RESUMO
BACKGROUND: Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS: The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION: This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.
Assuntos
Antraquinonas , Antibacterianos , Proteínas de Bactérias , Ferritinas , Ferro , Streptomyces coelicolor , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Ferritinas/metabolismo , Ferritinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ferro/metabolismo , Antraquinonas/metabolismo , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/genética , Regulação Bacteriana da Expressão Gênica , Prodigiosina/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteômica , BenzoisocromanequinonasRESUMO
Serratia marcescens is an opportunistic human pathogen that produces a vibrant red pigment called prodigiosin. Prodigiosin has implications in virulence of S. marcescens and promising clinical applications. We discovered that addition of the virulent flagellotropic bacteriophage χ (Chi) to a culture of S. marcescens stimulates a greater than fivefold overproduction of prodigiosin. Active phage infection is required for the effect, as a χ-resistant strain lacking flagella does not respond to phage presence. Via a reporter fusion assay, we have determined that the addition of a χ-induced S. marcescens cell lysate to an uninfected culture causes a threefold increase in transcription of the pig operon, containing genes essential for pigment biosynthesis. Replacement of the pig promoter with a constitutive promoter abolished the pigmentation increase, indicating that regulatory elements present in the pig promoter likely mediate the phenomenon. We hypothesize that S. marcescens detects the threat of phage-mediated cell death and reacts by producing prodigiosin as a stress response. Our findings are of clinical significance for two main reasons: (i) elucidating complex phage-host interactions is crucial for development of therapeutic phage treatments, and (ii) overproduction of prodigiosin in response to phage could be exploited for its biosynthesis and use as a pharmaceutical.
Assuntos
Bacteriófagos , Prodigiosina , Regiões Promotoras Genéticas , Serratia marcescens , Serratia marcescens/metabolismo , Serratia marcescens/genética , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/metabolismoRESUMO
Serratia sp. ATCC 39006 is an important model strain for the study of prodigiosin production, whose prodigiosin biosynthesis genes (pigA-O) are arranged in an operon. Several transcription factors have been shown to control the transcription of the pig operon. However, since the regulation of prodigiosin biosynthesis is complex, the regulatory mechanism for this process has not been well established. In most γ-proteobacteria, the ROK family regulator NagC acts as a global transcription factor in response to N-acetylglucosamine (GlcNAc). In Serratia sp. ATCC 39006, NagC represses the transcription of two divergent operons, nagE and nagBAC, which encode proteins involved in the transport and metabolism of GlcNAc. Moreover, NagC directly binds to a 21-nt region that partially overlaps the -10 and -35 regions of the pig promoter and promotes the transcription of prodigiosin biosynthesis genes, thereby increasing prodigiosin production. Although NagC still acts as both repressor and activator in Serratia sp. ATCC 39006, its transcriptional regulatory activity is independent of GlcNAc. NagC was first found to regulate antibiotic biosynthesis in Gram-negative bacteria, and NagC-mediated regulation is not responsive to GlcNAc, which contributes to future studies on the regulation of secondary metabolism by NagC in other bacteria. IMPORTANCE: The ROK family transcription factor NagC is an important global regulator in the γ-proteobacteria. A large number of genes involved in the transport and metabolism of sugars, as well as those associated with biofilm formation and pathogenicity, are regulated by NagC. In all of these regulations, the transcriptional regulatory activity of NagC responds to the supply of GlcNAc in the environment. Here, we found for the first time that NagC can regulate antibiotic biosynthesis, whose transcriptional regulatory activity is independent of GlcNAc. This suggests that NagC may respond to more signals and regulate more physiological processes in Gram-negative bacteria.
Assuntos
Acetilglucosamina , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Prodigiosina , Serratia , Serratia/genética , Serratia/metabolismo , Prodigiosina/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acetilglucosamina/metabolismo , Óperon , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Ferro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Prodigiosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homeostase , Metabolismo SecundárioRESUMO
The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: ⢠GarR/GarS is a TCS with domains for signal transduction and response regulation ⢠GarR/GarS is an essential negative regulator of the ACT and RED production ⢠GarR/GarS putatively interacts with and regulates activators of ACT and RED.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoisocromanequinonas , Repressão Catabólica , Glucose/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/metabolismo , Metabolismo Secundário/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The enormous potential attributed to prodigiosin regarding its applicability as a natural pigment and pharmaceutical agent justifies the development of sound bioprocesses for its production. Using a Serratia rubidaea strain isolated from a shallow-water hydrothermal vent, optimization of the growth medium composition was carried out. After medium development, the bacterium temperature, light and oxygen needs were studied, as was growth inhibition by product concentration. The implemented changes led to a 13-fold increase in prodigiosin production in a shake flask, reaching 19.7 mg/L. The conditions allowing the highest bacterial cell growth and prodigiosin production were also tested with another marine strain: S. marcescens isolated from a tide rock pool was able to produce 15.8 mg/L of prodigiosin. The bioprocess with S. rubidaea was scaled up from 0.1 L shake flasks to 2 L bioreactors using the maintenance of the oxygen mass transfer coefficient (kLa) as the scale-up criterion. The implemented parameters in the bioreactor led to an 8-fold increase in product per biomass yield and to a final concentration of 293.1 mg/L of prodigiosin in 24 h.
Assuntos
Reatores Biológicos , Meios de Cultura , Prodigiosina , Serratia , Prodigiosina/biossíntese , Serratia/metabolismo , Meios de Cultura/química , Biomassa , Oxigênio/metabolismo , Temperatura , Organismos Aquáticos/metabolismoRESUMO
Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited. In this study, we identified an uncharacterized LysR family transcriptional regulator, encoding gene BVG90_12635, here we named psrA, that positively controlled prodigiosin synthesis in S. marcescens. This phenotype corresponded to PsrA positive control of transcriptional of the prodigiosin-associated pig operon by directly binding to a regulatory binding site (RBS) and an activating binding site (ABS) in the promoter region of the pig operon. We demonstrated that L-proline is an effector for the PsrA, which enhances the binding affinity of PsrA to its target promoters. Using transcriptomics and further experiments, we show that PsrA indirectly regulates pleiotropic phenotypes, including serrawettin W1 biosynthesis, extracellular polysaccharide production, biofilm formation, swarming motility and T6SS-mediated antibacterial activity in S. marcescens. Collectively, this study proposes that PsrA is a novel regulator that contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in S. marcescens and provides important clues for future studies exploring the function of the PsrA and PsrA-like proteins which are widely present in many other bacteria.
Assuntos
Proteínas de Bactérias/genética , Biofilmes , Prodigiosina/biossíntese , Serratia marcescens/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Depsipeptídeos/biossíntese , Movimento , Óperon , Polissacarídeos Bacterianos/biossíntese , Regiões Promotoras Genéticas , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Fatores de Transcrição/metabolismoRESUMO
Pseudoalteromonas rubra S4059 produces the red pigment prodigiosin, which has pharmaceutical and industrial potential. Here, we targeted a putative prodigiosin-synthesizing transferase PigC, and a pigC in-frame deletion mutant did not produce prodigiosin. However, extractions of the pigC mutant cultures retained antibacterial activity, and bioassay-guided fractionation found antibacterial activity in two fractions of blue color. A precursor of prodigiosin, 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), was the dominant compound in both the fractions and likely caused the antibacterial activity. Also, a stable blue pigment, di-pyrrolyl-dipyrromethene prodigiosin, was identified from the two fractions. We also discovered antibacterial activity in the sterile filtered (nonextracted) culture supernatant of both wild type and mutant, and both contained a heat-sensitive compound between 30 and 100 kDa. Deletion of prodigiosin production did not affect growth rate or biofilm formation of P. rubra and did not change its fitness, as the mutant and wild type coexisted in equal levels in mixed cultures. In conclusion, a prodigiosin biosynthetic gene cluster (BGC) was identified and verified genetically and chemically in P. rubra S4059 and a stable blue pigment was isolated from the pigC mutant of S4059, suggesting that this strain may produce several prodigiosin-derived compounds of pharmaceutical and/or industrial potential. IMPORTANCE Pigmented Pseudoalteromonas strains are renowned for their production of secondary metabolites, and genome mining has revealed a high number of biosynthetic gene clusters (BGCs) for which the chemistry is unknown. Identification of those BGCs is a prerequisite for linking products to gene clusters and for further exploitation through heterologous expression. In this study, we identified the BGCs for the red, bioactive pigment prodigiosin using genomic, genetic, and metabolomic approaches. We also report here for the first time the production of a stable blue pigment, di-pyrrolyl-dipyrromethene prodigiosin (Dip-PDG), being produced by the pigC mutant of Pseudoalteromonas rubra S4059.
Assuntos
Antibacterianos/biossíntese , Família Multigênica/genética , Prodigiosina/biossíntese , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Corantes/química , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Metabolismo Secundário/genéticaRESUMO
Prodigiosin is a tripyrrole red secondary metabolite synthesized by many microorganisms, including Serratia marcescens. In this study, we found that the deletion of the gene of sensor kinase CpxA dramatically decreased the prodigiosin production, while the deletion of the gene of the response regulator CpxR or both genes of CpxRA has no effect on prodigiosin production, the kinase function of CpxA is not essential for its regulation on prodigiosin production while the phosphorylation site of CpxR is required. We further demonstrated that the CpxA regulates the prodigiosin biosynthesis at the transcriptional level and the phosphatase activity of CpxA plays vital roles in the regulation of prodigiosin biosynthesis. Finally, we proposed that CpxR/A regulates the prodigiosin biosynthesis by negative control and the phosphorylation level of CpxR may determine the positive or negative control of the genes it regulated.
Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Prodigiosina/biossíntese , Prodigiosina/química , Proteínas Quinases/fisiologia , Serratia marcescens/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Família Multigênica , Mutação , Fosforilação , Proteínas Quinases/genética , Transcrição Gênica , beta-Galactosidase/metabolismoRESUMO
Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong ß-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-ß-D-glucuronide and AS-BI-ß-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with ß-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported ß-glucuronidases.
Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Glucuronidase/genética , Streptomyces coelicolor/genética , Sequência de Aminoácidos , Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Glucuronidase/metabolismo , Mutação , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Alinhamento de Sequência , Streptomyces coelicolor/enzimologiaRESUMO
In Serratia marcescens JNB5-1, prodigiosin was highly produced at 30°C, but it was noticeably repressed at ≥37°C. Our initial results demonstrated that both the production and the stability of the O-methyl transferase (PigF) and oxidoreductase (PigN) involved in the prodigiosin pathway in S. marcescens JNB5-1 sharply decreased at ≥37°C. Therefore, in this study, we improved mRNA stability and protein production using de novo polynucleotide fragments (PNFs) and the introduction of disulfide bonds, respectively, and observed their effects on prodigiosin production. Our results demonstrate that adding PNFs at the 3' untranslated regions of pigF and pigN significantly improved the mRNA half-lives of these genes, leading to an increase in the transcript and expression levels. Subsequently, the introduction of disulfide bonds in pigF improved the thermal stability, pH stability, and copper ion resistance of PigF. Finally, shake flask fermentation showed that the prodigiosin titer with the engineered S. marcescens was increased by 61.38% from 5.36 to 8.65 g/liter compared to the JNB5-1 strain at 30°C and, significantly, the prodigiosin yield increased 2.05-fold from 0.38 to 0.78 g/liter at 37°C. In this study, we revealed that the introduction of PNFs and disulfide bonds greatly improved the expression and stability of pigF and pigN, hence efficiently enhancing prodigiosin production with S. marcescens at 30 and 37°C. IMPORTANCE This study highlights a promising strategy to improve mRNA/enzyme stability and to increase production using de novo PNF libraries and the introduction of disulfide bonds into the protein. PNFs could increase the half-life of target gene mRNA and effectively prevent its degradation. Moreover, PNFs could increase the relative intensity of target genes without affecting the expression of other genes; as a result, it could alleviate the cellular burden compared to other regulatory elements such as promoters. In addition, we obtained a PigF variant with improved activity and stability by the introduction of disulfide bonds into PigF. Collectively, we demonstrate here a novel approach for improving mRNA/enzyme stability using PNFs, which results in enhanced prodigiosin production in S. marcescens at 30°C.
Assuntos
Proteínas de Bactérias/genética , Metiltransferases/genética , Prodigiosina/biossíntese , Serratia marcescens/genética , Serratia marcescens/metabolismo , Regiões 3' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dissulfetos/química , Fermentação , Concentração de Íons de Hidrogênio , Metiltransferases/química , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , Polinucleotídeos/genética , Estabilidade Proteica , RNA Mensageiro/genética , TemperaturaRESUMO
Polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) comprise biosynthetic pathways that provide access to diverse, often bioactive natural products. Metabolic engineering can improve production metrics to support characterization and drug-development studies, but often native hosts are difficult to genetically manipulate and/or culture. For this reason, heterologous expression is a common strategy for natural product discovery and characterization. Many bacteria have been developed to express heterologous biosynthetic gene clusters (BGCs) for producing polyketides and nonribosomal peptides. In this article, we describe tools for using Pseudomonas putida, a Gram-negative soil bacterium, as a heterologous host for producing natural products. Pseudomonads are known to produce many natural products, but P. putida production titers have been inconsistent in the literature and often low compared to other hosts. In recent years, synthetic biology tools for engineering P. putida have greatly improved, but their application towards production of natural products is limited. To demonstrate the potential of P. putida as a heterologous host, we introduced BGCs encoding the synthesis of prodigiosin and glidobactin A, two bioactive natural products synthesized from a combination of PKS and NRPS enzymology. Engineered strains exhibited robust production of both compounds after a single chromosomal integration of the corresponding BGC. Next, we took advantage of a set of genome-editing tools to increase titers by modifying transcription and translation of the BGCs and increasing the availability of auxiliary proteins required for PKS and NRPS activity. Lastly, we discovered genetic modifications to P. putida that affect natural product synthesis, including a strategy for removing a carbon sink that improves product titers. These efforts resulted in production strains capable of producing 1.1 g/L prodigiosin and 470 mg/L glidobactin A.
Assuntos
Peptídeos Cíclicos/biossíntese , Prodigiosina/biossíntese , Pseudomonas putida , Vias Biossintéticas , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Família Multigênica , Pseudomonas putida/genéticaRESUMO
Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.
Assuntos
Prodigiosina/biossíntese , Vias Biossintéticas , Meios de Cultura , Fermentação , Serratia marcescens/genética , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/metabolismoRESUMO
This work aimed to investigate the production of prodigiosin by S. marcescens UCP 1549 in solid-state fermentation (SSF), as a sustainable alternative for reducing the production costs and environmental impact. Thus, different agro-industrial substrates were used in the formulation of the prodigiosin production medium, obtaining the maximum yield of pigment (119.8 g/kg dry substrate) in medium consisting of 5 g wheat bran, 5% waste soybean oil and saline solution. The pigment was confirmed as prodigiosin by the maximum absorbance peak at 535 nm, Rf 0.9 in TLC, and the functional groups by infrared spectrum (FTIR). Prodigiosin demonstrated stability at different values of temperature, pH and NaCl concentrations and antimicrobial properties, as well as not show any toxicity. These results confirm the applicability of SSF as a sustainable and promising technology and wheat bran as potential agrosubstrate to produce prodigiosin, making the bioprocess economic and competitive for industrial purposes.
Assuntos
Microbiologia Industrial , Prodigiosina , Serratia marcescens , Antibacterianos/biossíntese , Meios de Cultura/química , Fermentação , Microbiologia Industrial/métodos , Prodigiosina/biossíntese , Serratia marcescens/metabolismoRESUMO
Streptomyces are efficient chemists with a capacity to generate diverse and potent chemical scaffolds. The secondary metabolism of these soil-dwelling prokaryotes is stimulated upon interaction with other microbes in their complex ecosystem. We observed such an interaction when a Streptomyces isolate was cultivated in a media supplemented with dead yeast cells. Whole-genome analysis revealed that Streptomyces sp. MBK6 harbors the red cluster that is cryptic under normal environmental conditions. An interactive culture of MBK6 with dead yeast triggered the production of the red pigments metacycloprodigiosin and undecylprodigiosin. Streptomyces sp. MBK6 scavenges dead-yeast cells and preferentially grows in aggregates of sequestered yeasts within its mycelial network. We identified that the activation depends on the cluster-situated regulator, mbkZ, which may act as a cross-regulator. Cloning of this master regulator mbkZ in S. coelicolor with a constitutive promoter and promoter-deprived conditions generated different production levels of the red pigments. These surprising results were further validated by DNA-protein binding assays. The presence of the red cluster in Streptomyces sp. MBK6 provides a vivid example of horizontal gene transfer of an entire metabolic pathway followed by differential adaptation to a new environment through mutations in the receiver domain of the key regulatory protein MbkZ.
Assuntos
Pigmentos Biológicos/biossíntese , Prodigiosina/análogos & derivados , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estrutura Molecular , Prodigiosina/biossíntese , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Metabolismo Secundário , Streptomyces/genéticaRESUMO
Prodiginines are a family of red-pigmented secondary metabolites with multiple biological activities. The biosynthesis of prodiginines is affected by various physiological and environmental factors. Thus, prodiginine biosynthesis regulation is highly complex and multifaceted. Although the regulatory mechanism for prodiginine biosynthesis has been extensively studied in Serratia and Streptomyces species, little is known about that in the marine betaproteobacterium Pseudoalteromonas In this study, we report that stringent starvation protein A (SspA), an RNA polymerase-associated regulatory protein, is required for the biosynthesis of prodiginine in Pseudoalteromonas sp. strain R3. The strain lacking sspA (ΔsspA) fails to produce prodiginine, which resulted from the downregulation of the prodiginine biosynthetic gene (pig) cluster. The effect of SspA on prodiginine biosynthesis is independent of histone-like nucleoid structuring protein (H-NS) and RpoS (σS). Further analysis demonstrates that the ΔsspA strain has a significant decrease in the transcription of the siderophore biosynthesis gene (pvd) cluster, leading to the inhibition of siderophore production and iron uptake. The ΔsspA strain regains the ability to synthesize prodiginine by cocultivation with siderophore producers or the addition of iron. Therefore, we conclude that SspA-regulated prodiginine biosynthesis is due to decreased siderophore levels and iron deficiency. We further show that the iron homeostasis master regulator Fur is also essential for pig transcription and prodiginine biosynthesis. Overall, our results suggest that SspA indirectly regulates the biosynthesis of prodiginine, which is mediated by the siderophore-dependent iron uptake pathway.IMPORTANCE The red-pigmented prodiginines are attracting increasing interest due to their broad biological activities. As with many secondary metabolites, the biosynthesis of prodiginines is regulated by both environmental and physiological factors. At present, studies on the regulation of prodiginine biosynthesis are mainly restricted to Serratia and Streptomyces species. This work focused on the regulatory mechanism of prodiginine biosynthesis in Pseudoalteromonas sp. R3. We found that stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis via affecting the siderophore-dependent iron uptake pathway. The connections among SspA, iron homeostasis, and prodiginine biosynthesis were investigated. These findings uncover a novel regulatory mechanism for prodigiosin biosynthesis.
Assuntos
Adesinas Bacterianas/genética , Prodigiosina/análogos & derivados , Pseudoalteromonas/genética , Sideróforos/metabolismo , Adesinas Bacterianas/metabolismo , Ferro/metabolismo , Prodigiosina/biossíntese , Pseudoalteromonas/metabolismoRESUMO
Genetic manipulation of the undecylprodigiosin-producing strains and engineered culture medium approaches were applied as the most economical induction strategy for improving production. The hyper-producing recombinant strain ALAA-R20 was obtained after applying protoplast fusion strategy between the potent producer marine endophytic strains Streptomyces sp. ESRAA-10 (P1) and Streptomyces sp. ESRAA-31 (P2) of Dendronephthya hemprichi. Recombinant strain ALAA-R20 produced undecylprodigiosin yield higher than its parental strains ESRAA-10 and ESRAA-31 by 82.45% and 105.52% under submerged fermentation using modified R2YE medium. In order to reduce the costs of producing undecylprodigiosin, a solid-state fermentation (SSF) was applied. Scaled-up of optimized SSF parameters consisting of groundnut oil cake (GOC) sized to 3 mm, initial moisture content 80% with a mixture of dairy mill and fruit processing wastewaters (1:1), pH 7.0, inoculum size equal to 3 × 105 spores/g dry substrate (gds), incubation temperature 30 °C, and 7-day incubation period yielded the highest yield of 181.78 mg/gds of undecylprodigiosin by the recombinant strain Streptomyces sp. ALAA-R20. Extraction and purification of the pigment using the chromatographic techniques as well as mass spectral analysis exhibited maximum absorbance at 539 nm which is physiological property of the undecylprodigiosin. Undecylprodigiosin was stable over a wide temperature ranged from - 20 to 35 °C even after storage for 6 months. The maximum yield and stability of pigment was obtained at the acidic pH (acidified methanol, pH 4.0). Undecylprodigiosin obtained from the recombinant strain Streptomyces sp. ALAA-R20 demonstrated strong antimicrobial activity against all multidrug-resistant bacterial and fungal strains tested with minimum inhibitory, minimum bactericidal, and minimum fungicidal concentrations ranged between 0.5 and 4.0, 0.5 to 4.0, and 1.0 to 8.0 µg/mL, respectively. It also showed complete inhibition of cancer cells; HCT-116, HepG-2, MCF-7 and A-549 at 5, 8, 4, and 7 µM with IC50 equal to 2.0, 4.7, 1.2, and 2.8 µM, respectively.
Assuntos
Meios de Cultura , Prodigiosina/análogos & derivados , Streptomyces , Fermentação , Microrganismos Geneticamente Modificados/metabolismo , Prodigiosina/biossíntese , Streptomyces/genética , Streptomyces/metabolismoRESUMO
The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.
Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Serratia/química , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Prodigiosina/biossíntese , Prodigiosina/química , Domínios Proteicos , Serratia/metabolismoRESUMO
Microbial fermentation has become the main method to produce target compound. In this study, a 2-Keto-D-gluconic acid (2-KGA) producing mutant strain was obtained by mutation with rational screening methods. Meanwhile, prodigiosin was produced when the nitrogen source in the medium was changed to peptone and its fermentation conditions were evaluated to achieve high-efficient accumulation. The mutant strain SDSPY-136 was firstly identified as Serratia marcescens by morphological observation and 16S rDNA sequencing. The 2-KGA synthetic capacity of S. marcescens SDSPY-136 was evaluated by shake fermentation with 110 g/L glucose as substrates. For fermentation, 2-KGA yield, conversation rate and purity of SDSPY-136 reached 104.60 g/L, 95.10%, 99.11% in 72 h. The red pigment was extracted from the fermentation broth using acidic methanol and identified as prodigiosin by FT-IR. The optimal conditions were as follows: glycerol 20 g/L, peptone 20 g/L, MgSO415 g/L, pH 6.0, a 2% (v/v) inoculum, 30 °C and 200 rpm of shaking culture. Eventually, prodigiosin reached a yield of 9.89 g/Lafter shake culturing for 50 h under this condition. The mutant S. marcescens SDSPY-136 was shown to be promising for 2-KGA and prodigiosin production and a suitable object for prodigiosin metabolism research of S. marcescens.
Assuntos
Prodigiosina/biossíntese , Serratia marcescens/crescimento & desenvolvimento , Açúcares Ácidos/metabolismo , Mutação , Serratia marcescens/genéticaRESUMO
Prodigiosin (PG), a red linear tripyrrole pigment normally secreted by Serratia marcescens, has received attention for its reported immunosuppressive, antimicrobial, and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene BVG90_13250 (rcsB) negatively controlled prodigiosin biosynthesis in S. marcescens Disruption of rcsB conferred a remarkably increased production of prodigiosin. This phenotype corresponded to negative control of transcription of the prodigiosin-associated pig operon by RcsB, probably by binding to the promoter region of the prodigiosin synthesis positive regulator FlhDC. Moreover, using transcriptomics and further experiments, we revealed that RcsB also controlled some other important cellular processes, including swimming and swarming motilities, capsular polysaccharide production, biofilm formation, and acid resistance (AR), in S. marcescens Collectively, this work proposes that RcsB is a prodigiosin synthesis repressor in S. marcescens and provides insight into the regulatory mechanism of RcsB in cell motility, capsular polysaccharide production, and acid resistance in S. marcescensIMPORTANCE RcsB is a two-component response regulator in the Rcs phosphorelay system, and it plays versatile regulatory functions in Enterobacteriaceae However, information on the function of the RcsB protein in bacteria, especially in S. marcescens, remains limited. In this work, we illustrated experimentally that the RcsB protein was involved in diverse cellular processes in S. marcescens, including prodigiosin synthesis, cell motility, capsular polysaccharide production, biofilm formation, and acid resistance. Additionally, the regulatory mechanism of the RcsB protein in these cellular processes was investigated. In conclusion, this work indicated that RcsB could be a regulator for prodigiosin synthesis and provides insight into the function of the RcsB protein in S. marcescens.