Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Microbiol Spectr ; 9(2): e0030121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34549994

RESUMO

Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.


Assuntos
Cloro/farmacologia , DnaB Helicases/antagonistas & inibidores , Inteínas/genética , Mycobacterium leprae/genética , Mycobacterium smegmatis/genética , Processamento de Proteína/efeitos dos fármacos , Cloraminas/farmacologia , Cloro/química , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DnaB Helicases/genética , DnaB Helicases/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Ácido Hipocloroso/farmacologia , Mycobacterium leprae/metabolismo , Mycobacterium smegmatis/metabolismo , Oxidantes/farmacologia , Oxirredução , Processamento de Proteína/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Taurina/análogos & derivados , Taurina/farmacologia
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33397721

RESUMO

Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga), the causative agents of cryptococcosis. Inhibition of protein splicing in Cryptococcus sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor. Here, we screened a small-molecule library to find addititonal, potent inhibitors of the Cne Prp8 intein using a split-GFP splicing assay. This revealed the compound 6G-318S, with IC50 values in the low micromolar range in the split-GFP assay and in a complementary split-luciferase system. A fluoride derivative of the compound 6G-318S displayed improved cytotoxicity in human lung carcinoma cells, although there was a slight reduction in the inhibition of splicing. 6G-318S and its derivative inhibited splicing of the Cne Prp8 intein in vivo in Escherichia coli and in C. neoformans Moreover, the compounds repressed growth of WT C. neoformans and C. gattii In contrast, the inhibitors were less potent at inhibiting growth of the inteinless Candida albicans Drug resistance was observed when the Prp8 intein was overexpressed in C. neoformans, indicating specificity of this molecule toward the target. No off-target activity was observed, such as inhibition of serine/cysteine proteases. The inhibitors bound covalently to the Prp8 intein and binding was reduced when the active-site residue Cys1 was mutated. 6G-318S showed a synergistic effect with amphotericin B and additive to indifferent effects with a few other clinically used antimycotics. Overall, the identification of these small-molecule intein-splicing inhibitors opens up prospects for a new class of antifungals.


Assuntos
Processamento de Proteína/fisiologia , Proteínas de Ligação a RNA/genética , Antifúngicos/farmacologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , Humanos , Inteínas/genética , Íntrons/genética , Processamento de Proteína/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência/métodos
3.
Eur J Pharmacol ; 890: 173669, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098832

RESUMO

Glioma is the most common primary intracranial tumor, in which glioblastoma (GBM) is the most malignant and lethal. However, the current chemotherapy drugs are still unsatisfactory for GBM therapy. As the natural products mainly extracted from Eucalyptus species, phloroglucinol-terpene adducts have the potential to be anti-cancer lead compounds that attracted increasing attention. In order to discover the new lead compounds with the anti-GBM ability, we isolated Eucalyptal A with a phloroglucinol-terpene skeleton from the fruit of E. globulus and investigated its anti-GBM activity in vitro and in vivo. Functionally, we verified that Eucalyptal A could inhibit the proliferation, growth and invasiveness of GBM cells in vitro. Moreover, Eucalyptal A had the same anti-GBM activity in tumor-bearing mice as in vitro and prolonged the overall survival time by maintaining mice body weight. Further mechanism research revealed that Eucalyptal A downregulated SRSF1 expression and rectified SRSF1-guided abnormal alternative splicing of MYO1B mRNA, which led to anti-GBM activity through the PDK1/AKT/c-Myc and PAK/Cofilin axes. Taken together, we identified Eucalyptal A as an important anti-GBM lead compound, which represents a novel direction for glioma therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Eucaliptol/uso terapêutico , Glioma/metabolismo , Miosina Tipo I/metabolismo , Processamento de Proteína/efeitos dos fármacos , Fatores de Processamento de Serina-Arginina/biossíntese , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/prevenção & controle , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Eucaliptol/isolamento & purificação , Eucaliptol/farmacologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miosina Tipo I/genética , Processamento de Proteína/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171880

RESUMO

Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.


Assuntos
Proteínas Hedgehog/fisiologia , Inteínas/fisiologia , Processamento de Proteína/fisiologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Proteínas Hedgehog/genética , Inteínas/genética , Simulação de Dinâmica Molecular , Mycobacterium/genética , Mycobacterium/metabolismo , Processamento de Proteína/genética , Splicing de RNA/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(22): 12041-12049, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424098

RESUMO

Split inteins are privileged molecular scaffolds for the chemical modification of proteins. Though efficient for in vitro applications, these polypeptide ligases have not been utilized for the semisynthesis of proteins in live cells. Here, we biochemically and structurally characterize the naturally split intein VidaL. We show that this split intein, which features the shortest known N-terminal fragment, supports rapid and efficient protein trans-splicing under a range of conditions, enabling semisynthesis of modified proteins both in vitro and in mammalian cells. The utility of this protein engineering system is illustrated through the traceless assembly of multidomain proteins whose biophysical properties render them incompatible with a single expression system, as well as by the semisynthesis of dual posttranslationally modified histone proteins in live cells. We also exploit the domain swapping function of VidaL to effect simultaneous modification and translocation of the nuclear protein HP1α in live cells. Collectively, our studies highlight the VidaL system as a tool for the precise chemical modification of cellular proteins with spatial and temporal control.


Assuntos
Inteínas/fisiologia , Biossíntese de Proteínas/fisiologia , Engenharia de Proteínas/métodos , Processamento de Proteína/fisiologia , Engenharia Celular/métodos
6.
Trends Mol Med ; 25(11): 993-1009, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230909

RESUMO

Post-translational modification (PTM) of proteins is vital for increasing proteome diversity and maintaining cellular homeostasis. If the writing, reading, and removal of modifications are not controlled, cancer can develop. Arginine methylation is an understudied modification that is increasingly associated with cancer progression. Consequently protein arginine methyltransferases (PRMTs), the writers of arginine methylation, have rapidly gained interest as novel drug targets. However, for clinical success a deep mechanistic understanding of the biology of PRMTs is required. In this review we focus on advances made regarding the role of PRMTs in stem cell biology, epigenetics, splicing, immune surveillance and the DNA damage response, and highlight the rapid rise of specific inhibitors that are now in clinical trials for cancer therapy.


Assuntos
Arginina/metabolismo , Metilação , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Resistência a Medicamentos/efeitos dos fármacos , Epigenômica , Histonas/metabolismo , Humanos , Imunoterapia , Camundongos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional/fisiologia , Processamento de Proteína/efeitos dos fármacos , Processamento de Proteína/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
7.
Neuron ; 98(3): 521-529.e3, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29656875

RESUMO

Alternative gene splicing gives rise to N-methyl-D-aspartate (NMDA) receptor ion channels with defined functional properties and unique contributions to calcium signaling in a given chemical environment in the mammalian brain. Splice variants possessing the exon-5-encoded motif at the amino-terminal domain (ATD) of the GluN1 subunit are known to display robustly altered deactivation rates and pH sensitivity, but the underlying mechanism for this functional modification is largely unknown. Here, we show through cryoelectron microscopy (cryo-EM) that the presence of the exon 5 motif in GluN1 alters the local architecture of heterotetrameric GluN1-GluN2 NMDA receptors and creates contacts with the ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, which are absent in NMDA receptors lacking the exon 5 motif. The unique interactions established by the exon 5 motif are essential to the stability of the ATD/LBD and LBD/LBD interfaces that are critically involved in controlling proton sensitivity and deactivation.


Assuntos
Processamento de Proteína/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Insetos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
8.
Genes Dev ; 30(17): 2005-17, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633015

RESUMO

In mammals, body temperature fluctuates diurnally around a mean value of 36°C-37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells' circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide "approach to steady-state" kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression.


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína/fisiologia , Proteínas de Ligação a RNA/metabolismo , Temperatura , Animais , Temperatura Corporal , Temperatura Baixa , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Camundongos , Células NIH 3T3 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Biol Chem ; 291(31): 15911-15922, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27311716

RESUMO

The Chlamydomonas reinhardtii chloroplast-localized poly(A)-binding protein RB47 is predicted to contain a non-conserved linker (NCL) sequence flanked by highly conserved N- and C-terminal sequences, based on the corresponding cDNA. RB47 was purified from chloroplasts in association with an endoribonuclease activity; however, protein sequencing failed to detect the NCL. Furthermore, while recombinant RB47 including the NCL did not display endoribonuclease activity in vitro, versions lacking the NCL displayed strong activity. Both full-length and shorter forms of RB47 could be detected in chloroplasts, with conversion to the shorter form occurring in chloroplasts isolated from cells grown in the light. This conversion could be replicated in vitro in chloroplast extracts in a light-dependent manner, where epitope tags and protein sequencing showed that the NCL was excised from a full-length recombinant substrate, together with splicing of the flanking sequences. The requirement for endogenous factors and light differentiates this protein splicing from autocatalytic inteins, and may allow the chloroplast to regulate the activation of RB47 endoribonuclease activity. We speculate that this protein splicing activity arose to post-translationally repair proteins that had been inactivated by deleterious insertions or extensions.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Endonucleases/metabolismo , Luz , Processamento de Proteína/efeitos da radiação , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Endonucleases/genética , Processamento de Proteína/fisiologia
10.
Biochemistry ; 55(9): 1279-82, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26913597

RESUMO

An intein from Halobacterium salinarum can be isolated as an unspliced precursor protein with exogenous exteins after Escherichia coli overexpression. The intein promotes protein splicing and uncoupled N-terminal cleavage in vitro, conditional on incubation with NaCl or KCl at concentrations of >1.5 M. The protein splicing reaction also is conditional on reduction of a disulfide bond between two active site cysteines. Conditional protein splicing under these relatively mild conditions may lead to advances in intein-based biotechnology applications and hints at the possibility that this H. salinarum intein could serve as a switch to control extein activity under physiologically relevant conditions.


Assuntos
Halobacterium salinarum/fisiologia , Inteínas/fisiologia , Processamento de Proteína/fisiologia , Tolerância ao Sal/fisiologia , Proteínas de Bactérias/fisiologia
11.
Appl Biochem Biotechnol ; 177(5): 1137-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26288082

RESUMO

Inteins are protein segments embedded in frame within a precursor sequence that catalyze a self-excision reaction and ligate the flanking sequences with a standard peptide bond. Split inteins are expressed as two separate polypeptide fragments and trans-splice upon subunit association. Split inteins have found use in biotechnology applications but their use in postsynthetic domain assembly in vivo has been limited to the ligation of two protein domains. Alternatively, they have been used to splice three domains and fragments in vitro. To further develop split intein-based applications in vivo, we have designed a cell-based assay for the postsynthetic splicing of three protein domains using orthogonal split inteins. Using naturally and artificially split inteins, NpuDnaE and SspDnaB, we show that a multidomain protein of 128 kDa can be assembled in Escherichia coli from individually expressed domains. In the current system, the main bottleneck in achieving high yield of tandem trans-spliced product appears to be the limited solubility of the SspDnaB precursors. Optimizing protein solubility should be important to achieve efficient combinatorial synthesis of protein domains in the cell.


Assuntos
DNA Polimerase III/metabolismo , DnaB Helicases/metabolismo , Escherichia coli/metabolismo , Inteínas/fisiologia , Processamento de Proteína/fisiologia , DNA Polimerase III/genética , DnaB Helicases/genética , Escherichia coli/genética , Estrutura Terciária de Proteína
12.
Chem Commun (Camb) ; 51(47): 9670-3, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25977944

RESUMO

A method to photo-chemically trigger fluorescent labelling of proteins in live cells is developed. The approach is based on photo-caged split-intein mediated conditional protein trans-splicing reaction and enabled background-free fluorescent labelling of target proteins with the necessary spatiotemporal control.


Assuntos
Inteínas/fisiologia , Luz , Proteínas Ligantes de Maltose/metabolismo , Processamento de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fluorescência , Células HeLa , Humanos , Engenharia de Proteínas , Proteínas Recombinantes/efeitos da radiação
13.
Cell Adh Migr ; 9(1-2): 96-104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793576

RESUMO

Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.


Assuntos
Adesão Celular/fisiologia , Integrinas/metabolismo , Neoplasias/metabolismo , Processamento de Proteína/fisiologia , Tenascina/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos , Processamento de Proteína/genética
14.
J Immunol ; 192(4): 1962-71, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24453253

RESUMO

Peptide splicing is a novel mechanism of production of peptides relying on the proteasome and involving the linkage of fragments originally distant in the parental protein. Peptides produced by splicing can be presented on class I molecules of the MHC and recognized by CTLs. In this study, we describe a new antigenic peptide, which is presented by HLA-A3 and comprises two noncontiguous fragments of the melanoma differentiation Ag gp100(PMEL17) spliced together in the reverse order to that in which they appear in the parental protein. Contrary to the previously described spliced peptides, which are produced by the association of fragments of 3-6 aa, the peptide described in this work results from the ultimate association of an 8-aa fragment with a single arginine residue. As described before, peptide splicing takes place in the proteasome by transpeptidation involving an acyl-enzyme intermediate linking one of the peptide fragment to a catalytic subunit of the proteasome. Interestingly, we observe that the peptide causing the nucleophilic attack on the acyl-enzyme intermediate must be at least 3 aa long to give rise to a spliced peptide. The spliced peptide produced from this reaction therefore bears an extended C terminus that needs to be further trimmed to produce the final antigenic peptide. We show that the proteasome is able to perform the final trimming step required to produce the antigenic peptide described in this work.


Assuntos
Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína/fisiologia , Antígeno gp100 de Melanoma/genética , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Antígeno HLA-A3/genética , Antígeno HLA-A3/imunologia , Antígeno HLA-A3/metabolismo , Humanos , Melanoma/genética , Melanoma/imunologia , Fragmentos de Peptídeos/genética , Linfócitos T Citotóxicos/imunologia , Antígeno gp100 de Melanoma/imunologia , Antígeno gp100 de Melanoma/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(38): 15461-6, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003157

RESUMO

Manipulating expression of large genes (>6 kb) in adult cardiomyocytes is challenging because these cells are only efficiently transduced by viral vectors with a 4-7 kb packaging capacity. This limitation impedes understanding structure-function mechanisms of important proteins in heart. L-type calcium channels (LTCCs) regulate diverse facets of cardiac physiology including excitation-contraction coupling, excitability, and gene expression. Many important questions about how LTCCs mediate such multidimensional signaling are best resolved by manipulating expression of the 6.6 kb pore-forming α1C-subunit in adult cardiomyocytes. Here, we use split-intein-mediated protein transsplicing to reconstitute LTCC α1C-subunit from two distinct halves, overcoming the difficulty of expressing full-length α1C in cardiomyocytes. Split-intein-tagged α1C fragments encoding dihydropyridine-resistant channels were incorporated into adenovirus and reconstituted in cardiomyocytes. Similar to endogenous LTCCs, recombinant channels targeted to dyads, triggered Ca(2+) transients, associated with caveolin-3, and supported ß-adrenergic regulation of excitation-contraction coupling. This approach lowers a longstanding technical hurdle to manipulating large proteins in cardiomyocytes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Técnicas de Transferência de Genes , Inteínas/genética , Miócitos Cardíacos/metabolismo , Processamento de Proteína/fisiologia , Adenoviridae , Análise de Variância , Vetores Genéticos/genética , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Técnicas de Patch-Clamp , Plasmídeos/genética , Pontos Quânticos
16.
Anal Chem ; 85(12): 6080-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23679912

RESUMO

In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 µm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Inteínas/fisiologia , Processamento de Proteína/fisiologia , Sequência de Aminoácidos , Anticorpos Imobilizados/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
17.
J Biol Chem ; 288(9): 6202-11, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23306197

RESUMO

Inteins are naturally occurring intervening sequences that catalyze a protein splicing reaction resulting in intein excision and concatenation of the flanking polypeptides (exteins) with a native peptide bond. Inteins display a diversity of catalytic mechanisms within a highly conserved fold that is shared with hedgehog autoprocessing proteins. The unusual chemistry of inteins has afforded powerful biotechnology tools for controlling enzyme function upon splicing and allowing peptides of different origins to be coupled in a specific, time-defined manner. The extein sequences immediately flanking the intein affect splicing and can be defined as the intein substrate. Because of the enormous potential complexity of all possible flanking sequences, studying intein substrate specificity has been difficult. Therefore, we developed a genetic selection for splicing-dependent kanamycin resistance with no significant bias when six amino acids that immediately flanked the intein insertion site were randomized. We applied this selection to examine the sequence space of residues flanking the Nostoc punctiforme Npu DnaE intein and found that this intein efficiently splices a much wider range of sequences than previously thought, with little N-extein specificity and only two important C-extein positions. The novel selected extein sequences were sufficient to promote splicing in three unrelated proteins, confirming the generalizable nature of the specificity data and defining new potential insertion sites for any target. Kinetic analysis showed splicing rates with the selected exteins that were as fast or faster than the native extein, refuting past assumptions that the naturally selected flanking extein sequences are optimal for splicing.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase III/química , Nostoc/enzimologia , Processamento de Proteína/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Inteínas/fisiologia , Canamicina/farmacologia , Cinética , Nostoc/genética
18.
Cell Mol Life Sci ; 70(7): 1185-206, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22926412

RESUMO

Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.


Assuntos
Pesquisa Biomédica/tendências , Evolução Molecular Direcionada/métodos , Inteínas/fisiologia , Engenharia de Proteínas/tendências , Animais , Pesquisa Biomédica/métodos , Biotecnologia/métodos , Biotecnologia/tendências , Evolução Molecular Direcionada/tendências , Humanos , Inteínas/genética , Modelos Biológicos , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Processamento de Proteína/genética , Processamento de Proteína/fisiologia
19.
PLoS One ; 7(9): e45355, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024818

RESUMO

Inteins catalyze a protein splicing reaction to excise the intein from a precursor protein and join the flanking sequences (exteins) with a peptide bond. In a split intein, the intein fragments (I(N) and I(C)) can reassemble non-covalently to catalyze a trans-splicing reaction that joins the exteins from separate polypeptides. An atypical split intein having a very small I(N) and a large I(C) is particularly useful for joining synthetic peptides with recombinant proteins, which can be a generally useful method of introducing site-specific chemical labeling or modifications into proteins. However, a large I(C) derived from an Ssp DnaX intein was found recently to undergo spontaneous C-cleavage, which raised questions regarding its structure-function and ability to trans-splice. Here, we show that this I(C) could undergo trans-splicing in the presence of I(N), and the trans-splicing activity completely suppressed the C-cleavage activity. We also found that this I(C) could trans-splice with small I(N) sequences derived from two other inteins, showing a cross-reactivity of this atypical split intein. Furthermore, we found that this I(C) could trans-splice even when the I(N) sequence was embedded in a nearly complete intein sequence, suggesting that the small I(N) could project out of the central pocket of the intein to become accessible to the I(C). Overall, these findings uncovered a new atypical split intein that can be valuable for peptide-protein trans-splicing, and they also revealed an interesting structural flexibility and cross-reactivity at the active site of this intein.


Assuntos
Inteínas , Processamento de Proteína/fisiologia , Proteínas/metabolismo , Sequência de Aminoácidos , Mutação , Proteínas/química , Proteínas/genética
20.
J Biol Chem ; 287(34): 28686-96, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753413

RESUMO

Inteins excise themselves out of precursor proteins by the protein splicing reaction and have emerged as valuable protein engineering tools in numerous and diverse biotechnological applications. Split inteins have recently attracted particular interest because of the opportunities associated with generating a protein from two separate polypeptides and with trans-cleavage applications made possible by split intein mutants. However, natural split inteins are rare and differ greatly in their usefulness with regard to the achievable rates and yields. Here we report the first functional characterization of new split inteins previously identified by bioinformatics from metagenomic sources. The N- and C-terminal fragments of the four inteins gp41-1, gp41-8, NrdJ-1, and IMPDH-1 were prepared as fusion constructs with model proteins. Upon incubation of complementary pairs, we observed trans-splicing reactions with unprecedented rates and yields for all four inteins. Furthermore, no side reactions were detectable, and the precursor constructs were consumed virtually quantitatively. The rate for the gp41-1 intein, the most active intein on all accounts, was k = 1.8 ± 0.5 × 10(-1) s(-1), which is ∼10-fold faster than the rate reported for the Npu DnaE intein and gives rise to completed reactions within 20-30 s. No cross-reactivity in exogenous combinations was observed. Using C1A mutants, all inteins were efficient in the C-terminal cleavage reaction, albeit at lower rates. C-terminal cleavage could be performed under a wide range of reaction conditions and also in the absence of native extein residues flanking the intein. Thus, these inteins hold great potential for splicing and cleavage applications.


Assuntos
Inteínas/fisiologia , Metagenoma/fisiologia , Mutação , Processamento de Proteína/fisiologia , Proteínas/metabolismo , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA