Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456539

RESUMO

Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase­activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F­actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit­8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription­quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)­ or angiotensin II (Ang II)­treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy­related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO­ or Ang II­induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , Miócitos Cardíacos , Nitrobenzoatos , Procainamida/análogos & derivados , Humanos , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiopatias Congênitas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38220071

RESUMO

The toxicity of copper nanoparticles (CuNPs) to aquatic animals, particularly their effects on the cardiovascular system, has not been thoroughly investigated. In the present study, zebrafish embryos were used as a model to address this issue. After exposure to different concentrations (0.01, 0.1, 1, and 3 mg/L) of CuNPs for 96 h (4 to 100 h post-fertilization), cardiac parameters of the heart rate (HR), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac output (CO), and vascular parameters of the aortic blood flow velocity (ABFV) and aortic diameter (AD) were examined by a video-microscopic method. Morphologically, CuNPs induced concentration-dependent pericardial edema. Although CuNPs did not alter the HR, they significantly reduced the EDV, SV, and CO at ≥0.1 mg/L, the ESV and EF at 3 mg/L, the ABFV at ≥0.1 mg/L, and the AD at ≥1 mg/L. Transcript levels of several cardiac genes, nppa, nppb, vmhc, and gata4, were also examined. CuNPs significantly suppressed nppa and nppb at ≥0.1 mg/L, gata4 at ≥0.01 mg/L, and vmhc at 1 mg/L. This study demonstrated that CuNPs can induce cardiovascular toxicity at environmentally relevant concentrations during fish embryonic development and highlight the potential ecotoxicity of CuNPs to aquatic animals.


Assuntos
Sistema Cardiovascular , Nanopartículas , Nitrobenzoatos , Procainamida/análogos & derivados , Animais , Peixe-Zebra , Cobre/toxicidade , Nanopartículas/toxicidade
3.
Heart Rhythm ; 21(2): 184-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924963

RESUMO

BACKGROUND: More than a hundred genetic loci have been associated with atrial fibrillation (AF). But the exact mechanism remains unclear and the treatment needs to be improved. OBJECTIVE: This study aimed to investigate the mechanism and potential treatment of NPPA mutation-associated AF. METHODS: Nppa knock-in (KI, p.I137T) rats were generated, and cardiac function was evaluated. Blood pressure was recorded using a tail-cuff system. The expression levels were measured using real-time polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot analysis, and RNA-sequence analysis. Programmed electrical stimulation, patch clamp, and multielectrode array were used to record the electrophysical characteristics. RESULTS: Mutant rats displayed downregulated expression of atrial natriuretic peptide but elevated blood pressure and enlarged left atrial end-diastolic diameter. Further, gene topology analysis suggested that the majority of differently expressed genes in Nppa KI rats were related to inflammation, electrical remodeling, and structural remodeling. The expression levels of C-C chemokine ligand 5 and galectin-3 involved in remodeling were higher, while there were declined levels of Nav1.5, Cav1.2, and connexin 40. AF was more easily induced in KI rats. Electrical remodeling included abbreviated action potentials, effective refractory period, increased late sodium current, and reduced calcium current, giving rise to conduction abnormalities. These electrophysiological changes could be reversed by the late sodium current blocker ranolazine and the Nav1.8 blocker A-803467. CONCLUSION: Our findings suggest that structural remodeling related to inflammation and fibrosis and electrical remodeling involved in late sodium current underly the major effects of the Nppa (p.I137T) variant to induce AF, which can be attenuated by the late sodium current blocker and Nav1.8 blocker.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Procainamida , Animais , Ratos , Potenciais de Ação/fisiologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Fator Natriurético Atrial , Remodelamento Atrial/fisiologia , Átrios do Coração , Inflamação/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Procainamida/análogos & derivados , Sódio/metabolismo
4.
Glob Heart ; 17(1): 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586748

RESUMO

Background: Atrial natriuretic peptide (ANP) has been associated with cardiovascular disease (CVD) and related risk factors, but the clinical application is limited and the underlying mechanisms are not very clear. Here, we aimed to examine whether proANP and its coding gene methylation were associated with CVD in the Chinese population. Methods: Serum proANP and peripheral blood DNA methylation of natriuretic peptide A gene (NPPA) promoter was quantified at baseline for 2,498 community members (mean aged 53 years, 38% men) in the Gusu cohort. CVD events were obtained during 10 years of follow-up. A competing-risks survival regression model was applied to examine the prospective associations of proANP and NPPA promoter methylation with incident CVD. Results: During follow-up, 210 participants developed CVD events, 50 participants died from non-cardiovascular causes, and 214 participants were lost. Per 1-nmol/L increment of serum proANP was associated with a 22% (HR = 1.22, 95%CI: 1.03-1.44, P = 0.025) higher risk of CVD during follow-up. Of the 9 CpG sites assayed, per 2-fold increment of DNA methylation at CpG3 (located at Chr1:11908299) was significantly associated with a half lower risk of CVD (HR = 0.50, 95%CI: 0.30-0.82, P = 0.006). The gene-based analysis found that DNA methylation of the 9 CpGs at NPPA promoter as a whole was significantly associated with incident CVD (P < 0.05). Conclusions: Increased proANP and hypomethylation at NPPA promoter at baseline predicted an increased future risk of CVD in Chinese adults. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of CVD.


Assuntos
Fator Natriurético Atrial , Doenças Cardiovasculares , Adulto , Fator Natriurético Atrial/genética , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , China/epidemiologia , Metilação de DNA , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos Natriuréticos/genética , Procainamida/análogos & derivados , Regiões Promotoras Genéticas
5.
Cells ; 11(5)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269388

RESUMO

Plasma concentrations of natriuretic peptides (NP) contribute to risk stratification and management of patients undergoing non-cardiac surgery. However, genetically determined variability in the levels of these biomarkers has been described previously. In the perioperative setting, genetic contribution to NP plasma level variability has not yet been determined. A cohort of 427 patients presenting for non-cardiac surgery was genotyped for single-nucleotide polymorphisms (SNPs) from the NPPA/NPPB locus. Haplotype population frequencies were estimated and adjusted haplotype trait associations for brain natriuretic peptide (BNP) and amino-terminal pro natriuretic peptide (NT-proBNP) were calculated. Five SNPs were included in the analysis. Compared to the reference haplotype TATAT (rs198358, rs5068, rs632793, rs198389, rs6676300), haplotype CACGC, with an estimated frequency of 4%, showed elevated BNP and NT-proBNP plasma concentrations by 44% and 94%, respectively. Haplotype CGCGC, with an estimated frequency of 9%, lowered NT-proBNP concentrations by 28%. ASA classification status III and IV, as well as coronary artery disease, were the strongest predictors of increased NP plasma levels. Inclusion of genetic information might improve perioperative risk stratification of patients based on adjusted thresholds of NP plasma levels.


Assuntos
Doença da Artéria Coronariana , Peptídeo Natriurético Encefálico , Fator Natriurético Atrial/genética , Doença da Artéria Coronariana/genética , Haplótipos/genética , Humanos , Peptídeo Natriurético Encefálico/genética , Peptídeos Natriuréticos , Nitrobenzoatos , Fragmentos de Peptídeos , Procainamida/análogos & derivados
6.
Basic Res Cardiol ; 117(1): 10, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247074

RESUMO

The role of long non-coding RNA (lncRNA) in endogenous cardiac regeneration remains largely elusive. The mammalian cardiomyocyte is capable of regeneration for a brief period after birth. This fact allows the exploration of the roles of critical lncRNAs in the regulation of cardiac regeneration. Through a cardiac regeneration model by apical resection (AR) of the left ventricle in neonatal mice, we identified an lncRNA named natriuretic peptide A antisense RNA 1 (NPPA-AS1), which negatively regulated cardiomyocyte proliferation. In neonates, NPPA-AS1 deletion did not affect heart development, but was sufficient to prolong the postnatal window of regeneration after AR. In adult mice, NPPA-AS1 deletion improved cardiac function and reduced infarct size after myocardial infarction (MI), associated with a significant improvement in cardiomyocyte proliferation. Further analysis showed that NPPA-AS1 interacted with DNA repair-related molecule splicing factor, proline- and glutamine-rich (SFPQ). A heteromer of SFPQ and non-POU domain-containing octamer-binding protein (NONO) was required for double-strand DNA break repair, but NPPA-AS1 was competitively bound with SFPQ due to the overlapped binding sites of SFPQ and NONO. NPPA-AS1 deletion promoted the binding of SFPQ-NONO heteromer, decreased DNA damage, and activated cardiomyocyte cell cycle re-entry. Together, loss of NPPA-AS1 promoted cardiomyocyte proliferation by stabilizing SFPQ-NONO heteromer-induced DNA repair and exerted a therapeutic effect against MI in adult mice. Consequently, NPPA-AS1 may be a novel target for stimulating cardiac regeneration to treat MI.


Assuntos
Infarto do Miocárdio , RNA Longo não Codificante , Animais , Fator Natriurético Atrial , Proliferação de Células , Reparo do DNA , Proteínas de Ligação a DNA , Mamíferos , Camundongos , Infarto do Miocárdio/genética , Miócitos Cardíacos , Procainamida/análogos & derivados , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA , Regeneração
7.
Obes Facts ; 15(2): 257-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34875662

RESUMO

INTRODUCTION: Atrial natriuretic peptide plays a potential role in obesity with unclear molecular mechanisms. The objective of this study was to examine the association between its coding gene (natriuretic peptide A [NPPA]) methylation and obesity. METHODS: Peripheral blood DNA methylation of NPPA promoter was quantified at baseline by targeted bisulfite sequencing for 2,497 community members (mean aged 53 years, 38% men) in the Gusu cohort. Obesity was repeatedly assessed by body mass index (BMI) and waist circumference (WC) at baseline and follow-up examinations. The cross-sectional, longitudinal, and prospective associations between NPPA promoter methylation and obesity were examined. RESULTS: Of the 9 CpG loci assayed, DNA methylation levels at 6 CpGs were significantly lower in participants with central obesity than those without (all p < 0.05 for permutation test). These CpG methylation levels at baseline were also inversely associated with dynamic changes in BMI or WC during follow-up (all p < 0.05 for permutation test). After an average 4 years of follow-up, hypermethylation at the 6 CpGs (CpG2 located at Chr1:11908348, CpG3 located at Chr1:11908299, CpG4 located at Chr1:11908200, CpG5 located at Chr1:11908182, CpG6 located at Chr1:11908178, and CpG8 located at Chr1:11908165) was significantly associated with a lower risk of incident central obesity (all p < 0.05 for permutation test). CONCLUSIONS: Hypomethylation at NPPA promoter was associated with increased future risk of central obesity in Chinese adults. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of central obesity.


Assuntos
Metilação de DNA , Obesidade Abdominal , Fator Natriurético Atrial , Índice de Massa Corporal , China/epidemiologia , Estudos Transversais , Metilação de DNA/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade Abdominal/genética , Procainamida/análogos & derivados
8.
Cell Mol Life Sci ; 77(24): 5121-5130, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556416

RESUMO

The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.


Assuntos
Fator Natriurético Atrial/genética , Doença/genética , Regulação da Expressão Gênica/genética , Peptídeos Natriuréticos/genética , Animais , Epigênese Genética , Humanos , MicroRNAs/genética , Procainamida/análogos & derivados , Processamento de Proteína Pós-Traducional/genética , Receptores do Fator Natriurético Atrial
9.
Chembiochem ; 13(1): 157-65, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22170584

RESUMO

DNA methyltransferases (DNMTs) are responsible for DNA methylation, an epigenetic modification involved in gene regulation. Families of conjugates of procainamide, an inhibitor of DNMT1, were conceived and produced by rapid synthetic pathways. Six compounds resulted in potent inhibitors of the murine catalytic Dnmt3A/3L complex and of human DNMT1, at least 50 times greater than that of the parent compounds. The inhibitors showed selectivity for C5 DNA methyltransferases. The cytotoxicity of the inhibitors was validated on two tumour cell lines (DU145 and HCT116) and correlated with the DNMT inhibitory potency. The inhibition potency of procainamide conjugated to phthalimide through alkyl linkers depended on the length of the linker; the dodecane linker was the best.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Procainamida/análogos & derivados , Procainamida/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Biomed Sci ; 18: 3, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21219604

RESUMO

BACKGROUND: Targeting abnormal DNA methylation represents a therapeutically relevant strategy for cancer treatment as demonstrated by the US Food and Drug Administration approval of the DNA methyltransferase inhibitors azacytidine and 5-aza-2'-deoxycytidine for the treatment of myelodysplastic syndromes. But their use is associated with increased incidences of bone marrow suppression. Alternatively, procainamide has emerged as a potential DNA demethylating agent for clinical translation. While procainamide is much safer than 5-aza-2'-deoxycytidine, it requires high concentrations to be effective in DNA demethylation in suppressing cancer cell growth. Thus, our laboratories have embarked on the pharmacological exploitation of procainamide to develop potent DNA methylation inhibitors through lead optimization. METHODS: We report the use of a DNA methylation two-component enhanced green fluorescent protein reporter system as a screening platform to identify novel DNA methylation inhibitors from a compound library containing procainamide derivatives. RESULTS: A lead agent IM25, which exhibits substantially higher potency in GSTp1 DNA demethylation with lower cytotoxicity in MCF7 cells relative to procainamide and 5-aza-2'-deoxycytidine, was identified by the screening platform. CONCLUSIONS: Our data provide a proof-of-concept that procainamide could be pharmacologically exploited to develop novel DNA methylation inhibitors, of which the translational potential in cancer therapy/prevention is currently under investigation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Procainamida/análogos & derivados , Procainamida/farmacologia , Antiarrítmicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA