Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Gut Microbes ; 16(1): 2379440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132840

RESUMO

Prophages can have major clinical implications through their ability to change pathogenic bacterial traits. There is limited understanding of the prophage role in ecological, evolutionary, adaptive processes and pathogenicity of Helicobacter pylori, a widespread bacterium causally associated with gastric cancer. Inferring the exact prophage genomic location and completeness requires complete genomes. The international Helicobacter pylori Genome Project (HpGP) dataset comprises 1011 H. pylori complete clinical genomes enriched with epigenetic data. We thoroughly evaluated the H. pylori prophage genomic content in the HpGP dataset. We investigated population evolutionary dynamics through phylogenetic and pangenome analyses. Additionally, we identified genome rearrangements and assessed the impact of prophage presence on bacterial gene disruption and methylome. We found that 29.5% (298) of the HpGP genomes contain prophages, of which only 32.2% (96) were complete, minimizing the burden of prophage carriage. The prevalence of H. pylori prophage sequences was variable by geography and ancestry, but not by disease status of the human host. Prophage insertion occasionally results in gene disruption that can change the global bacterial epigenome. Gene function prediction allowed the development of the first model for lysogenic-lytic cycle regulation in H. pylori. We have disclosed new prophage inactivation mechanisms that appear to occur by genome rearrangement, merger with other mobile elements, and pseudogene accumulation. Our analysis provides a comprehensive framework for H. pylori prophage biological and genomics, offering insights into lysogeny regulation and bacterial adaptation to prophages.


Assuntos
Genoma Bacteriano , Genômica , Helicobacter pylori , Filogenia , Prófagos , Helicobacter pylori/genética , Helicobacter pylori/virologia , Prófagos/genética , Prófagos/fisiologia , Humanos , Infecções por Helicobacter/microbiologia
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39023219

RESUMO

Arms races between mobile genetic elements and prokaryotic hosts are major drivers of ecological and evolutionary change in microbial communities. Prokaryotic defense systems such as CRISPR-Cas have the potential to regulate microbiome composition by modifying the interactions among bacteria, plasmids, and phages. Here, we used longitudinal metagenomic data from 130 healthy and diseased individuals to study how the interplay of genetic parasites and CRISPR-Cas immunity reflects on the dynamics and composition of the human gut microbiome. Based on the coordinated study of 80 000 CRISPR-Cas loci and their targets, we show that CRISPR-Cas immunity effectively modulates bacteriophage abundances in the gut. Acquisition of CRISPR-Cas immunity typically leads to a decrease in the abundance of lytic phages but does not necessarily cause their complete disappearance. Much smaller effects are observed for lysogenic phages and plasmids. Conversely, phage-CRISPR interactions shape bacterial microdiversity by producing weak selective sweeps that benefit immune host lineages. We also show that distal (and chronologically older) regions of CRISPR arrays are enriched in spacers that are potentially functional and target crass-like phages and local prophages. This suggests that exposure to reactivated prophages and other endemic viruses is a major selective pressure in the gut microbiome that drives the maintenance of long-lasting immune memory.


Assuntos
Bactérias , Bacteriófagos , Sistemas CRISPR-Cas , Microbioma Gastrointestinal , Humanos , Bacteriófagos/genética , Bactérias/genética , Bactérias/classificação , Bactérias/virologia , Metagenômica , Plasmídeos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Interações entre Hospedeiro e Microrganismos , Prófagos/genética , Prófagos/fisiologia
3.
PLoS Biol ; 22(7): e3002725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39052683

RESUMO

Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology. In this study, we investigated the conditions governing the expression and production of "Samy", a prophage found in Streptomyces ambofaciens ATCC 23877. This siphoprophage is produced simultaneously with the activation of other mobile genetic elements. Remarkably, the presence and production of Samy increases bacterial dispersal under in vitro stress conditions. Altogether, this study unveiled a new property of a bacteriophage infection in the context of multicellular aggregate dynamics.


Assuntos
Prófagos , Streptomyces , Streptomyces/virologia , Streptomyces/fisiologia , Streptomyces/genética , Prófagos/genética , Prófagos/fisiologia , Ativação Viral/genética
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38916438

RESUMO

Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.


Assuntos
Biofilmes , Geobacter , Prófagos , Biofilmes/crescimento & desenvolvimento , Geobacter/genética , Geobacter/fisiologia , Prófagos/genética , Prófagos/fisiologia , Fontes de Energia Bioelétrica/microbiologia , Interações Microbianas , Transcriptoma
5.
Cell Host Microbe ; 32(6): 781-783, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870894

RESUMO

Stress-induced prophages commonly "jump ship" by inducing lysis via the host SOS response. In a recent work, Uppalapati et al. reports an alternate, stress-selective strategy. Instead of promoting lysis, the Salmonella Gifsy-1 prophage arrests growth specifically when the SOS response coincides with oxidative stress.


Assuntos
Estresse Oxidativo , Prófagos , Prófagos/genética , Prófagos/fisiologia , Resposta SOS em Genética , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Salmonella/genética , Salmonella/virologia
6.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932150

RESUMO

Filamentous bacteriophages belonging to the order Tubulavirales, family Inoviridae, significantly affect the properties of Gram-negative bacteria, but filamentous phages of many important pathogens have not been described so far. The aim of this study was to examine A. baumannii filamentous phages for the first time and to determine their effect on bacterial virulence. The filamentous phages were detected in 15.3% of A. baumannii strains as individual prophages in the genome or as tandem repeats, and a slightly higher percentage was detected in the culture collection (23.8%). The phylogenetic analyses revealed 12 new genera within the Inoviridae family. Bacteriophages that were selected and isolated showed structural and genomic characteristics of the family and were unable to form plaques. Upon host infection, these phages did not significantly affect bacterial twitching motility and capsule production but significantly affected growth kinetics, reduced biofilm formation, and increased antibiotic sensitivity. One of the possible mechanisms of reduced resistance to antibiotics is the observed decreased expression of efflux pumps after infection with filamentous phages.


Assuntos
Acinetobacter baumannii , Biofilmes , Genoma Viral , Filogenia , Acinetobacter baumannii/virologia , Acinetobacter baumannii/genética , Biofilmes/crescimento & desenvolvimento , Inovirus/genética , Inovirus/fisiologia , Inovirus/isolamento & purificação , Especificidade de Hospedeiro , Antibacterianos/farmacologia , Virulência , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Prófagos/genética , Prófagos/fisiologia
7.
mBio ; 15(7): e0207823, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38888367

RESUMO

Temperate phage-mediated horizontal gene transfer is a potent driver of genetic diversity in the evolution of bacteria. Most lambdoid prophages in Escherichia coli are integrated into the chromosome with the same orientation with respect to the direction of chromosomal replication, and their location on the chromosome is far from homogeneous. To better understand these features, we studied the interplay between lysogenic and lytic states of phage lambda in both native and inverted integration orientations at the wild-type integration site as well as at other sites on the bacterial chromosome. Measurements of free phage released by spontaneous induction showed that the stability of lysogenic states is affected by location and orientation along the chromosome, with stronger effects near the origin of replication. Competition experiments and range expansions between lysogenic strains with opposite orientations and insertion loci indicated that there are no major differences in growth. Moreover, measurements of the level of transcriptional bursts of the cI gene coding for the lambda phage repressor using single-molecule fluorescence in situ hybridization resulted in similar levels of transcription for both orientations and prophage location. We postulate that the preference for a given orientation and location is a result of a balance between the maintenance of lysogeny and the ability to lyse.IMPORTANCEThe integration of genetic material of temperate bacterial viruses (phages) into the chromosomes of bacteria is a potent evolutionary force, allowing bacteria to acquire in one stroke new traits and restructure the information in their chromosomes. Puzzlingly, this genetic material is preferentially integrated in a particular orientation and at non-random sites on the bacterial chromosome. The work described here reveals that the interplay between the maintenance of the stability of the integrated phage, its ability to excise, and its localization along the chromosome plays a key role in setting chromosomal organization in Escherichia coli.


Assuntos
Bacteriófago lambda , Cromossomos Bacterianos , Escherichia coli , Lisogenia , Escherichia coli/genética , Escherichia coli/virologia , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Cromossomos Bacterianos/genética , Lisogenia/genética , Integração Viral , Transferência Genética Horizontal , Instabilidade Genômica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Prófagos/genética , Prófagos/fisiologia , Hibridização in Situ Fluorescente , Proteínas Virais Reguladoras e Acessórias
8.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723602

RESUMO

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Assuntos
Prófagos , Vibrio cholerae , Vibrio cholerae/genética , Prófagos/genética , Prófagos/fisiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Genoma Bacteriano , Bacteriófagos/genética , Bacteriófagos/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
9.
Nat Commun ; 15(1): 3474, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750067

RESUMO

Evidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. Here we survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages. Our analysis indicates phage-associated genes are significantly different between spaceflight strains and their terrestrial counterparts. In addition, we identify 283 complete prophages, those that could initiate bacterial lysis and infect additional hosts, of which 21% are novel. These prophage regions encode functions that correlate with increased persistence in extreme environments, such as spaceflight, to include antimicrobial resistance and virulence, DNA damage repair, and dormancy. Our results correlate microbial adaptation in spaceflight to bacteriophage-encoded functions that may impact human health in spaceflight.


Assuntos
Adaptação Fisiológica , Bactérias , Bacteriófagos , Voo Espacial , Bactérias/virologia , Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Prófagos/genética , Prófagos/fisiologia , Humanos , Virulência/genética , Genoma Bacteriano/genética
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38739683

RESUMO

Temperate phages can interact with bacterial hosts through lytic and lysogenic cycles via different mechanisms. Lysogeny has been identified as the major form of bacteria-phage interaction in the coral-associated microbiome. However, the lysogenic-to-lytic switch of temperate phages in ecologically important coral-associated bacteria and its ecological impact have not been extensively investigated. By studying the prophages in coral-associated Halomonas meridiana, we found that two prophages, Phm1 and Phm3, are inducible by the DNA-damaging agent mitomycin C and that Phm3 is spontaneously activated under normal cultivation conditions. Furthermore, Phm3 undergoes an atypical lytic pathway that can amplify and package adjacent host DNA, potentially resulting in lateral transduction. The induction of Phm3 triggered a process of cell lysis accompanied by the formation of outer membrane vesicles (OMVs) and Phm3 attached to OMVs. This unique cell-lysis process was controlled by a four-gene lytic module within Phm3. Further analysis of the Tara Ocean dataset revealed that Phm3 represents a new group of temperate phages that are widely distributed and transcriptionally active in the ocean. Therefore, the combination of lateral transduction mediated by temperate phages and OMV transmission offers a versatile strategy for host-phage coevolution in marine ecosystems.


Assuntos
Antozoários , Halomonas , Prófagos , Halomonas/virologia , Halomonas/genética , Antozoários/microbiologia , Antozoários/virologia , Prófagos/genética , Prófagos/fisiologia , Animais , Lisogenia , Transdução Genética , Mitomicina/farmacologia
11.
mSphere ; 9(6): e0003124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38775467

RESUMO

The gain of mobile elements, such as prophages, can introduce cargo to the recipient bacterium that could facilitate its persistence in or expansion to a new environment, such as a host. While previous studies have focused on identifying and characterizing the genetic diversity of prophages, analyses characterizing the cargo that prophages carry have not been extensively explored. We characterized prophage regions from 303 Salmonella spp. genomes (representing 254 unique serovars) to assess the distribution of prophages in diverse Salmonella. On average, prophages accounted for 3.7% (0.1%-8.8%) of the total genomic content of each isolate. Prophage regions annotated as Gifsy 1 and Salmon Fels 1 were the most commonly identified intact prophages, suggesting that they are common throughout the Salmonella genus. Among 21,687 total coding sequences (CDSs) from intact prophage regions in subsp. enterica genomes, 7.5% (median; range: 1.1%-47.6%) were categorized as having a function not related to prophage integration or phage structure, some of which could potentially provide a functional attribute to the host Salmonella cell. These predicted functions could be broadly categorized into CDSs involved in: (i) modification of cell surface structures (i.e., glycosyltransferases); (ii) modulation of host responses (e.g., SodC/SodA, SopE, ArtAB, and typhoid toxin); (iii) conferring resistance to heavy metals and antimicrobials; (iv) metabolism of carbohydrates, amino acids, and nucleotides; and (v) DNA replication, repair, and regulation. Overall, our systematic analysis of prophage cargo highlights a broader role for prophage cargo in influencing the metabolic, virulence, and resistance characteristics of Salmonella. IMPORTANCE: Lysogenic bacteriophages (phages) can integrate their genome into a bacterial host's genome, potentially introducing genetic elements that can affect the fitness of the host bacterium. The functions of prophage-encoded genes are important to understand as these genes could be mobilized and transferred to a new host. Using a large genomic dataset representing >300 isolates from all known subspecies and species of Salmonella, our study contributes important new findings on the distribution of prophages and the types of cargo that diverse Salmonella prophages carry. We identified a number of coding sequences (CDSs) annotated as having cell surface-modifying attributes, suggesting that prophages may have played an important role in shaping Salmonella's diverse surface antigen repertoire. Furthermore, our characterization of prophages suggests that they play a broader role in facilitating the acquisition and transfer of CDSs associated with metabolism, DNA replication and repair, virulence factors, and to a lesser extent, antimicrobial resistance.


Assuntos
Genoma Bacteriano , Prófagos , Salmonella , Prófagos/genética , Prófagos/fisiologia , Virulência , Salmonella/virologia , Salmonella/genética , Variação Genética , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia
12.
J Bacteriol ; 206(5): e0040223, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38687034

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.


Assuntos
Prófagos , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Prófagos/genética , Prófagos/fisiologia , Virulência , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Biofilmes/crescimento & desenvolvimento , Animais , Lisogenia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Infecções por Pseudomonas/microbiologia
13.
Virology ; 595: 110087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636362

RESUMO

Vibrio parahaemolyticus is a globally important bacterium related to climate warming and health threat to human and marine animals. Yet, there is limited knowledge about its polylysogeny harboring multiple prophages and the genetic information. In this study, two prophages (VPS05ph1 and VPS05ph2) were identified in a V. parahaemolyticus isolate through genomic and transcriptional analyses. Both prophages were determined as HP1-like phages, located in a novel phylogenetic lineage of Peduoviridae. They shared a moderate genome-wide sequence similarity with each other and high synteny with the closest relatives, but showed low identities to the repressor counterparts of the representative phages within the family. In addition, no bacterial virulence genes, antibiotic resistance genes and known phage-encoded lytic proteins were identified on both prophage genomes. Moreover, the V. parahaemolyticus isolate was induced with mitomycin, which caused aberrant cellular morphology and nonviability of bacterial cells and excision of prophage VPS05ph1, accompanied by the respective inhibition and promotion of transcriptions of the cI-like and cox-like regulator genes for phage decision making. Results in this study provide the genetic context of polylysogeny in the V. parahaemolyticus isolate, support the diversity and prevalence of HP1-like phages in vibrios, and promote to explore interactions between the HP1-like prophage and its vibrio host.


Assuntos
Genoma Viral , Filogenia , Prófagos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virologia , Vibrio parahaemolyticus/genética , Prófagos/genética , Prófagos/isolamento & purificação , Prófagos/fisiologia , Lisogenia
14.
Cell Host Microbe ; 32(5): 768-778.e9, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38653241

RESUMO

Microbiomes feature complex interactions between diverse bacteria and bacteriophages. Synthetic microbiomes offer a powerful way to study these interactions; however, a major challenge is obtaining a representative bacteriophage population during the bacterial isolation process. We demonstrate that colony isolation reliably excludes virulent viruses from sample sources with low virion-to-bacteria ratios such as feces, creating "virulent virus-free" controls. When the virulent dsDNA virome is reintroduced to a 73-strain synthetic gut microbiome in a bioreactor model of the human colon, virulent viruses target susceptible strains without significantly altering community structure or metabolism. In addition, we detected signals of prophage induction that associate with virulent predation. Overall, our findings indicate that dilution-based isolation methods generate synthetic gut microbiomes that are heavily depleted, if not devoid, of virulent viruses and that such viruses, if reintroduced, have a targeted effect on community assembly, metabolism, and prophage replication.


Assuntos
Bactérias , Bacteriófagos , Fezes , Microbioma Gastrointestinal , Bacteriófagos/genética , Bacteriófagos/fisiologia , Humanos , Fezes/microbiologia , Fezes/virologia , Bactérias/virologia , Bactérias/genética , Prófagos/genética , Prófagos/fisiologia , Viroma , Reatores Biológicos/microbiologia , Reatores Biológicos/virologia , Colo/microbiologia , Colo/virologia , Microbiota , Virulência
15.
Curr Biol ; 34(8): 1739-1749.e7, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38599209

RESUMO

Prophages, viral sequences integrated into bacterial genomes, can be beneficial and costly. Despite the risk of prophage activation and subsequent bacterial death, active prophages are present in most bacterial genomes. However, our understanding of the selective forces that maintain prophages in bacterial populations is limited. Combining experimental evolution with stochastic modeling, we show that prophage maintenance and loss are primarily determined by environmental conditions that alter the net fitness effect of a prophage on its bacterial host. When prophages are too costly, they are rapidly lost through environment-specific sequences of selective sweeps. Conflicting selection pressures that select against the prophage but for a prophage-encoded accessory gene can maintain prophages. The dynamics of prophage maintenance additionally depend on the sociality of this accessory gene. Prophage-encoded genes that exclusively benefit the lysogen maintain prophages at higher frequencies compared with genes that benefit the entire population. That is because the latter can protect phage-free "cheaters," reducing the benefit of maintaining the prophage. Our simulations suggest that environmental variation plays a larger role than mutation rates in determining prophage maintenance. These findings highlight the complexity of selection pressures that act on mobile genetic elements and challenge our understanding of the role of environmental factors relative to random chance events in shaping the evolutionary trajectory of bacterial populations. By shedding light on the key factors that shape microbial populations in the face of environmental changes, our study significantly advances our understanding of the complex dynamics of microbial evolution and diversification.


Assuntos
Prófagos , Prófagos/genética , Prófagos/fisiologia , Seleção Genética , Mutação , Meio Ambiente , Lisogenia/genética , Evolução Molecular
16.
Curr Biol ; 34(8): R331-R333, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653204

RESUMO

Bacterial genomes often harbor integrated viruses (prophages), which provide novel functions but also lyse cells under stressful conditions. A new paper combines mathematical models with experimental evolution to determine how prophages are maintained in bacterial populations despite their fitness costs.


Assuntos
Bactérias , Prófagos , Prófagos/genética , Prófagos/fisiologia , Bactérias/virologia , Bactérias/genética
17.
Appl Environ Microbiol ; 88(18): e0106822, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073944

RESUMO

Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a ΔrecT mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of pg40, which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. IMPORTANCE Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.


Assuntos
Bacteriófagos , Prófagos , Bacteriófagos/genética , Prófagos/fisiologia , Pseudomonas aeruginosa/genética , Recombinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
18.
Environ Sci Technol ; 56(12): 8920-8931, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35438974

RESUMO

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.


Assuntos
Bacteriófagos , Escherichia coli K12 , Gases em Plasma , Antibacterianos/farmacologia , Bactérias , Biofilmes , Escherichia coli , Gases em Plasma/farmacologia , Prófagos/fisiologia , Espécies Reativas de Oxigênio
19.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
20.
Virology ; 568: 86-100, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149347

RESUMO

Bacteriophage T7 is an extensively studied virulent phage, and its taxonomic family, the Autographiviridae, is broadly synonymous with a strictly virulent lifestyle. It is difficult to imagine how a T7-like phage could function in a "domesticated" temperate lifestyle, in which it is incorporated into the host's genome. Here we describe two temperate T7-like bacteriophages: ProddE, a Desulfovibrio phage, and Pasto, an Agrobacterium phage. Each contains recognizable T7-like proteins in the canonical T7-like gene order, but with the addition of lysogeny gene modules. While ProddE contains a phage-like repressor, Pasto lysogeny appears to be controlled by a novel MarR-like transcriptional regulator. In addition, we identify similar T7-like prophage elements in a wide variety of Gram-negative bacterial genomes and a small number of Gram-positive genomes. Identification of these elements in diverse bacterial species raises interesting evolutionary questions about the origins of T7-like phages and which lifestyle, temperate or virulent, is the ancestral form.


Assuntos
Bacteriófagos/fisiologia , Caudovirales/fisiologia , Evolução Biológica , Evolução Molecular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Lisogenia , Filogenia , Prófagos/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA