Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.773
Filtrar
1.
Nutrients ; 16(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931253

RESUMO

Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.


Assuntos
Ácidos Graxos Monoinsaturados , Produtos Finais de Glicação Avançada , Músculo Esquelético , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada , Ácidos Graxos Monoinsaturados/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Feminino , Animais , Gravidez , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Suplementos Nutricionais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resistência à Insulina , Humanos , Fosforilação , Ratos Sprague-Dawley , Gravidez em Diabéticas/metabolismo , Gravidez em Diabéticas/tratamento farmacológico , Masculino , Desenvolvimento Fetal/efeitos dos fármacos
3.
J Mater Chem B ; 12(25): 6155-6163, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842019

RESUMO

Advanced glycation end products (AGEs) play a pivotal role in the aging process, regarded as a hallmark of aging. Despite their significance, the absence of adequate monitoring tools has hindered the exploration of the relationship between AGEs and aging. Here, we present a novel AGE-selective probe, AGO, for the first time. AGO exhibited superior sensitivity in detecting AGEs compared to the conventional method of measuring autofluorescence from AGEs. Furthermore, we validated AGO's ability to detect AGEs based on kinetics, demonstrating a preference for ribose-derived AGEs. Lastly, AGO effectively visualized glycation products in a collagen-based mimicking model of glycation. We anticipate that this study will enhance the molecular tool sets available for comprehending the physiological processes of AGEs during aging.


Assuntos
Corantes Fluorescentes , Produtos Finais de Glicação Avançada , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Colágeno/química , Colágeno/metabolismo , Estrutura Molecular , Imagem Óptica
4.
Int J Biol Macromol ; 272(Pt 1): 132859, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838889

RESUMO

Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.


Assuntos
Neuroblastoma , Proteômica , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/toxicidade , Proteômica/métodos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Produtos Finais de Glicação Avançada/metabolismo , Biomarcadores/metabolismo , Proteoma/metabolismo
5.
Food Res Int ; 189: 114552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876591

RESUMO

The objective of this study was to assess the effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates. For that purpose, the concentrations of glyoxal and methylglyoxal in chocolates were determined through High-Performance Liquid Chromatography (HPLC) analysis before and after in vitro digestion. The initial concentrations ranged from 0.0 and 228.2 µg/100 g, and 0.0 and 555.1 for glyoxal and methylglyoxal, respectively. Following digestion, there was a significant increase in both glyoxal and methylglyoxal levels, reaching up to 1804 % and 859 %, respectively. The findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors. Also, glyoxal and methylglyoxal levels were found to be low in chocolate samples containing dark chocolate. In contrast, they were found to be high in samples containing hazelnuts, almonds, pistache, and milk. Further studies should focus on α-DCs formation under digestive system conditions, including the colon, to determine the effects of gut microbiota.


Assuntos
Chocolate , Digestão , Glioxal , Aldeído Pirúvico , Glioxal/análise , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/análise , Chocolate/análise , Cromatografia Líquida de Alta Pressão , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/análise , Disponibilidade Biológica , Humanos
6.
Nutrients ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38892513

RESUMO

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Produtos Finais de Glicação Avançada , Insulina , Rim , Licopeno , Estresse Oxidativo , Ratos Wistar , Animais , Licopeno/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/farmacologia , Masculino , Insulina/sangue , Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Arildialquilfosfatase/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Resistência à Insulina , Lactoilglutationa Liase/metabolismo , Quimioterapia Combinada , Hipoglicemiantes/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo
7.
Nutrients ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892668

RESUMO

Dietary interventions are a key strategy to promote healthy ageing. Cooking skills training emerges as a promising approach to acquiring and maintaining healthy eating habits. The purpose was to evaluate the effectiveness of a culinary programme to improve healthy eating habits among overweight/obese adults (55-70 years old). A total of 62 volunteers were randomly (1:1) assigned to an culinary intervention group (CIG) or a nutritional intervention group (NIG). Dietary, cooking, and health-related outcomes, including body advanced glycation end product (AGE) levels, were evaluated at baseline and after four weeks. Mixed-effects linear models were used to assess the effects of the interventions within and between groups. Among the 56 participants who completed the trial, CIG participants achieved a significant improvement in Mediterranean diet adherence (1.2; 95%CI, 0.2 to 2.2) and a reduction in the use of culinary techniques associated with a higher AGE formation in foods (-2.8; 95%CI, -5.6 to -0.2), weight (-1.5; 95%CI, -2.5 to -0.5), body mass index (-0.5; 95%CI, -0.8 to -0.2), waist circumference (-1.4; 95%CI, -2.6 to -0.2), and hip circumference (-1.4; 95%CI, -2.4 to -0.4) compared with the NIG participants. Although a greater confidence in cooking in the CIG was found, attitudes and cooking habits did not improve. No significant differences in biochemical parameters or AGEs were found between groups. In conclusion, a culinary intervention could be successful in promoting healthy eating and cooking habits compared to a programme based on nutrition education alone. Nevertheless, further efforts are needed to strengthen attitudes and beliefs about home cooking, to address potential barriers and understand the impact of cooking interventions on biological parameters. Larger studies with longer follow-ups are needed to evaluate the relationship between cooking, diet, and health.


Assuntos
Culinária , Estudos de Viabilidade , Envelhecimento Saudável , Humanos , Pessoa de Meia-Idade , Culinária/métodos , Projetos Piloto , Masculino , Idoso , Feminino , Dieta Mediterrânea , Dieta Saudável/métodos , Promoção da Saúde/métodos , Comportamento Alimentar , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/prevenção & controle , Sobrepeso/prevenção & controle , Índice de Massa Corporal
8.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891783

RESUMO

Skin yellowness is a hallmark of dull or unhealthy skin, particularly among Asians. Previous research has indicated a link between skin glycation and skin yellowness. However, the specific glycated chemicals contributing to yellowish skin appearance have not been identified yet. Using HPLC-PDA-HRMS coupled with native and artificially glycated human epidermal explant skin, we identified intensely yellow colored glycated chromophores "(1R, 8aR) and (1S, 8aR)-4-(2-furyl)-7-[(2-furyl)-methylidene]-2-hydroxy-2H,7H,8AH-pyrano-[2,3-B]-pyran-3-one" (abbreviated as AGEY) from human skin samples for the first time. The abundance of AGEY was strongly correlated with skin yellowness in the multiple skin explant tissues. We further confirmed the presence of AGEY in cultured human keratinocytes and 3D reconstructed human epidermal (RHE) models. Additionally, we demonstrated that a combination of four cosmetic compounds with anti-glycation properties can inhibit the formation of AGEY and reduce yellowness in the RHE models. In conclusion, we have identified specific advanced glycation end products with an intense yellow color, namely AGEY, in human skin tissues for the first time. The series of study results highlighted the significant contribution of AGEY to the yellow appearance of the skin. Furthermore, we have identified a potential cosmetic solution to mitigate AGEY formation, leading to a reduction in yellowness in the in vitro RHE models.


Assuntos
Produtos Finais de Glicação Avançada , Queratinócitos , Pele , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Glicosilação , Epiderme/metabolismo , Cosméticos/química , Feminino , Adulto , Pigmentação da Pele/efeitos dos fármacos
9.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892134

RESUMO

Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.


Assuntos
Aptâmeros de Nucleotídeos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Inflamação , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada , Motilidade dos Espermatozoides , Testículo , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Aptâmeros de Nucleotídeos/farmacologia , Testículo/metabolismo , Testículo/efeitos dos fármacos , Testículo/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Inflamação/metabolismo , Inflamação/patologia , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Contagem de Espermatozoides
10.
Nat Commun ; 15(1): 4985, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862515

RESUMO

Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.


Assuntos
Aterosclerose , Proteína 7 com Repetições F-Box-WD , Produtos Finais de Glicação Avançada , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas do Fator Nuclear 90 , Receptor para Produtos Finais de Glicação Avançada , Animais , Masculino , Camundongos , Produtos Finais de Glicação Avançada/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas do Fator Nuclear 90/metabolismo , Proteínas do Fator Nuclear 90/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/genética , Camundongos Endogâmicos C57BL , Ubiquitinação , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Hiperglicemia/metabolismo , Hiperglicemia/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/genética , Apoptose
11.
Physiol Rep ; 12(12): e16121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898369

RESUMO

Advanced glycation end products (AGEs) have been implicated in several skeletal muscle dysfunctions. However, whether the adverse effects of AGEs on skeletal muscle are because of their direct action on the skeletal muscle tissue is unclear. Therefore, this study aimed to investigate the direct and acute effects of AGEs on skeletal muscle using an isolated mouse skeletal muscle to eliminate several confounders derived from other organs. The results showed that the incubation of isolated mouse skeletal muscle with AGEs (1 mg/mL) for 2-6 h suppressed protein synthesis and the mechanistic target of rapamycin signaling pathway. Furthermore, AGEs showed potential inhibitory effects on protein degradation pathways, including autophagy and the ubiquitin-proteasome system. Additionally, AGEs stimulated endoplasmic reticulum (ER) stress by modulating the activating transcription factor 6, PKR-like ER kinase, C/EBP homologous protein, and altered inflammatory cytokine expression. AGEs also stimulated receptor for AGEs (RAGE)-associated signaling molecules, including mitogen-activated protein kinases. These findings suggest that AGEs have direct and acute effect on skeletal muscle and disturb proteostasis by modulating intracellular pathways such as RAGE signaling, protein synthesis, proteolysis, ER stress, and inflammatory cytokines.


Assuntos
Estresse do Retículo Endoplasmático , Produtos Finais de Glicação Avançada , Músculo Esquelético , Proteostase , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Autofagia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
12.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847916

RESUMO

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Assuntos
Pé Diabético , Medicamentos de Ervas Chinesas , Produtos Finais de Glicação Avançada , Proteína Smad2 , Proteína Smad3 , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Animais , Cicatrização/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Smad2/metabolismo , Humanos , Proteína Smad3/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
13.
Mol Med ; 30(1): 76, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840067

RESUMO

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Produtos Finais de Glicação Avançada , Lipoproteínas LDL , NF-kappa B , Osteogênese , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Humanos , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/patologia , Cricetinae , Osteogênese/efeitos dos fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Proteínas Glicadas
14.
Biol Lett ; 20(6): 20230601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863347

RESUMO

Glycation reactions play a key role in the senescence process and are involved in numerous age-related pathologies, such as diabetes complications or Alzheimer's disease. As a result, past studies on glycation have mostly focused on human and laboratory animal models for medical purposes. Very little is known about glycation and its link to senescence in wild animal species. Yet, despite feeding on high-sugar diets, several bat and bird species are long-lived and seem to escape the toxic effects of high glycaemia. The study of these models could open new avenues both for understanding the mechanisms that coevolved with glycation resistance and for treating the damaging effects of glycations in humans. Our understanding of glycaemia's correlation to proxies of animals' pace of life is emerging in few wild species; however, virtually nothing is known about their resistance to glycation, nor on the relationship between glycation, species' life-history traits and individual fitness. Our review summarizes the scarce current knowledge on the links between glycation and life-history traits in non-conventional animal models, highlighting the predominance of avian research. We also investigate some key molecular and physiological parameters involved in glycation regulation, which hold promise for future research on fitness and senescence of individuals.


Assuntos
Características de História de Vida , Animais , Aves/fisiologia , Modelos Animais , Glicosilação , Envelhecimento , Produtos Finais de Glicação Avançada/metabolismo
15.
Hypertension ; 81(7): 1537-1549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752345

RESUMO

BACKGROUND: Preeclampsia is a multifaceted syndrome that includes maternal vascular dysfunction. We hypothesize that increased placental glycolysis and hypoxia in preeclampsia lead to increased levels of methylglyoxal (MGO), consequently causing vascular dysfunction. METHODS: Plasma samples and placentas were collected from uncomplicated and preeclampsia pregnancies. Uncomplicated placentas and trophoblast cells (BeWo) were exposed to hypoxia. The reactive dicarbonyl MGO and advanced glycation end products (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL], and MGO-derived hydroimidazolone [MG-H]) were quantified using liquid chromatography-tandem mass spectrometry. The activity of GLO1 (glyoxalase-1), that is, the enzyme detoxifying MGO, was measured. The impact of MGO on vascular function was evaluated using wire/pressure myography. The therapeutic potential of the MGO-quencher quercetin and mitochondrial-specific antioxidant mitoquinone mesylate (MitoQ) was explored. RESULTS: MGO, CML, CEL, and MG-H2 levels were elevated in preeclampsia-placentas (+36%, +36%, +25%, and +22%, respectively). Reduced GLO1 activity was observed in preeclampsia-placentas (-12%) and hypoxia-exposed placentas (-16%). Hypoxia-induced MGO accumulation in placentas was mitigated by the MGO-quencher quercetin. Trophoblast cells were identified as the primary source of MGO. Reduced GLO1 activity was also observed in hypoxia-exposed BeWo cells (-26%). Maternal plasma concentrations of CML and the MGO-derived MG-H1 increased as early as 12 weeks of gestation (+16% and +17%, respectively). MGO impaired endothelial barrier function, an effect mitigated by MitoQ, and heightened vascular responsiveness to thromboxane A2. CONCLUSIONS: This study reveals the accumulation of placental MGO in preeclampsia and upon exposure to hypoxia, demonstrates how MGO can contribute to vascular impairment, and highlights plasma CML and MG-H1 levels as promising early biomarkers for preeclampsia.


Assuntos
Biomarcadores , Placenta , Pré-Eclâmpsia , Aldeído Pirúvico , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/sangue , Humanos , Feminino , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/sangue , Gravidez , Placenta/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Adulto , Produtos Finais de Glicação Avançada/metabolismo , Trofoblastos/metabolismo , Lactoilglutationa Liase/metabolismo
16.
Biochem Biophys Res Commun ; 721: 150107, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781658

RESUMO

Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.


Assuntos
Aldosterona , Produtos Finais de Glicação Avançada , Receptor para Produtos Finais de Glicação Avançada , Humanos , Aldosterona/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Receptores de Mineralocorticoides/metabolismo , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Glicosilação
17.
Eur J Pharmacol ; 976: 176660, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795756

RESUMO

Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.


Assuntos
Envelhecimento , Aorta Torácica , Apigenina , Flavanonas , Galactose , Produtos Finais de Glicação Avançada , NF-kappa B , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Apigenina/farmacologia , Apigenina/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Antioxidantes/farmacologia
18.
Curr Opin Pharmacol ; 76: 102464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796877

RESUMO

Glycation is a posttranslational modification of proteins that contributes to the vast array of biological information that can be conveyed via a singular proteome. Understanding the role of advanced glycation end-products (AGEs) in human health and pathophysiology can be difficult, as the physiological effects of AGEs have been associated with multiple biological processes and disease state development, including acute myocardial ischemia-reperfusion injury, heart failure, and atherosclerosis, as well as tumor cell migration. The critical role of the glyoxalase system in the detoxification of methylglyoxal and other AGEs has been well established. Recently, evidence has emerged that DJ-1 displays antiglycative activity and may contribute to another mechanism of protection against protein glycation outside of the glyoxalase system. Identification of potential substrates of DJ-1 and determination of the pathways in which DJ-1 operates, is needed to fully understand the role of this protein in modulating biological homeostasis and the development of disease.


Assuntos
Produtos Finais de Glicação Avançada , Humanos , Animais , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Proteína Desglicase DJ-1/metabolismo
19.
Metab Syndr Relat Disord ; 22(5): 372-384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696648

RESUMO

Aims: Cys34 albumin redox modifications (reversible "cysteinylation" and irreversible "di/trioxidation"), besides being just oxidative stress biomarkers, may have primary pathogenetic roles to initiate and/or aggravate cell, tissue, and vascular damage in diabetes. In an exploratory "proof-of-concept" pilot study, we examined longitudinal changes in albumin oxidation during diabetes therapy. Methods: Mass spectrometric analysis was utilized to monitor changes in human serum albumin (HSA) post-translational modifications {glycation [glycated albumin (GA)], cysteinylation [cysteinylated albumin (CA) or human non-mercaptalbumin-1; reversible], di/trioxidation (di/trioxidized albumin or human non-mercaptalbumin-2; irreversible), and truncation (truncated albumin)} during ongoing therapy. Four informative groups of subjects were evaluated [type 1 diabetes (T1DM), type 2 diabetes (T2DM), prediabetes-obesity, and healthy controls] at baseline, and subjects with diabetes were followed for a period up to 280 days. Results: At baseline, T2DM was associated with relatively enhanced albumin cysteinylation (CA% total) compared with T1DM (P = 0.004), despite comparable mean hyperglycemia (P values: hemoglobin A1c = 0.09; GA = 0.09). T2DM, compared with T1DM, exhibited selectively and significantly higher elevations of all the "individual" glycated cum cysteinylated ("multimodified") albumin isoforms (P values: CysHSA+1G = 0.003; CysHSA+2G = 0.007; and CysHSA+3G = 0.001). Improvements in glycemic control and decreases in albumin glycation during diabetes therapy in T2DM were not always associated with concurrent reductions of albumin cysteinylation, and in some therapeutic situations, albumin cysteinylation worsened (glycation-cysteinylation discordance). Important differences were observed between the effects of sulfonylureas and metformin on albumin molecular modifications. Conclusions: T2DM was associated with higher oxidative (cysteinylation) and combined (cysteinylation plus glycation) albumin molecular modifications, which are not ameliorated by improved glucose control alone. Further studies are required to establish the clinical significance and optimal therapeutic strategies to address oxidative protein damage and resulting consequences in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Albumina Sérica Glicada , Hipoglicemiantes , Oxirredução , Albumina Sérica Humana , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Hipoglicemiantes/uso terapêutico , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Glicosilação , Projetos Piloto , Adulto , Albumina Sérica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise , Glicemia/metabolismo , Estudos de Casos e Controles , Idoso , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Processamento de Proteína Pós-Traducional , Metformina/uso terapêutico , Cisteína/metabolismo
20.
Nutrients ; 16(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732638

RESUMO

As the most serious of the many worse new pathological changes caused by diabetes, there are many risk factors for the occurrence and development of diabetic retinopathy (DR). They mainly include hyperglycemia, hypertension, hyperlipidemia and so on. Among them, hyperglycemia is the most critical cause, and plays a vital role in the pathological changes of DR. High-sucrose diets (HSDs) lead to elevated blood glucose levels in vivo, which, through oxidative stress, inflammation, the production of advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF), cause plenty of pathological damages to the retina and ultimately bring about loss of vision. The existing therapies for DR primarily target the terminal stage of the disease, when irreversible visual impairment has appeared. Therefore, early prevention is particularly critical. The early prevention of DR-related vision loss requires adjustments to dietary habits, mainly by reducing sugar intake. This article primarily discusses the risk factors, pathophysiological processes and molecular mechanisms associated with the development of DR caused by HSDs. It aims to raise awareness of the crucial role of diet in the occurrence and progression of DR, promote timely changes in dietary habits, prevent vision loss and improve the quality of life. The aim is to make people aware of the importance of diet in the occurrence and progression of DR. According to the dietary modification strategies that we give, patients can change their poor eating habits in a timely manner to avoid theoretically avoidable retinopathy and obtain an excellent prognosis.


Assuntos
Retinopatia Diabética , Progressão da Doença , Humanos , Retinopatia Diabética/etiologia , Retinopatia Diabética/prevenção & controle , Fatores de Risco , Sacarose Alimentar/efeitos adversos , Estresse Oxidativo , Glicemia/metabolismo , Dieta/efeitos adversos , Comportamento Alimentar , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA