Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Chem Commun (Camb) ; 56(11): 1733-1736, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31938799

RESUMO

We report here that pregnenolonyl-α-glucoside (2), a steryl glycoside synthesized directly from pregnenolone and glucose via a consecutive multienzyme-catalyzed process, exhibits marked dose-dependent cytotoxic activity against HT29, AGS, and ES-2 cells with IC50 values of 23.5 to 50.9 µM. An in vitro CYP17A1 binding pattern assay and protein-ligand docking model support that 2, like abiraterone, binds in the active site heme iron pocket of CYP17A1.


Assuntos
Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Glucosídeos/farmacologia , Pregnenolona/análogos & derivados , Pregnenolona/farmacologia , Androstenos/metabolismo , Androstenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bactérias/enzimologia , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Glucosídeos/síntese química , Glucosídeos/metabolismo , Glicosilação , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Pregnenolona/metabolismo , Ligação Proteica
2.
Curr Med Chem ; 27(9): 1405-1419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31333082

RESUMO

Antimicrobial Peptides (AMPs) are the key effectors of the innate immunity and represent promising molecules for the development of new antibacterial drugs. However, to achieve this goal, some problems need to be overcome: (i) the cytotoxic effects at high concentrations; (ii) the poor biostability and (iii) the difficulty in reaching the target site. Frog skin is one of the richest natural storehouses of AMPs, and over the years, many peptides have been isolated from it, characterized and classified into several families encompassing temporins, brevinins, nigrocins and esculentins. In this review, we summarized how the isolation/characterization of peptides belonging to the esculentin-1 family drove us to the design of an analogue, i.e. esculentin-1a(1-21)NH2, with a powerful antimicrobial action and immunomodulatory properties. The peptide had a wide spectrum of activity, especially against the opportunistic Gram-negative bacterium Pseudomonas aeruginosa. We described the structural features and the in vitro/in vivo biological characterization of this peptide as well as the strategies used to improve its biological properties. Among them: (i) the design of a diastereomer carrying Damino acids in order to reduce the peptide's cytotoxicity and improve its half-life; (ii) the covalent conjugation of the peptide to gold nanoparticles or its encapsulation into poly(lactide- co-glycolide) nanoparticles; and (iii) the peptide immobilization to biomedical devices (such as silicon hydrogel contact lenses) to obtain an antibacterial surface able to reduce microbial growth and attachment. Summing up the best results obtained so far, this review traces all the steps that led these frog-skin AMPs to the direction of peptide-based drugs for clinical use.


Assuntos
Glicosídeos/farmacologia , Nanopartículas Metálicas , Pregnenolona/análogos & derivados , Proteínas de Anfíbios , Animais , Ouro , Peptídeos , Pregnenolona/farmacologia , Pele
3.
Chem Phys Lipids ; 227: 104850, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31836520

RESUMO

20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3ß-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRß and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.


Assuntos
Alcinos/química , Benzofuranos/química , Hidroxicolesteróis/metabolismo , Sítios de Ligação , Humanos , Hidroxicolesteróis/síntese química , Hidroxicolesteróis/química , Receptores X do Fígado/química , Receptores X do Fígado/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Pregnenolona/análogos & derivados , Pregnenolona/síntese química , Pregnenolona/química , Pregnenolona/metabolismo , Ligação Proteica , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Rep ; 9(1): 18988, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831857

RESUMO

The airway epithelium is seriously damaged upon pulmonary Pseudomonas aeruginosa infection, especially in cystic fibrosis (CF) sufferers. Therefore, the discovery of novel anti-infective agents accelerating healing of infected injured tissues is crucial. The antipseudomonal peptides esculentin-1a(1-21)NH2 and its diastereomer Esc(1-21)-1c (Esc peptides) hold promise in this respect. In fact, they stimulate airway epithelial wound repair, but no mechanistic insights are available. Here we demonstrated that this process occurs through promotion of cell migration by an indirect activation of epidermal growth factor receptor mediated by metalloproteinases. Furthermore, we showed an increased expression of metalloproteinase 9, at both gene and protein levels, in peptide-treated bronchial epithelial cells with a functional or mutated form of CF transmembrane conductance regulator. In addition, the two peptides counteracted the inhibitory effect of Pseudomonas lipopolysaccharide (mimicking an infection condition) on the wound healing activity of the airway epithelium, and they enhanced the production of interleukin-8 from both types of cells. Finally, no immunogenicity was discovered for Esc peptides, suggesting their potential safety for clinical usage. Besides representing a step forward in understanding the molecular mechanism underlying the peptide-induced wound healing activity, these studies have contributed to highlight Esc peptides as valuable therapeutics with multiple functions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Brônquios/patologia , Epitélio/patologia , Glicosídeos/farmacologia , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Peptídeos/imunologia , Pregnenolona/análogos & derivados , Cicatrização , Animais , Anticorpos/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/enzimologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Peptídeos/farmacologia , Pregnenolona/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cicatrização/efeitos dos fármacos
5.
Nat Plants ; 5(10): 1066-1075, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501530

RESUMO

Coumarins, also known as 1,2-benzopyrones, comprise a large class of secondary metabolites that are ubiquitously found throughout the plant kingdom. In many plant species, coumarins are particularly important for iron acquisition and plant defence. Here, we show that COUMARIN SYNTHASE (COSY) is a key enzyme in the biosynthesis of coumarins. Arabidopsis thaliana cosy mutants have strongly reduced levels of coumarin and accumulate o-hydroxyphenylpropanoids instead. Accordingly, cosy mutants have reduced iron content and show growth defects when grown under conditions in which there is a limited availability of iron. Recombinant COSY is able to produce umbelliferone, esculetin and scopoletin from their respective o-hydroxycinnamoyl-CoA thioesters by two reaction steps-a trans-cis isomerization followed by a lactonization. This conversion happens partially spontaneously and is catalysed by light, which explains why the need for an enzyme for this conversion has been overlooked. The combined results show that COSY has an essential function in the biosynthesis of coumarins in organs that are shielded from light, such as roots. These findings provide routes to improving coumarin production in crops or by microbial fermentation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cumarínicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catálise , Glicosídeos/biossíntese , Isomerismo , Mutação , Raízes de Plantas/metabolismo , Pregnenolona/análogos & derivados , Pregnenolona/biossíntese , Escopoletina/metabolismo , Umbeliferonas/biossíntese
6.
FEBS J ; 286(19): 3874-3891, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144441

RESUMO

Pseudomonas aeruginosa is a pathogenic bacterium known to cause serious human infections, especially in immune-compromised patients. This is due to its unique ability to transform from a drug-tolerant planktonic to a more dangerous and treatment-resistant sessile life form, called biofilm. Recently, two derivatives of the frog skin antimicrobial peptide esculentin-1a, i.e. Esc(1-21) and its D-amino acids containing diastereomer Esc(1-21)-1c, were characterized for their powerful anti-Pseudomonal activity against both forms. Prevention of biofilm formation already in its early stages could be even more advantageous for counteracting infections induced by this bacterium. In this work, we studied how the diastereomer Esc(1-21)-1c can inhibit Pseudomonas biofilm formation in comparison to the parent peptide and two clinically-used conventional antibiotics, i.e. colistin and aztreonam, when applied at dosages below the minimal growth inhibitory concentration. Biofilm prevention was correlated to the peptides' ability to inhibit Pseudomonas motility and to reduce the production of virulent metabolites, for example, pyoverdine and rhamnolipids. Furthermore, the molecular mechanism underlying these activities was evaluated by studying the peptides' effect on the expression of key genes involved in the virulence and motility of bacteria, as well as by monitoring the peptides' binding to the bacterial signaling nucleotide ppGpp. Our results demonstrate that the presence of only two D-amino acids in Esc(1-21)-1c is sufficient to downregulate ppGpp-mediated expression of biofilm-associated genes, presumably as a result of higher peptide stability and therefore prolonged interaction with the nucleotide. Overall, these studies should assist efficient design and optimization of new anti-infective agents with multiple pharmacologically beneficial properties.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Glicosídeos/farmacologia , Pregnenolona/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Virulência/genética , Antibacterianos/química , Glicosídeos/química , Isomerismo , Pregnenolona/química , Pregnenolona/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade
7.
Cells ; 8(5)2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137846

RESUMO

The widespread involvement of the Hedgehog (Hh) signaling pathway in human malignancies has motivated the clinical development of Smoothened (Smo) antagonists, such as vismodegib and sonidegib. However, Smo antagonists have failed to benefit patients suffering from Hh pathway-dependent solid tumors, such as pancreatic, colorectal, or ovarian cancer. Hh-dependent cancers are often driven by activating mutations that occur downstream of Smo and directly activate the transcription factors known as glioma-associated oncogenes (Gli1-3). Hence, the direct targeting of Gli could be a more effective strategy for achieving disease modification compared to Smo antagonism. In this study, we report on the biological and pharmacological evaluation of Oxy186, a semisynthetic oxysterol analogue, as a novel inhibitor of Hh signaling acting downstream of Smo, with encouraging drug-like properties. Oxy186 exhibits strong inhibition of ligand-induced Hh signaling in NIH3T3-E1 fibroblasts, as well as in constitutively activated Hh signaling in Suppressor of Fused (Sufu) null mouse embryonic fibroblast (MEF) cells. Oxy186 also inhibits Gli1 transcriptional activity in NIH3T3-E1 cells expressing exogenous Gli1 and Gli-dependent reporter constructs. Furthermore, Oxy186 suppresses Hh signaling in PANC-1 cells, a human pancreatic ductal adenocarcinoma (PDAC) tumor cell line, as well as PANC-1 cell proliferation in vitro, and in human lung cancer cell lines, A549 and H2039.


Assuntos
Fibroblastos/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Oxisteróis/química , Neoplasias Pancreáticas/patologia , Fenantrenos/farmacologia , Pregnenolona/análogos & derivados , Pregnenolona/farmacologia , Células A549 , Animais , Área Sob a Curva , Proliferação de Células/efeitos dos fármacos , Meia-Vida , Proteínas Hedgehog/metabolismo , Células Hep G2 , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Fenantrenos/administração & dosagem , Pregnenolona/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Transfecção , Proteína GLI1 em Dedos de Zinco/genética
8.
Steroids ; 147: 4-9, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30296546

RESUMO

Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3ß-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.


Assuntos
Androstenóis/farmacologia , Colesterol/farmacologia , Ácidos Dicarboxílicos/farmacologia , Ésteres/farmacologia , Fármacos Neuroprotetores/farmacologia , Pregnenolona/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Androstenóis/sangue , Androstenóis/química , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colesterol/sangue , Colesterol/química , Ácidos Dicarboxílicos/sangue , Ácidos Dicarboxílicos/química , Estabilidade de Medicamentos , Ésteres/sangue , Ésteres/química , Células Hep G2 , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/química , Pregnenolona/sangue , Pregnenolona/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Células Tumorais Cultivadas
9.
Microb Cell Fact ; 17(1): 100, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940969

RESUMO

BACKGROUND: Metabolic activities of microorganisms to modify the chemical structures of organic compounds became an effective tool for the production of high-valued steroidal drugs or their precursors. Currently research efforts in production of steroids of pharmaceutical interest are focused on either optimization of existing processes or identification of novel potentially useful bioconversions. Previous studies demonstrated that P. lanosocoeruleum KCH 3012 metabolizes androstanes to the corresponding lactones with high yield. In order to explore more thoroughly the factors determining steroid metabolism by this organism, the current study was initiated to delineate the specificity of this fungus with respect to the cleavage of steroid side chain of progesterone and pregnenolone The effect of substituents at C-16 in 16-dehydropregnenolone, 16α,17α-epoxy-pregnenolone and 16α-methoxy-pregnenolone on the pattern of metabolic processing of these steroids was also investigated. RESULTS AND DISCUSSION: All of the analogues tested (except the last of the listed) in multi-step transformations underwent the Baeyer-Villiger oxidation to their δ-D-lactones. The activity of 3ß-HSD was a factor affecting the composition of the product mixtures. 16α,17α-epoxy-pregnenolone underwent a rare epoxide opening with retention stereochemistry to give four 16α-hydroxy-lactones. Apart from oxidative transformations, a reductive pathway was revealed with the unique hydrogenation of 5-ene double bond leading to the formation of 3ß,16α-dihydroxy-17a-oxa-D-homo-5α-androstan-17-one. 16α-Methoxy-pregnenolone was transformed to the 20(R)-alcohol with no further conversion. CONCLUSIONS: This work clearly demonstrated that P. lanosocoeruleum KCH 3012 has great multi-functional catalytic properties towards the pregnane-type steroids. Studies have highlighted that a slight modification of the D-ring of substrates may control metabolic fate either into the lactonization or reductive and oxidative pathways. Possibility of epoxide opening by enzymes from this microorganism affords a unique opportunity for generation of novel bioactive steroids.


Assuntos
Lactonas/metabolismo , Redes e Vias Metabólicas , Penicillium/metabolismo , Pregnenos/metabolismo , Esteroides/metabolismo , Biotransformação , Catálise , Compostos de Epóxi/metabolismo , Estrutura Molecular , Oxirredução , Pregnenolona/análogos & derivados , Pregnenolona/metabolismo , Progesterona/metabolismo
10.
Molecules ; 23(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425150

RESUMO

A mycelial culture of the Kenyan basidiomycete Fomitiporia aethiopica was fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes 1-5, for which we propose the trivial name aethiopinolones A-E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities.


Assuntos
Basidiomycota/química , Pregnenolona/análogos & derivados , Pregnenolona/química , Triterpenos/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Pregnenolona/isolamento & purificação , Pregnenolona/farmacologia , Metabolismo Secundário , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
11.
EBioMedicine ; 22: 225-241, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28780078

RESUMO

Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Estrogênios/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Morte Celular/efeitos dos fármacos , Meios de Cultura , Modelos Animais de Doenças , Estrogênios/farmacologia , Glicólise , Glicosídeos/administração & dosagem , Glicosídeos/farmacologia , Células HEK293 , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Pregnenolona/administração & dosagem , Pregnenolona/análogos & derivados , Pregnenolona/farmacologia , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Steroids ; 123: 61-66, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28502863

RESUMO

Aza-Michael addition of 16-dehydropregnenolone was studied in the presence of a basic ionic liquid, [DBU][OAc] as catalyst and solvent. The reaction was carried out using different primary and secondary amines as N-nucleophiles. The products were obtained in moderate to good yields and were characterized by 1H and 13C NMR, MS and IR. The ionic liquid was found to be an efficient and recyclable catalyst that was reused five times. The products were investigated for the inhibition of in vitro C17,20-lyase activity and displayed moderate inhibitory effect.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Líquidos Iônicos/química , Liases/antagonistas & inibidores , Pregnenolona/síntese química , Pregnenolona/farmacologia , Animais , Catálise , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Modelos Moleculares , Conformação Molecular , Pregnenolona/análogos & derivados , Pregnenolona/química , Ratos
13.
J Steroid Biochem Mol Biol ; 168: 110-117, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28232149

RESUMO

16-Dehydropregnenolone (DHP) has been developed and patented as a promising antihyperlipidemic agent by CSIR-Central Drug Research Institute (CSIR-CDRI), India. Although DHP is implicated in controlling cholesterol homeostasis, the mechanism underlying its pharmacological effect in hyperlipidemic disease models is poorly understood. In the present study, we postulated that DHP lowers serum lipids through regulating the key hepatic genes accountable for cholesterol metabolism. The hypothesis was tested on golden Syrian hamsters fed with high-fat diet (HFD) following oral administration of DHP at a dose of 72mg/kg body weight for a period of one week. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total bile acids (TBA) in feces were measured. Real time comparative gene expression studies were performed for CYP7A1, LXRα and PPARα level in liver tissue of hamsters. The results revealed that the DHP profoundly decreased the levels of serum TC, TG, LDL-C and atherogenic index (AI), whilst elevated the HDL-C/TC ratio. Besides, DHP exhibited an anti-hyperlipidemic effect in the HFD induced hyperlipidemic hamsters by means of: (1) up-regulating the gene expression of CYP7A1 encoded cholesterol 7α-hydroxylase, that promotes the catabolism of cholesterol to bile acid; (2) inducing the gene expression of transcription factors LXRα and PPARα; (3) increasing the TBA excretion through feces. Collectively, the findings presented confer the hypolipidemic activity of DHP via up-regulation of hepatic CYP7A1 pathway that promotes cholesterol-to-bile acid conversion and bile acid excretion.


Assuntos
Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol/sangue , Hiperlipidemias/sangue , Receptores X do Fígado/metabolismo , PPAR alfa/metabolismo , Pregnenolona/análogos & derivados , Animais , Ácidos e Sais Biliares/química , LDL-Colesterol/sangue , Cricetinae , Fezes , Células Hep G2 , Humanos , Masculino , Mesocricetus , Pregnenolona/farmacologia , Fatores de Tempo , Triglicerídeos/sangue , Regulação para Cima
14.
Bioorg Med Chem ; 25(5): 1600-1607, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174065

RESUMO

The aim of this study was to synthesize several 16-dehydropregnenolone derivatives containing an imidazole ring at C-21 and a different ester moiety at C-3 as inhibitors of 5α-reductase 1 and 2 isoenzymes. Their binding capacity to the androgen receptor (AR) was also studied. Additionally, we evaluated their pharmacological effect in a castrated hamster model and their cytotoxic activity on a panel of cancer cells (PC-3, MCF7, SK-LU-1). The results showed that only the derivatives with an alicyclic ester at C-3 showed 5α-R2 enzyme inhibition activity, the most potent of them being 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3ß-yl-cyclohexanecarboxylate with an IC50 of 29nM. This is important because prostatic benign hyperplasia is directly associated with the presence of 5α-R2. However, all the derivatives failed to inhibit 5α-R1 or bind to the AR. These alicyclic ester derivatives decreased the weight and size of androgen-dependent glands in the hamster, indicating they are very active in vivo and are not toxic. In addition, the 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3ß-yl-acetate derivative showed the highest cytotoxic activity on the three cancer cell lines studied. It is therefore important in the synthesis of steroidal compounds to consider the size of the ester moiety at C-3 of the steroid skeleton, which is key in obtaining biological activity, as observed in this experiment.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Colestenona 5 alfa-Redutase/efeitos dos fármacos , Pregnenolona/análogos & derivados , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Camundongos , Pregnenolona/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Ratos
15.
J Endocrinol ; 232(3): 423-435, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28115493

RESUMO

The insulin-releasing effects, cellular mechanisms of action and anti-hyperglycaemic activity of 10 analogues of esculentin-2CHa lacking the cyclic C-terminal domain (CKISKQC) were evaluated. Analogues of the truncated peptide, esculentin-2CHa(1-30), were designed for plasma enzyme resistance and increased biological activity. Effects of those analogues on insulin release, cell membrane integrity, membrane potential, intracellular Ca2+ and cAMP levels were determined using clonal BRIN-BD11 cells. Their acute effects on glucose tolerance were investigated using NIH Swiss mice. d-Amino acid substitutions at positions 7(Arg), 15(Lys) and 23(Lys) and fatty acid (l-octanoate) attachment to Lys at position 15 of esculentin-2CHa(1-30) conveyed resistance to plasma enzyme degradation whilst preserving insulin-releasing activity. Analogues, [d-Arg7,d-Lys15,d-Lys23]-esculentin-2CHa(1-30) and Lys15-octanoate-esculentin-2CHa(1-30), exhibiting most promising profiles and with confirmed effects on both human insulin-secreting cells and primary mouse islets were selected for further analysis. Using chemical inhibition of adenylate cyclase, protein kinase C or phospholipase C pathways, involvement of PLC/PKC-mediated insulin secretion was confirmed similar to that of CCK-8. Diazoxide, verapamil and Ca2+ omission inhibited insulin secretion induced by the esculentin-2CHa(1-30) analogues suggesting an action on KATP and Ca2+ channels also. Consistent with this, the analogues depolarised the plasma membrane and increased intracellular Ca2+ Evaluation with fluorescent-labelled esculentin-2CHa(1-30) indicated membrane action, with internalisation; however, patch-clamp experiments suggested that depolarisation was not due to the direct inhibition of KATP channels. Acute administration of either analogue to NIH Swiss mice improved glucose tolerance and enhanced insulin release similar to that observed with GLP-1. These data suggest that multi-acting analogues of esculentin-2CHa(1-30) may prove useful for glycaemic control in obesity-diabetes.


Assuntos
Glicosídeos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Pregnenolona/análogos & derivados , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Pregnenolona/farmacologia
16.
Pol J Microbiol ; 66(3): 321-326, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29319524

RESUMO

Delftia acidovorans MTCC 3363 was found to convert 16-dehydropregnenolone acetate (16-DPA) exclusively to 4-androstene-3, 17-dione (AD). Addition of 9α-hydroxylase inhibitors was not required for preventing the accumulation of byproducts. The effect of pH, temperature, substrate concentration, surfactants and carrier solvents on this bioconversion has been studied. 16-DPA was maximally converted in buffered medium at pH 7.0, at temperature 30°C and 0.5 mg ml-1 substrate concentration. Detergent addition and temperature above 35°C had deleterious effect on bioconversion. Dioxan was found to be the best carrier solvent for biotransformation of 16-DPA to AD.


Assuntos
Androstenodiona/metabolismo , Delftia acidovorans/metabolismo , Pregnenolona/análogos & derivados , Biotransformação/fisiologia , Pregnenolona/metabolismo , Microbiologia do Solo
17.
J Basic Microbiol ; 57(1): 12-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27690325

RESUMO

Nowadays, there are a few steroid drugs or intermediates that have been obtained via the transformation of microorganisms, and many strains of transformed steroids have not been found yet. Therefore, it is very significant to screen for the strains that have the abilities to transform steroids to produce valuable products. This study has focused on the screen and identification of strains, the structural identification of converted products, and the optimization of transformation conditions, as well as the establishment of transformation systems. A soil microbiota was screened for strain involved in the biotransformation of steroids. A new isolate IS547 is capable of converting a variety of steroids (such as cholesterol, ergosterol, hydrocortisone, progesterone, pregnenolone, and 16,17-alpha-epoxypregnenolone). Based on the 18S rDNA gene sequence comparison, the isolate IS547 has been demonstrated to be very closely related to Cladosporium sp. genus. Present paper is the first report regarding the microbial transformation by Cladosporium sp. to produce active intermediates, which include 7-hydroxy cholesterol, 20-droxyl-16α,17α-epoxypregna-4-dien-3-one, 7-ketocholesterol, and 7-droxyl-16α,17α-epoxypregna-4-dien-3,20-dione. Under the optimum conditions, the yields of product 3 and product 4 were 20.58 and 17.42%, respectively, higher than that prior to the optimization. The transformation rate increased significantly under the optimum fermentation conditions. This study describes an efficient, rapid, and inexpensive biotransformation system for the production of active pharmaceutical intermediates.


Assuntos
Bactérias/metabolismo , Colesterol/metabolismo , Cladosporium/metabolismo , Microbiota/fisiologia , Pregnenolona/análogos & derivados , Microbiologia do Solo , Esteroides/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Colesterol/química , Cladosporium/genética , Cladosporium/isolamento & purificação , Cladosporium/ultraestrutura , Fermentação , Flavonoides/química , Flavonoides/metabolismo , Cetocolesteróis/química , Cetocolesteróis/metabolismo , Pregnenolona/metabolismo , Esteroides/química
18.
Steroids ; 117: 71-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644145

RESUMO

The condensation of 16-dehydropregnenolone acetate with 2-aminobenzimidazole was studied. The polycyclic aromatic product was formed as a single regioisomer in a cascade reaction comprising addition, cyclization, autoxidation, and aromatization, in addition to the rearranged D-homo product. The reaction mechanism based on DFT calculations is proposed.


Assuntos
Benzimidazóis/química , Pregnenolona/análogos & derivados , Ciclização , Modelos Moleculares , Estrutura Molecular , Pregnenolona/química , Esteroides/química
19.
Pharm Dev Technol ; 22(2): 218-228, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27269370

RESUMO

16-Dehydropregnenolone (16-DHP) is an active compound with an unsatisfied in vivo behavior and poor water-solubility, which limits its clinical application. To improve its in vivo behavior and water-solubility, a Hydroxypropyl-beta-Cyclodextrin (HP-ß-CD) inclusion complex of 16-DHP was prepared in this paper. Pharmacokinetic studies after oral administration of 16-DHP-HP-ß-CD at doses of 37.5, 75, 150 mg/kg were carried out to investigate its dose proportionality in rats. The relative bioavailability was researched by comparing the area under the plasma concentration-time curve of 16-DHP-HP-ß-CD and free 16-DHP after oral administration in rats at the dose of 75 mg/kg. At the same time, tissue distribution of 16-DHP-HP-ß-CD after oral administration at the dose of 240 mg/kg in mice was also investigated. Consequently, 16-DHP-HP-ß-CD appeared to be a linear pharmacokinetic character after peroral administration to the rat at the doses tested. Compared to free 16-DHP, inclusion complex could significantly improve the relative bioavailability (467%). Tissue distribution studies indicated that 16-DHP-HP-ß-CD tended to distribute into stomach, intestine, lung, brain and liver.


Assuntos
Portadores de Fármacos/química , Pregnenolona/análogos & derivados , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Feminino , Camundongos , Pregnenolona/administração & dosagem , Pregnenolona/química , Pregnenolona/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual
20.
Steroids ; 112: 36-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27154752

RESUMO

Novel ring D-condensed 2-pyrazolines in the Δ(5)-androstene series were efficiently synthesized from 16-dehydropregnenolone or its acetate with different arylhydrazines or methylhydrazine, respectively, under microwave irradiation. The reactions are assumed to occur via hydrazone intermediates, followed by intramolecular 1,4-addition leading to the fused heteroring stereoselectively with a 16α,17α-cis ring junction. The synthesized compounds were subjected to in vitro pharmacological studies of their antiproliferative activities against four human breast (MCF7, T47D, MDA-MB-231 and MDA-MB-361) and three cervical (HeLa, C33A and SiHA) malignant cell lines. Flow cytometry revealed that the most potent agent elicited a cell cycle disturbance.


Assuntos
Antineoplásicos/farmacologia , Hidrazinas/química , Micro-Ondas , Esteroides/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Hidrazonas/química , Pregnenolona/análogos & derivados , Pregnenolona/química , Estereoisomerismo , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA