the basis of five biodegradation parameters. The analysis results showed a decrease in the concentration of anthracene (21.89%) and pyrene (7.71%), equivalent to a ratio of 3:1, followed by a decrease in the abundance of anthracene (60.30%) and pyrene (27.52%), equivalent to a ratio of 2:1. The level of pyrene degradation was lower than that of the anthracene due to fact that pyrene is more toxic and has a more stable molecular structure, which hinders its metabolism by bacterial cells. The products from the biodegradation of the two PAHs are alcohols, aldehydes, carboxylic acids, and a small proportion of aromatic hydrocarbon components.


Assuntos
Acinetobacter calcoaceticus/fisiologia , Antracenos/metabolismo , Bacillus pumilus/fisiologia , Poríferos/fisiologia , Pseudomonas stutzeri/fisiologia , Pirenos/metabolismo , Animais , Antracenos/isolamento & purificação , Biodegradação Ambiental , Microbiota , Pirenos/isolamento & purificação , Simbiose
2.
Sci Rep ; 11(1): 20709, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671070

RESUMO

Terpios hoshinota is a thin encrusting sponge that overgrows live scleractinian corals and it is linked to coral loss in many reefs. However, our knowledge of the species associated with this sponge species is poor. During a periodical survey of T. hoshinota in 2020, we found tiny snails crawling on the sponge in the subtropical waters around Okinawa Island, Japan. We observed egg capsules inside the sponge tissue and veliger larvae released from the egg capsules. Molecular analyses of both the snails and veliger larvae (cytochrome oxidase I, COI) showed that they were identical and belonged to Joculator sp. (family Cerithiopsidae). There was no direct observation of predation on the sponge by this snail; however, to the best of our knowledge, this is the first report on a close association between a snail and the sponge T. hoshinota.


Assuntos
Antozoários/fisiologia , Poríferos/fisiologia , Caramujos/fisiologia , Animais , Recifes de Corais , Homicídio , Japão , Comportamento Predatório/fisiologia
3.
Genes (Basel) ; 12(6)2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203064

RESUMO

The phenomenon of whole-body regeneration means rebuilding of the whole body of an animal from a small fragment or even a group of cells. In this process, the old axial relationships are often lost, and new ones are established. An amazing model for studying this process is sponges, some of which are able to regenerate into a definitive organism after dissociation into cells. We hypothesized that during the development of cell aggregates, primmorphs, new axes are established due to the activation of the Wnt and TGF-beta signaling pathways. Using in silico analysis, RNA-seq, and whole-mount in situ hybridization, we identified the participants in these signaling pathways and determined the spatiotemporal changes in their expression in demosponge Halisarca dujardinii. It was shown that Wnt and TGF-beta ligands are differentially expressed during primmorph development, and transcripts of several genes are localized at the poles of primmorphs, in the form of a gradient. We suppose that the Wnt and TGF-beta signaling cascades are involved in the initial axial patterning of the sponge body, which develops from cells after dissociation.


Assuntos
Poríferos/metabolismo , Regeneração , Fator de Crescimento Transformador beta/genética , Proteínas Wnt/genética , Animais , Poríferos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
4.
Nature ; 595(7868): 537-541, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290424

RESUMO

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.


Assuntos
Poríferos/anatomia & histologia , Poríferos/fisiologia , Água do Mar/análise , Animais , Comportamento Alimentar , Hidrodinâmica , Reprodução , Reologia
5.
Curr Biol ; 31(8): R368-R370, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33905688

RESUMO

In 2016, the research ice-breaker Polarstern surveyed the submerged peaks of the permanently ice-covered Langseth Ridge, a tectonic feature comprising the Karasik seamount and two deeper seamount peaks, abutting the Gakkel ultra-slow spreading ridge (87°N 62°E to 85.5°N 57.4°E)1. A towed marine camera sled and a hybrid remotely operated vehicle revealed these peaks to be covered by a dense demosponge community, at first glance reminiscent of North Atlantic Geodia grounds (sensu2). Sponges were observed on top of a thick layer of spicule mat (Figure 1 and Video S1), intermixed with underlying layers of empty siboglinid tubes and bivalve shells, a substrate covering almost the entire seafloor. We observed trails of densely interwoven spicules connected directly to the underside or lower flanks of sponge individuals (Figure 1), suggesting these trails are traces of motile sponges. This is the first time abundant sponge trails have been observed in situ and attributed to sponge mobility. Given the low primary production in this permanently ice-covered region, these trails may relate to feeding behavior and/or a strategy for dispersal of juveniles. Such trails may remain visible for long periods given the regionally low sedimentation rates.


Assuntos
Camada de Gelo , Locomoção , Poríferos/fisiologia , Animais , Regiões Árticas
6.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805549

RESUMO

While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.


Assuntos
Morfogênese , Poríferos/fisiologia , Regeneração , Animais , Poríferos/crescimento & desenvolvimento , Transdução de Sinais
7.
Sci Rep ; 11(1): 7661, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828181

RESUMO

An encrusting sponge, Terpios hoshinota, has the potential to infect all species of stony corals in shallow reefs and killing them. It caused a decline in coral coverage in two south-eastern islands of Taiwan. We proposed two hypotheses to examine how the sponges kill the corals, namely, light blocking and toxins, and tested by in-situ experiments. The results revealed that both light blocking, sponge toxins, and particularly the combination of both factors were effective at inducing tissue damage in stony corals over a short period. Second, to answer why the sponges killed the corals, we tested two hypotheses, namely, gaining nutrients versus gaining substrates for the sponge. By analyzing the stable isotopes 13C and 15N, as well as exploiting an enrichment experiment, it was possible to determine that only approximately 9.5% of the carbon and 16.9% of the nitrogen in the newly grown sponge tissues originated from the enriched corals underneath. The analysis also revealed that the control corals without isotope enrichment had higher δ13C and δ15N than the control sponges, which was an additional indication that T. hoshinota did not rely heavily on corals for nutrients. Therefore, our results support the hypothesis that the encrusting sponge did not kill corals for food or nutrients, but rather for the substrate.


Assuntos
Antozoários , Recifes de Corais , Poríferos/fisiologia , Animais , Isótopos de Carbono/metabolismo , Isótopos de Nitrogênio/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190764, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550954

RESUMO

Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference-translocational and deformational-and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge-a pathway or circuit by which an animal tracks its own actions and their reafferent consequences-is not a necessary feature of reafferent sensing but a later-evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self, a form of organization that enables an animal to sense and act as a single unit. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Vias Eferentes/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Propriocepção , Animais , Cnidários/fisiologia , Ctenóforos/fisiologia , Sistema Nervoso/química , Placozoa/fisiologia , Poríferos/fisiologia
9.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536324

RESUMO

Climate change is expanding marine oxygen minimum zones (OMZs), while anthropogenic nutrient input depletes oxygen concentrations locally. The effects of deoxygenation on animals are generally detrimental; however, some sponges (Porifera) exhibit hypoxic and anoxic tolerance through currently unknown mechanisms. Sponges harbor highly specific microbiomes, which can include microbes with anaerobic capabilities. Sponge-microbe symbioses must also have persisted through multiple anoxic/hypoxic periods throughout Earth's history. Since sponges lack key components of the hypoxia-inducible factor (HIF) pathway responsible for hypoxic responses in other animals, it was hypothesized that sponge tolerance to deoxygenation may be facilitated by its microbiome. To test this hypothesis, we determined the microbial composition of sponge species tolerating seasonal anoxia and hypoxia in situ in a semienclosed marine lake, using 16S rRNA amplicon sequencing. We discovered a high degree of cryptic diversity among sponge species tolerating seasonal deoxygenation, including at least nine encrusting species of the orders Axinellida and Poecilosclerida. Despite significant changes in microbial community structure in the water, sponge microbiomes were species specific and remarkably stable under varied oxygen conditions, which was further explored for Eurypon spp. 2 and Hymeraphia stellifera However, some symbiont sharing occurred under anoxia. At least three symbiont combinations, all including large populations of Thaumarchaeota, corresponded with deoxygenation tolerance, and some combinations were shared between some distantly related hosts. We propose hypothetical host-symbiont interactions following deoxygenation that could confer deoxygenation tolerance.IMPORTANCE The oceans have an uncertain future due to anthropogenic stressors and an uncertain past that is becoming clearer with advances in biogeochemistry. Both past and future oceans were, or will be, deoxygenated in comparison to present conditions. Studying how sponges and their associated microbes tolerate deoxygenation provides insights into future marine ecosystems. Moreover, sponges form the earliest branch of the animal evolutionary tree, and they likely resemble some of the first animals. We determined the effects of variable environmental oxygen concentrations on the microbial communities of several demosponge species during seasonal anoxia in the field. Our results indicate that anoxic tolerance in some sponges may depend on their symbionts, but anoxic tolerance was not universal in sponges. Therefore, some sponge species could likely outcompete benthic organisms like corals in future, reduced-oxygen ecosystems. Our results support the molecular evidence that sponges and other animals have a Neoproterozoic origin and that animal evolution was not limited by low-oxygen conditions.


Assuntos
Bactérias/genética , Lagos/microbiologia , Microbiota/genética , Microbiota/fisiologia , Poríferos/microbiologia , Estações do Ano , Anaerobiose , Animais , Organismos Aquáticos , Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Variação Genética , Interações entre Hospedeiro e Microrganismos , Irlanda , Filogenia , Poríferos/classificação , Poríferos/genética , Poríferos/fisiologia
10.
Biomolecules ; 11(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578987

RESUMO

Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, is an important strive, due to lack of knowledge on traditional experiential and ethnopharmacology investigations. In this report, a comprehensive survey of demospongian bioactive alkaloids in the range 1987-2020 had been performed with a special emphasis on the potent cytotoxic activity. Different resources and databases had been investigated, including Scifinder (database for the chemical literature) CAS (Chemical Abstract Service) search, web of science, Marin Lit (marine natural products research) database. More than 230 representatives of different classes of alkaloids had been reviewed and classified, different genera belonging to the phylum porifera had been shown to be a prolific source of alkaloidal molecules, including Agelas sp., Suberea sp., Mycale sp., Haliclona sp., Epipolasis sp., Monanchora sp., Crambe sp., Reniera sp., and Xestospongia sp., among others. The sufficient production of alkaloids derived from sponges is a prosperous approach that requires more attention in future studies to consider the constraints regarding the supply of drugs, attained from marine organisms.


Assuntos
Alcaloides/química , Produtos Biológicos/química , Poríferos/fisiologia , Acridinas/química , Alcaloides/metabolismo , Animais , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Química/métodos , Células HCT116 , Células HeLa , Humanos , Concentração Inibidora 50 , Células K562 , Células MCF-7 , Estrutura Molecular
11.
Elife ; 92020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33252039

RESUMO

Sponges are suspension feeders that filter vast amounts of water. Pumping is carried out by flagellated chambers that are connected to an inhalant and exhalant canal system. In 'leucon' sponges with relatively high-pressure resistance due to a complex and narrow canal system, pumping and filtering are only possible owing to the presence of a gasket-like structure (forming a canopy above the collar filters). Here, we combine numerical and experimental work and demonstrate how sponges that lack such sealing elements are able to efficiently pump and force the flagella-driven flow through their collar filter, thanks to the formation of a 'hydrodynamic gasket' above the collar. Our findings link the architecture of flagellated chambers to that of the canal system, and lend support to the current view that the sponge aquiferous system evolved from an open-type filtration system, and that the first metazoans were filter feeders.


Assuntos
Evolução Biológica , Poríferos/anatomia & histologia , Poríferos/fisiologia , Animais , Hidrodinâmica
12.
PLoS One ; 15(10): e0239895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002046

RESUMO

Knowledge of continental shelf faunal biodiversity of Antarctica is patchy and as such, the ecology of this unique ecosystem is not fully understood. To this end, we deployed baited cameras at 20 locations along ~ 500 km of the Western Antarctic Peninsula (WAP) at depths from 90 to 797 m. We identified 111 unique taxa, with mud bottom accounting for 90% of the dominant (≥ 50% cover) habitat sampled. Amphipoda comprised 41% of the total maximum number of individuals per camera deployment (MaxN) and occurred on 75% of deployments. Excluding this taxon, the highest MaxN occurred around King George/25 de Mayo Island and was driven primarily by the abundance of krill (Euphausiidae), which accounted for 36% of total average MaxN among deployments around this island. In comparison, krill comprised 22% of total average MaxN at Deception Island and only 10% along the peninsula. Taxa richness, diversity, and evenness all increased with depth and depth explained 18.2% of the variation in community structure among locations, which may be explained by decreasing ice scour with depth. We identified a number of Vulnerable Marine Ecosystem taxa, including habitat-forming species of cold-water corals and sponge fields. Channichthyidae was the most common fish family, occurring on 80% of all deployments. The Antarctic jonasfish (Notolepis coatsorum) was the most frequently encountered fish taxa, occurring on 70% of all deployments and comprising 25% of total MaxN among all deployments. Nototheniidae was the most numerically abundant fish family, accounting for 36% of total MaxN and was present on 70% of the deployments. The WAP is among the fastest warming regions on Earth and mitigating the impacts of warming, along with more direct impacts such as those from fishing, is critical in providing opportunities for species to adapt to environmental change and to preserve this unique ecosystem.


Assuntos
Biodiversidade , Ambientes Extremos , Animais , Regiões Antárticas , Antozoários/fisiologia , Peixes/fisiologia , Poríferos/fisiologia , Água do Mar
13.
Environ Microbiol Rep ; 12(6): 619-638, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048474

RESUMO

Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Modelos Biológicos , Filogenia , Poríferos/crescimento & desenvolvimento , Poríferos/fisiologia , Simbiose
14.
Environ Microbiol ; 22(11): 4732-4744, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869905

RESUMO

Coral reefs are facing increasing pressure from rising seawater temperatures and ocean acidification. Sponges have been proposed as possible winners in the face of climate change; however, little is known about the mechanisms underpinning their predicted tolerance. Here we assessed whether microbiome-mediated cross-generational acclimatization could enable the photosynthetic sponge Carteriospongia foliascens to survive under future climate scenarios. To achieve this, we first established the potential for vertical (cross-generational) transmission of symbionts. Sixty-four amplicon sequence variants accounting for >90% of the total C. foliascens microbial community were present across adult, larval and juvenile life stages, showing that a large proportion of the microbiome is vertically acquired and maintained. When C. foliascens were exposed to climate scenarios projected for 2050 and 2100, the host remained visibly unaffected (i.e. no necrosis/bleaching) and the overall microbiome was not significantly different amongst treatments in adult tissue, the respective larvae or recruits transplanted amongst climate treatments. However, indicator species analysis revealed that parental exposure to future climate scenarios altered the presence and abundance of a small suite of microbial taxa in the recruits, thereby revealing the potential for microbiome-mediated cross-generational acclimatization through both symbiont shuffling and symbiont switching within a vertically acquired microbiome.


Assuntos
Mudança Climática , Microbiota , Poríferos/microbiologia , Poríferos/fisiologia , Aclimatação , Animais , Concentração de Íons de Hidrogênio , Larva/microbiologia , Larva/fisiologia , Fotossíntese , Água do Mar/química , Água do Mar/microbiologia , Temperatura
15.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878176

RESUMO

The Gram-negative Pantoea eucrina D2 was isolated from the marine sponge Chondrosia reniformis. Sponges were collected in a shallow volcanic vents system in Ischia island (South Italy), influenced by CO2 emissions and lowered pH. The chemical diversity of the secondary metabolites produced by this strain, under different culture conditions, was explored by a combined approach including molecular networking, pure compound isolation and NMR spectroscopy. The metabolome of Pantoea cf. eucrina D2 yielded a very complex molecular network, allowing the annotation of several metabolites, among them two biosurfactant clusters: lipoamino acids and surfactins. The production of each class of metabolites was highly dependent on the culture conditions, in particular, the production of unusual surfactins derivatives was reported for the first time from this genus; interestingly the production of these metabolites only arises by utilizing inorganic nitrogen as a sole nitrogen source. Major components of the extract obtained under standard medium culture conditions were isolated and identified as N-lipoamino acids by a combination of 1D and 2D NMR spectroscopy and HRESI-MS analysis. Assessment of the antimicrobial activity of the pure compounds towards some human pathogens, indicated a moderate activity of leucine containing N-lipoamino acids towards Staphylococcus aureus, Staphylococcus epidermidis and a clinical isolate of the emerging food pathogen Listeria monocytogenes.


Assuntos
Antibacterianos/farmacologia , Meios de Cultura/farmacologia , Redes e Vias Metabólicas , Metaboloma/efeitos dos fármacos , Pantoea/fisiologia , Poríferos/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Ácidos/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Meios de Cultura/química , Humanos , Filogenia , Poríferos/fisiologia
16.
Chemosphere ; 257: 127109, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497834

RESUMO

Used during an oil spill to minimise the formation of an oil slick, dispersants have negative biological effects on marine model organisms. However, no study has investigated the impacts of dispersants on adult sponge individuals. Here, we examine the effects of water accommodated oil fraction (WAF - oil in seawater), chemically enhanced WAF (CEWAF - oil and dispersant in seawater) and Benzo[A]Pyrene on sponge Halichondria panicea at physiological and molecular levels. Sponge clearance rate decreased sharply when exposed to WAF and CEWAF but the oil loading at which the clearance rate was reduced by 50% (ED50) was 39-fold lower in CEWAF than in WAF. Transcriptomic analysis revealed a homogenous molecular response with the greatest number of differentially expressed genes identified in CEWAF samples (1,461 genes). Specifically, genes involved in stress responses were up-regulated. This study presents evidence that the use of dispersants should be considered carefully in areas where sponges are present.


Assuntos
Recuperação e Remediação Ambiental , Poluição por Petróleo/análise , Petróleo/análise , Poríferos/fisiologia , Poluentes Químicos da Água/análise , Animais , Petróleo/metabolismo , Água do Mar , Poluentes Químicos da Água/metabolismo
17.
Sci Rep ; 10(1): 8176, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424237

RESUMO

The glass sponge Aphrocallistes vastus contributes to the formation of large reefs unique to the Northeast Pacific Ocean. These habitats have tremendous filtration capacity that facilitates flow of carbon between trophic levels. Their sensitivity and resilience to climate change, and thus persistence in the Anthropocene, is unknown. Here we show that ocean acidification and warming, alone and in combination have significant adverse effects on pumping capacity, contribute to irreversible tissue withdrawal, and weaken skeletal strength and stiffness of A. vastus. Within one month sponges exposed to warming (including combined treatment) ceased pumping (50-60%) and exhibited tissue withdrawal (10-25%). Thermal and acidification stress significantly reduced skeletal stiffness, and warming weakened it, potentially curtailing reef formation. Environmental data suggests conditions causing irreversible damage are possible in the field at +0.5 °C above current conditions, indicating that ongoing climate change is a serious and immediate threat to A. vastus, reef dependent communities, and potentially other glass sponges.


Assuntos
Recifes de Corais , Aquecimento Global , Poríferos/crescimento & desenvolvimento , Animais , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Força Muscular , Músculo Esquelético/fisiologia , Oceano Pacífico , Poríferos/fisiologia , Água do Mar/química
18.
Zoology (Jena) ; 140: 125795, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32408125

RESUMO

The ability of sponge cells to reaggregate and reconstruct intact functional organism is known for more than 100 years. This process was studied in numerous species of sponges, and its interspecific variability is well described. However, some data also indicate the existence of a certain intraspecific variability of the cell reaggregation. The present study deals with the cell reaggregation in two demosponges, Halichondria panicea and Halisarca dujardinii, during different periods of their sexual reproduction. In both species, cell reaggregation shows a common pattern at all studied periods of reproduction. However, the course of the reaggregation process significantly depends on the reproduction period of an individual used in the experiment, thus demonstrating pronounced intraspecific variability, which concerns the rate of the cell reaggregation and the final stage of the process. This variability occurs due to tissue rearrangements that accompany reproduction and changes cell composition and amount of available somatic stem cells in sponge tissues, and consequently alters morphogenetic potencies of a cell suspension and multicellular aggregates. In both Halichondria panicea and Halisarca dujardinii, the growth period is the most favorable for the reaggregation process, while the cell reaggregation is depressed during periods of embryogenesis and restoration of somatic tissues after the reproduction. At the same time, the structure of a particular stage of reaggregation and morphogenetic processes underlying the development of multicellular aggregates are always identical, independently from the period of the reproductive cycle.


Assuntos
Morfogênese/fisiologia , Poríferos/fisiologia , Animais , Morfogênese/genética , Poríferos/genética , Especificidade da Espécie
19.
Proc Biol Sci ; 287(1927): 20200300, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396804

RESUMO

Symbiotic relations and range of host usage are prominent in coral reefs and crucial to the stability of such systems. In order to explain how symbiotic relations are established and evolve, we used sponge-associated barnacles to ask three questions. (1) Does larval settlement on sponge hosts require novel adaptations facilitating symbiosis? (2) How do larvae settle and start life on their hosts? (3) How has this remarkable symbiotic lifestyle involving many barnacle species evolved? We found that the larvae (cyprids) of sponge-associated barnacles show a remarkably high level of interspecific variation compared with other barnacles. We document that variation in larval attachment devices are specifically related to properties of the surface on which they attach and metamorphose. Mapping of the larval and sponge surface features onto a molecular-based phylogeny showed that sponge symbiosis evolved separately at least three times within barnacles, with the same adaptive features being found in all larvae irrespective of phylogenetic relatedness. Furthermore, the metamorphosis of two species proceeded very differently, with one species remaining superficially on the host and developing a set of white calcareous structures, the other embedding itself into the live host tissue almost immediately after settlement. We argue that such a high degree of evolutionary flexibility of barnacle larvae played an important role in the successful evolution of complex symbiotic relationships in both coral reefs and other marine systems.


Assuntos
Recifes de Corais , Poríferos/fisiologia , Thoracica/fisiologia , Animais , Larva , Metamorfose Biológica , Filogenia , Simbiose
20.
Mar Environ Res ; 157: 104922, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275505

RESUMO

Sponges are often important components of coastal lagoons, however their responses to anthropogenic stressors remain poorly understood. Here, we tested the responses of three lagoon sponges, Neopetrosia exigua, Amphimedon navalis and Spheciospongia vagabunda from Mauritius (Western Indian Ocean), to nine temperature and nitrate combinations for 14 days. We found that elevated seawater temperature resulted in significant physiological responses in all species, but there was generally little negative effect of elevated nitrate. At the end of the experiment, the buoyant weight of all three species were significantly reduced, while for the two chlorophyll a-containing species, N. exigua and S. vagabunda, effective quantum yield (ΔF/Fm') of photosystem (PS) II, photosynthetic pigment concentrations, gross photosynthetic rate and gross photosynthesis to respiration (P:R) ratio were also reduced. Dark respiration rates were higher in all three species at elevated temperature. While these lagoon sponges appeared to be impacted by elevated temperature, here, we demonstrate that these species are physiologically tolerant to excess nitrate concentrations.


Assuntos
Clorofila A , Fotossíntese , Poríferos/fisiologia , Temperatura , Animais , Oceano Índico , Nitratos , Complexo de Proteína do Fotossistema II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA