Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.282
Filtrar
1.
Braz J Biol ; 84: e282493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747864

RESUMO

The use of fertilizers affects not only the soil fertility and crop yield, but also significantly changes the taxonomic structure of the soil microbiocenosis. Here, based on stationary field experiment, we studied the influence of organo-mineral fertilizer (ОМF), modified by bacteria Bacillus subtilis, H-13 in comparison with different fertilizer systems (organic, mineral, organo-mineral) on (i) crop yield, (ii) physical and chemical properties, and (iii) alpha and beta diversity of the microbial community Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric). The studies were carried out against the background of liming (рНКCl - 5.9) and without it (рНКCl - 5.1). The use of only one cattle farmyard manure was less effective than its co-application with mineral fertilizers in half doses. A similar effect was obtained when applying ОМF. In addition, the use of OMF contributes to a significant increase in the reserves of soil organic carbon in the soil layer 0-20 cm by 18%-32%. Using high-throughput sequencing of the 16S rRNA variable V4 gene sequence libraries, 10.759 taxa from 456 genera were identified, assigned to 34 fila (31 bacterial and 3 archaeotic. Unilateral application of mineral fertilizers leads to a significant decrease in the alpha diversity of the structure of soil microbial communities (OTE (other things equal) and Shannon index). A clear clustering of the microbiota was found in the variants with and without the introduction of сattle farmyard manure. It is revealed that the taxonomic structure of the microbiocenosis is formed under the influence of two main factors: crop rotation culture and applied fertilizers. The type of cultivated crop determines the dynamics of the microbiota at the level of larger taxa, such as domains, and fertilizers affect the structure of the microbial community at a lower taxonomic level (phyla, orders, bloodlines). On the basis of the Deseq analysis, marker taxa were identified, according to the share participation of which it is possible to determine the type of cultivated crop and fertilizers used in the experiment. Understanding the dynamics of taxa association and other influential factors can lead to the creation of universal systems of metagenomic indication, where tracking the dynamics of microbial communities will allow for a comprehensive assessment of the agroecological state of soils and timely decisions to prevent their degradation.


Assuntos
Produtos Agrícolas , Fertilizantes , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Produtos Agrícolas/microbiologia , Federação Russa , Agricultura/métodos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Animais , Bovinos , Microbiota , Esterco/microbiologia
2.
J Hazard Mater ; 470: 134227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581879

RESUMO

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Fósforo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Enterobacter/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Fósforo/metabolismo , Fósforo/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
3.
J Hazard Mater ; 471: 134370, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688214

RESUMO

Plant growth-promoting bacteria (PGPB) offer a promising solution for mitigating heavy metals (HMs) stress in crops, yet the mechanisms underlying the way they operate in the soil-plant system are not fully understood. We therefore conducted a meta-analysis with 2037 observations to quantitatively evaluate the effects and determinants of PGPB inoculation on crop growth and HMs accumulation in contaminated soils. We found that inoculation increased shoot and root biomass of all five crops (rice, maize, wheat, soybean, and sorghum) and decreased metal accumulation in rice and wheat shoots together with wheat roots. Key factors driving inoculation efficiency included soil organic matter (SOM) and the addition of exogenous fertilizers (N, P, and K). The phylum Proteobacteria was identified as the keystone taxa in effectively alleviating HMs stress in crops. More antioxidant enzyme activity, photosynthetic pigment, and nutrient absorption were induced by it. Overall, using PGPB inoculation improved the growth performance of all five crops, significantly increasing crop biomass in shoots, roots, and grains by 33 %, 35 %, and 20 %, respectively, while concurrently significantly decreasing heavy metal accumulation by 16 %, 9 %, and 37 %, respectively. These results are vital to grasping the benefits of PGPB and its future application in enhancing crop resistance to HMs.


Assuntos
Produtos Agrícolas , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Metais Pesados/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Poluentes do Solo/metabolismo
4.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38637314

RESUMO

Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.


Assuntos
Produtos Agrícolas , Malus , Fixação de Nitrogênio , Microbiologia do Solo , Malus/microbiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Citrus/microbiologia , Ecossistema , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Solo/química , Agricultura , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteobactérias/genética , Estações do Ano
5.
mSphere ; 9(4): e0080323, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38567970

RESUMO

Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.


Assuntos
Archaea , Bactérias , Produtos Agrícolas , Fungos , Microbiota , Doenças das Plantas , Microbiologia do Solo , Japão , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Solo/química , Agricultura
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 847-857, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646773

RESUMO

Crop health directly affects yields and food security. At present, agrochemicals such as fertilizers and pesticides are mainly used in agricultural production to promote crop health. However, long-term excessive utilization of agrochemicals will damage the ecological environment of farmlands and increase the safety risk of agricultural products. It is urgent to explore efficient and environment-friendly agricultural products. Rhizosphere microbiome are considered as the second genome of plants, which are closely related to crop health. Understanding the key functional microbes, microbe-microbe interactions, and plant-microbe interactions are fundamental for exploring the potential of beneficial microbes in promoting crop health. However, due to the heterogeneity and complexity of the natural environment, stimulating the function of indigenous microorganisms remains uncertain. Synthetic microbial community (SynCom) is an artificial combination of two or more different strain isolates of microorganisms, with different taxonomic, genetic, or functional characteristic. Because of the advantages of maintaining species diversity and community stability, SynCom has been widely applied in the fields of human health, environmental governance and industrial production, and may also have great potential in promoting crop health. We summarized the concept and research status of SynCom, expounded the principles and methods of constructing SynCom, and analyzed the research on the promotion of crop health by exploring the mechanism of plant-microbe interactions, promoting plant growth and development, and improving stress resistance. Finally, we envisaged the future prospects to guide the using SynCom to improve crop health.


Assuntos
Produtos Agrícolas , Microbiota , Rizosfera , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Biologia Sintética/métodos , Agricultura/métodos
7.
Nat Microbiol ; 9(5): 1167-1175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594310

RESUMO

Climate change-induced alterations in weather patterns, such as frequent and severe heatwaves, cold waves, droughts, floods, heavy rain and storms, are reducing crop yields and agricultural productivity. At the same time, greenhouse gases arising from food production and supply account for almost 30% of anthropogenic emissions. This vicious circle is producing a global food crisis. Sustainable food resources and production systems are needed now, and microbial foods are one possible solution. In this Perspective, we highlight the most promising technologies, and carbon and energy sources, for microbial food production.


Assuntos
Mudança Climática , Agricultura/métodos , Abastecimento de Alimentos , Microbiologia de Alimentos , Carbono/metabolismo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento
8.
Microb Biotechnol ; 17(3): e14439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478382

RESUMO

Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.


Assuntos
Extremófilos , Micorrizas , Simbiose , Fungos/genética , Agricultura/métodos , Produtos Agrícolas/microbiologia
9.
Compr Rev Food Sci Food Saf ; 23(2): e13323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477222

RESUMO

Climate change (CC) is a complex phenomenon that has the potential to significantly alter marine, terrestrial, and freshwater ecosystems worldwide. Global warming of 2°C is expected to be exceeded during the 21st century, and the frequency of extreme weather events, including floods, storms, droughts, extreme temperatures, and wildfires, has intensified globally over recent decades, differently affecting areas of the world. How CC may impact multiple food safety hazards is increasingly evident, with mycotoxin contamination in particular gaining in prominence. Research focusing on CC effects on mycotoxin contamination in edible crops has developed considerably throughout the years. Therefore, we conducted a comprehensive literature search to collect available studies in the scientific literature published between 2000 and 2023. The selected papers highlighted how warmer temperatures are enabling the migration, introduction, and mounting abundance of thermophilic and thermotolerant fungal species, including those producing mycotoxins. Certain mycotoxigenic fungal species, such as Aspergillus flavus and Fusarium graminearum, are expected to readily acclimatize to new conditions and could become more aggressive pathogens. Furthermore, abiotic stress factors resulting from CC are expected to weaken the resistance of host crops, rendering them more vulnerable to fungal disease outbreaks. Changed interactions of mycotoxigenic fungi are likewise expected, with the effect of influencing the prevalence and co-occurrence of mycotoxins in the future. Looking ahead, future research should focus on improving predictive modeling, expanding research into different pathosystems, and facilitating the application of effective strategies to mitigate the impact of CC.


Assuntos
Micotoxinas , Micotoxinas/análise , Mudança Climática , Ecossistema , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Produtos Agrícolas/microbiologia
10.
Bull Entomol Res ; 114(2): 254-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444236

RESUMO

Peach-potato aphids, Myzus persicae Sulzer (Hemiptera:Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts. In recent years greater emphasis has been placed on developing alternative pest management strategies, including the increased use of natural enemies such as parasitoids wasps. For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can potentially disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA where endosymbiont infection frequencies range form 0-2%, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities (endosymbionts present in over 50% of aphid populations).


Assuntos
Afídeos , Simbiose , Afídeos/microbiologia , Animais , Alemanha , Produtos Agrícolas/microbiologia , Brassica rapa/microbiologia
11.
Plant Cell Environ ; 47(6): 2109-2126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409868

RESUMO

Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.


Assuntos
Secas , Doenças das Plantas , Doenças das Plantas/microbiologia , Estresse Fisiológico , Produtos Agrícolas/fisiologia , Produtos Agrícolas/microbiologia , Imunidade Vegetal
12.
Curr Opin Chem Biol ; 79: 102427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290195

RESUMO

In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.


Assuntos
Microbiota , Resiliência Psicológica , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Bactérias/metabolismo , Metabolômica
13.
Microbiol Res ; 281: 127601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218094

RESUMO

Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.


Assuntos
Microbiota , Rizosfera , Domesticação , Triticum/microbiologia , RNA Ribossômico 16S/genética , Urease , Microbiota/genética , Bactérias/genética , Solo , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia
14.
New Phytol ; 242(4): 1798-1813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155454

RESUMO

It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Fertilizantes , Micorrizas , Microbiologia do Solo , Solo , Triticum , Micorrizas/fisiologia , Solo/química , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Raízes de Plantas/microbiologia , Fatores de Tempo , Biodiversidade
15.
World J Microbiol Biotechnol ; 40(1): 27, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057541

RESUMO

Chernevaya taiga of Western Siberia, Russia, is a unique ecosystem characterized by fertile soil, exceptionally large herbaceous plant sizes, and extraordinarily rapid rates of plant residue degradation. We expected that growing crops on soil collected from Chernevaya taiga, which has never been used for agricultural purposes before, would result in a distinct rhizospheric fungal community. This community could potentially yield novel, potent biostimulators and biocontrol fungi for modern agriculture. To check this idea, we used high-throughput ITS sequencing to examine the microbial communities in the rhizosphere of spring wheat and radish grown in greenhouse experiments on Chernevaya and control soils. Additionally, representative fungal strains were isolated and assessed for their ability to promote growth in wheat seedlings. The study revealed that the most abundant phyla in the rhizospheric fungal community were Mortierellomycota, primarily consisting of Mortierella species, and Ascomycota. Mucor and Umbelopsis comprised the majority of Mucoromycota in the control soils. Fusarium and Oidiodendron, two potentially plant-pathogenic fungi, were only found in the rhizosphere of crops grown in the control soil. Conversely, Chernevaya soil contained a diverse range of potential biocontrol fungi for plants. Tested novel fungal isolates showed a stimulating effect on the development of wheat seedlings and positively affected their rate of biomass accumulation. The results of the study demonstrate that the soil of Chernevaya taiga do indeed contain fungi with prominent potential to stimulate agricultural plants growth.


Assuntos
Ascomicetos , Microbiota , Micobioma , Solo/química , Rizosfera , Produtos Agrícolas/microbiologia , Taiga , Fungos/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia
16.
Microbiol Spectr ; 11(6): e0178623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811990

RESUMO

IMPORTANCE: Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.


Assuntos
Micobioma , Solo , Glycine max , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/microbiologia
17.
PeerJ ; 11: e15525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397024

RESUMO

Backgorund: The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods: In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results: Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion: This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.


Assuntos
Mirtilos Azuis (Planta) , Micorrizas , Mirtilos Azuis (Planta)/microbiologia , Rizosfera , Portugal , Micorrizas/fisiologia , Produtos Agrícolas/microbiologia , Bactérias
18.
PeerJ ; 11: e15428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334112

RESUMO

Climate change may lead to adverse effects on agricultural crops, plant microbiomes have the potential to help hosts counteract these effects. While plant-microbe interactions are known to be sensitive to temperature, how warming affects the community composition and functioning of plant microbiomes in most agricultural crops is still unclear. Here, we utilized a 10-year field experiment to investigate the effects of warming on root zone carbon availability, microbial activity and community composition at spatial (root, rhizosphere and bulk soil) and temporal (tillering, jointing and ripening stages of plants) scales in field-grown wheat (Triticum aestivum L.). The dissolved organic carbon and microbial activity in the rhizosphere were increased by soil warming and varied considerably across wheat growth stages. Warming exerted stronger effects on the microbial community composition in the root and rhizosphere samples than in the bulk soil. Microbial community composition, particularly the phyla Actinobacteria and Firmicutes, shifted considerably in response to warming. Interestingly, the abundance of a number of known copiotrophic taxa, such as Pseudomonas and Bacillus, and genera in Actinomycetales increased in the roots and rhizosphere under warming and the increase in these taxa implies that they may play a role in increasing the resilience of plants to warming. Taken together, we demonstrated that soil warming along with root proximity and plant growth status drives changes in the microbial community composition and function in the wheat root zone.


Assuntos
Microbiota , Triticum , Microbiologia do Solo , Solo , Bactérias , Produtos Agrícolas/microbiologia
20.
Curr Microbiol ; 80(6): 192, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101055

RESUMO

The quest for increasing agricultural yield due to increasing population pressure and demands for healthy food has inevitably led to the indiscriminate use of chemical fertilizers. On the contrary, the exposure of the crops to abiotic stress and biotic stress interferes with crop growth further hindering the productivity. Sustainable agricultural practices are of major importance to enhance production and feed the rising population. The use of plant growth promoting (PGP) rhizospheric microbes is emerging as an efficient approach to ameliorate global dependence on chemicals, improve stress tolerance of plants, boost up growth and ensure food security. Rhizosphere associated microbiomes promote the growth by enhancing the uptake of the nutrients, producing plant growth regulators, iron chelating complexes, shaping the root system under stress conditions and decreasing the levels of inhibitory ethylene concentrations and protecting plants from oxidative stress. Plant growth-promoting rhizospheric microbes belong to diverse range of genera including Acinetobacter, Achromobacter, Aspergillus, Bacillus, Burkholderia, Flavobacterium, Klebsiella, Micrococcus, Penicillium, Pseudomonas, Serratia and Trichoderma. Plant growth promoting microbes are an interesting aspect of research for scientific community and a number of formulations of beneficial microbes are also commercially available. Thus, recent progress in our understanding on rhizospheric microbiomes along with their major roles and mechanisms of action under natural and stressful conditions should facilitate their application as a reliable component in the management of sustainable agricultural system. This review highlights the diversity of plant growth promoting rhizospheric microbes, their mechanisms of plant growth promotion, their role under biotic and abiotic stress and status of biofertilizers. The article further focuses on the role of omics approaches in plant growth promoting rhizospheric microbes and draft genome of PGP microbes.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Produtos Agrícolas/microbiologia , Reguladores de Crescimento de Plantas , Biodiversidade , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA