Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
PLoS Pathog ; 20(5): e1011821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781120

RESUMO

The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV , HIV-1 , Regiões Promotoras Genéticas , Latência Viral , Humanos , HIV-1/genética , HIV-1/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Transcrição Viral
2.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670485

RESUMO

Antiretroviral therapy-naive people living with HIV possess less fat than people without HIV. Previously, we found that HIV-1 transactivator of transcription (TAT) decreases fat in ob/ob mice. The TAT38 (a.a. 20-57) is important in the inhibition of adipogenesis and contains three functional domains: Cys-ZF domain (a.a. 20-35 TACTNCYCAKCCFQVC), core-domain (a.a. 36-46, FITKALGISYG), and protein transduction domain (PTD)(a.a. 47-57, RAKRRQRRR). Interestingly, the TAT38 region interacts with the Cyclin T1 of the P-TEFb complex, of which expression increases during adipogenesis. The X-ray crystallographic structure of the complex showed that the Cys-ZF and the core domain bind to the Cyclin T1 via hydrophobic interactions. To prepare TAT38 mimics with structural and functional similarities to TAT38, we replaced the core domain with a hydrophobic aliphatic amino acid (from carbon numbers 5 to 8). The TAT38 mimics with 6-hexanoic amino acid (TAT38 Ahx (C6)) and 7-heptanoic amino acid (TAT38 Ahp (C7)) inhibited adipogenesis of 3T3-L1 potently, reduced cellular triglyceride content, and decreased body weight of diet-induced obese (DIO) mice by 10.4-11 % in two weeks. The TAT38 and the TAT38 mimics potently repressed the adipogenic transcription factors genes, C/EBPα, PPARγ, and SREBP1. Also, they inhibit the phosphorylation of PPARγ. The TAT peptides may be promising candidates for development into a drug against obesity or diabetes.


Assuntos
Adipogenia , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , PPAR gama/metabolismo , Adipogenia/efeitos dos fármacos , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células 3T3-L1 , Humanos , Regulação da Expressão Gênica , Camundongos Obesos , Masculino , Ciclina T/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Estimuladoras de Ligação a CCAAT
3.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38664011

RESUMO

Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.


Assuntos
Cálcio , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Neurônios , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos , Masculino , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Neurônios/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542351

RESUMO

Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.


Assuntos
COVID-19 , HIV-1 , Humanos , HIV-1/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Ativação Transcricional , Repetição Terminal Longa de HIV , COVID-19/genética , Produtos do Gene tat/genética , Lentivirus/genética , Expressão Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , RNA Viral/metabolismo
5.
J Neurovirol ; 30(1): 1-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
6.
J Med Virol ; 96(2): e29423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285479

RESUMO

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Infecções por HIV , Linfoma , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Regulação para Baixo , Herpesvirus Humano 4/genética , Infecções por HIV/genética , HIV-1/genética , Cadeias HLA-DRB1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
7.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139395

RESUMO

During the antiretroviral era, individuals living with HIV continue to experience milder forms of HIV-associated neurocognitive disorder (HAND). Viral proteins, including Tat, play a pivotal role in the observed alterations within the central nervous system (CNS), with mitochondrial dysfunction emerging as a prominent hallmark. As a result, our objective was to examine the expression of genes associated with mitophagy and mitochondrial biogenesis in the brain exposed to the HIV-1 Tat protein. We achieved this by performing bilateral stereotaxic injections of 100 ng of HIV-1 Tat into the hippocampus of Sprague-Dawley rats, followed by immunoneuromagnetic cell isolation. Subsequently, we assessed the gene expression of Ppargc1a, Pink1, and Sirt1-3 in neurons using RT-qPCR. Additionally, to understand the role of Tert in telomeric dysfunction, we quantified the activity and expression of Tert. Our results revealed that only Ppargc1a, Pink1, and mitochondrial Sirt3 were downregulated in response to the presence of HIV-1 Tat in hippocampal neurons. Interestingly, we observed a reduction in the activity of Tert in the experimental group, while mRNA levels remained relatively stable. These findings support the compelling evidence of dysregulation in both mitophagy and mitochondrial biogenesis in neurons exposed to HIV-1 Tat, which in turn induces telomeric dysfunction.


Assuntos
Infecções por HIV , HIV-1 , Transtornos Neurocognitivos , Sirtuína 3 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Ratos , Produtos do Gene tat/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/virologia , Neurônios/metabolismo , Biogênese de Organelas , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Sirtuína 3/genética , Sirtuína 3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
8.
Nat Commun ; 14(1): 7274, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949879

RESUMO

The HIV-1 Tat protein hijacks the Super Elongation Complex (SEC) to stimulate viral transcription and replication. However, the mechanisms underlying Tat activation and inactivation, which mediate HIV-1 productive and latent infection, respectively, remain incompletely understood. Here, through a targeted complementary DNA (cDNA) expression screening, we identify PRMT2 as a key suppressor of Tat activation, thus contributing to proviral latency in multiple cell line latency models and in HIV-1-infected patient CD4+ T cells. Our data reveal that the transcriptional activity of Tat is oppositely regulated by NPM1-mediated nucleolar retention and AFF4-induced phase separation in the nucleoplasm. PRMT2 preferentially methylates Tat arginine 52 (R52) to reinforce its nucleolar sequestration while simultaneously counteracting its incorporation into the SEC droplets, thereby leading to its functional inactivation to promote proviral latency. Thus, our studies unveil a central and unappreciated role for Tat methylation by PRMT2 in connecting its subnuclear distribution, liquid droplet formation, and transactivating function, which could be therapeutically targeted to eradicate latent viral reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular , Provírus/genética , Linfócitos T/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Latência Viral/genética , Infecções por HIV/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
Viruses ; 15(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38005889

RESUMO

Tat, the trans-activator of transcription, is a multifunctional HIV-1 protein that can induce chronic inflammation and the development of somatic diseases in HIV-infected patients. Natural polymorphisms in Tat can impact the propagation of the inflammatory signal. Currently, Tat is considered an object for creating new therapeutic agents. Therefore, the identification of Tat protein features in various HIV-1 variants is a relevant task. The purpose of the study was to characterize the genetic variations of Tat-A6 in virus variants circulating in the Moscow Region. The authors analyzed 252 clinical samples from people living with HIV (PLWH) with different stages of HIV infection. Nested PCR for two fragments (tat1, tat2) with subsequent sequencing, subtyping, and statistical analysis was conducted. The authors received 252 sequences for tat1 and 189 for tat2. HIV-1 sub-subtype A6 was identified in 250 samples. The received results indicated the features of Tat1-A6 in variants of viruses circulating in the Moscow Region. In PLWH with different stages of HIV infection, C31S in Tat1-A6 was detected with different occurrence rates. It was demonstrated that Tat2-A6, instead of a functional significant 78RGD80 motif, had a 78QRD80 motif. Herewith, G79R in Tat2-A6 was defined as characteristic amino acid substitution for sub-subtype A6. Tat2-A6 in variants of viruses circulating in the Moscow Region demonstrated high conservatism.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene tat/metabolismo , Moscou/epidemiologia , HIV-1/genética , HIV-1/metabolismo , Infecções por HIV/epidemiologia , Federação Russa/epidemiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
10.
STAR Protoc ; 4(4): 102687, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979180

RESUMO

A critical virus-encoded regulator of HIV-1 transcription is the Tat protein, which is required to potently activate transcription. Tat is regulated by a wide variety of post-translational modifications. This protocol describes an in vitro assay to study Tat methylation. We describe steps for incorporation of radioactive methyl groups into Tat protein, visualization by gel analysis, Coomassie blue stain, gel drying, and detection by autoradiography. This protocol can also be used to assess methylation in other proteins such as histones. For complete details on the use and execution of this protocol, please refer to Boehm et al. (2023).1.


Assuntos
HIV-1 , HIV-1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Histonas/metabolismo
11.
J Virol ; 97(11): e0104423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905837

RESUMO

IMPORTANCE: HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure. This study focuses on understanding the molecular mechanism behind such cell-specific disparities. We show that one of the key mechanisms is the regulation of heterogenous nuclear ribonucleoprotein A2, a host factor involved in alternative splicing and RNA processing, by HIV-1 Tat in CD4+ T lymphocytes, not observed in astrocytes. This regulation causes an increase in the levels of unspliced/partially spliced viral RNA and nuclear export of Rev-RNA complexes which results in high viral propagation in CD4+ T lymphocytes. The study reveals a new mechanism imposed by HIV on host cells that determines the fate of infection.


Assuntos
Transporte Ativo do Núcleo Celular , Infecções por HIV , HIV-1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Processamento Alternativo , Núcleo Celular/metabolismo , Produtos do Gene rev/genética , HIV-1/fisiologia , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Splicing de RNA , RNA Viral/genética , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
12.
Antimicrob Agents Chemother ; 67(11): e0041723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874295

RESUMO

A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.


Assuntos
Infecções por HIV , HIV-1 , Ativação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos , Infecções por HIV/genética , Infecções por HIV/metabolismo , Provírus/genética , Latência Viral , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , HIV-1/metabolismo
13.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298089

RESUMO

Human immunodeficiency virus-1 (HIV-1) transactivator (Tat)-mediated transcription is essential for HIV-1 replication. It is determined by the interaction between Tat and transactivation response (TAR) RNA, a highly conserved process representing a prominent therapeutic target against HIV-1 replication. However, owing to the limitations of current high-throughput screening (HTS) assays, no drug that disrupts the Tat-TAR RNA interaction has been uncovered yet. We designed a homogenous (mix-and-read) time-resolved fluorescence resonance energy transfer (TR-FRET) assay using europium cryptate as a fluorescence donor. It was optimized by evaluating different probing systems for Tat-derived peptides or TAR RNA. The specificity of the optimal assay was validated by mutants of the Tat-derived peptides and TAR RNA fragment, individually and by competitive inhibition with known TAR RNA-binding peptides. The assay generated a constant Tat-TAR RNA interaction signal, discriminating the compounds that disrupted the interaction. Combined with a functional assay, the TR-FRET assay identified two small molecules (460-G06 and 463-H08) capable of inhibiting Tat activity and HIV-1 infection from a large-scale compound library. The simplicity, ease of operation, and rapidity of our assay render it suitable for HTS to identify Tat-TAR RNA interaction inhibitors. The identified compounds may also act as potent molecular scaffolds for developing a new HIV-1 drug class.


Assuntos
HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , HIV-1/fisiologia , Transferência Ressonante de Energia de Fluorescência , Transativadores , RNA Viral/genética
14.
PLoS Pathog ; 19(6): e1011194, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37307292

RESUMO

A genetic bottleneck is a hallmark of HIV-1 transmission such that only very few viral strains, termed transmitted/founder (T/F) variants establish infection in a newly infected host. Phenotypic characteristics of these variants may determine the subsequent course of disease. The HIV-1 5' long terminal repeat (LTR) promoter drives viral gene transcription and is genetically identical to the 3' LTR. We hypothesized that HIV-1 subtype C (HIV-1C) T/F virus LTR genetic variation is a determinant of transcriptional activation potential and clinical disease outcome. The 3'LTR was amplified from plasma samples of 41 study participants acutely infected with HIV-1C (Fiebig stages I and V/VI). Paired longitudinal samples were also available at one year post-infection for 31 of the 41 participants. 3' LTR amplicons were cloned into a pGL3-basic luciferase expression vector, and transfected alone or together with Transactivator of transcription (tat) into Jurkat cells in the absence or presence of cell activators (TNF-α, PMA, Prostratin and SAHA). Inter-patient T/F LTR sequence diversity was 5.7% (Renge: 2-12) with subsequent intrahost viral evolution observed in 48.4% of the participants analyzed at 12 months post-infection. T/F LTR variants exhibited differential basal transcriptional activity, with significantly higher Tat-mediated transcriptional activity compared to basal (p<0.001). Basal and Tat-mediated T/F LTR transcriptional activity showed significant positive correlation with contemporaneous viral loads and negative correlation with CD4 T cell counts (p<0.05) during acute infection respectively. Furthermore, Tat-mediated T/F LTR transcriptional activity significanly correlated positively with viral load set point and viral load; and negatively with CD4 T cell counts at one year post infection (all p<0.05). Lastly, PMA, Prostratin, TNF-α and SAHA cell stimulation resulted in enhanced yet heterologous transcriptional activation of different T/F LTR variants. Our data suggest that T/F LTR variants may influence viral transcriptional activity, disease outcomes and sensitivity to cell activation, with potential implications for therapeutic interventions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Ativação Transcricional , HIV-1/fisiologia , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Fator de Necrose Tumoral alfa/metabolismo , Repetição Terminal Longa de HIV/genética , Variação Genética , Infecções por HIV/genética , Regulação Viral da Expressão Gênica
15.
Biomolecules ; 13(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371461

RESUMO

HIV-1 infection leads to a gradual loss of T helper cells, chronic immune activation, and eventual immune system breakdown. HIV-1 causes deregulation of the expression of IL-2, a cytokine important for T helper cell growth and survival, which is downregulated in HIV-1 patients. The present study addresses the regulation of IL2 expression via HIV-1 Tat transcriptional activator. We used J-LAT cells, a T cell line that serves as a latency model for studies of HIV-1 expression in T cells, and as controls a T cell line lacking HIV-1 elements and a T cell line with a stably integrated copy of the HIV-1-LTR promoter. We show that endogenously expressed Tat inhibits IL2 transcription in J-Lat cells via its presence in the ARRE-1/2 elements of the IL2 promoter and that the inhibition of IL2 expression is mediated by Tat inhibiting Pol II activity at the IL2 promoter, which is mediated by preventing the presence of Pol II at the ARRE-1/2 elements. Overall, Tat is present at the IL2 promoter, apart from its cognate HIV-1 LTR target. This supports our current knowledge of how HIV-1 affects the host transcriptional machinery and reflects the potential of Tat to disrupt transcriptional regulation of host genes to manipulate cell responses.


Assuntos
Infecções por HIV , HIV-1 , Interleucina-2 , RNA Polimerase II , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Regulação Viral da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
16.
J Neurovirol ; 29(4): 479-491, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37358698

RESUMO

NOTCH receptors are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of NOTCH receptors in HIV-associated neurocognitive disorder (HAND) remain largely unclear. Transactivator of transcription (Tat) induces oxidative stress and inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. We determined that NOTCH3 expression was upregulated during subtype B or C Tat expression in HEB astroglial cells. Moreover, bioinformatics analysis of the Gene Expression Omnibus (GEO) dataset revealed that NOTCH3 mRNA expression in the frontal cortex tissues of HIV encephalitis patients was higher than that of HIV control patients. Of note, subtype B Tat, rather than subtype C Tat, interacted with the extracellular domain of the NOTCH3 receptor, thus activating NOTCH3 signaling. Downregulation of NOTCH3 attenuated subtype B Tat-induced oxidative stress and reactive oxygen species generation. In addition, we demonstrated that NOTCH3 signaling facilitated subtype B Tat-activated NF-κB signaling pathway, thereby mediating pro-inflammatory cytokines IL-6 and TNF-α production. Furthermore, downregulation of NOTCH3 in HEB astroglial cells protected SH-SY5Y neuronal cells from astrocyte-mediated subtype B Tat neurotoxicity. Taken together, our study clarifies the potential role of NOTCH3 in subtype B Tat-induced oxidative stress and inflammatory response in astrocytes, which could be a novel therapeutic target for the relief of HAND.


Assuntos
Infecções por HIV , HIV-1 , Neuroblastoma , Humanos , Astrócitos/metabolismo , HIV-1/genética , HIV-1/metabolismo , Transativadores/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , NF-kappa B/genética , NF-kappa B/metabolismo , Infecções por HIV/genética , Infecções por HIV/metabolismo , Estresse Oxidativo , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
17.
ACS Nano ; 17(13): 12247-12265, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350353

RESUMO

Cells penetrating molecules in living systems hold promise of capturing and eliminating threats and damage that can plan intracellular fate promptly. However, it remains challenging to construct cell penetration systems that are physiologically stable with predictable self-assembly behavior and well-defined mechanisms. In this study, we develop a core-shell nanoparticle using a hyaluronic acid (HA)-coated protein transduction domain (PTD) derived from the human immunodeficiency virus (HIV). This nanoparticle can encapsulate pathogens, transporting the PTD into macrophages via lipid rafts. PTD forms hydrogen bonds with the components of the membrane through TAT, which has a high density of positive charges and reduces the degree of membrane order through Tryptophan (Trp)-zipper binding to the acyl tails of phospholipid molecules. HA-encapsulated PTD increases the resistance to trypsin and proteinase K, thereby penetrating macrophages and eliminating intracellular infections. Interestingly, the nonagglutination mechanism of PTD against pathogens ensures the safe operation of the cellular system. Importantly, PTD can activate the critical pathway of antiferroptosis in macrophages against pathogen infection. The nanoparticles developed in this study demonstrate safety and efficacy against Gram-negative and Gram-positive pathogens in three animal models. Overall, this work highlights the effectiveness of the PTD nanoparticle in encapsulating pathogens and provides a paradigm for transduction systems-anti-intracellular infection therapy.


Assuntos
Ferroptose , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Triptofano , Transporte Biológico , Macrófagos/metabolismo , Transdução Genética , Proteínas Recombinantes de Fusão/metabolismo
18.
J Virol ; 97(4): e0027823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37129415

RESUMO

HIV-1 Tat is a key viral protein that stimulates several steps of viral gene expression. Tat is especially required for the transcription of viral genes. Nevertheless, it is still not clear if and how Tat is incorporated into HIV-1 virions. Cyclophilin A (CypA) is a prolyl isomerase that binds to HIV-1 capsid protein (CA) and is thereby encapsidated at the level of 200 to 250 copies of CypA/virion. Here, we found that a Tat-CypA-CA tripartite complex assembles in HIV-1-infected cells and allows Tat encapsidation into HIV virions (1 Tat/1 CypA). Biochemical and biophysical studies showed that high-affinity interactions drive the assembly of the Tat-CypA-CA complex that could be purified by size exclusion chromatography. We prepared different types of viruses devoid of transcriptionally active Tat. They showed a 5- to 10 fold decrease in HIV infectivity, and conversely, encapsidating Tat into ΔTat viruses greatly enhanced infectivity. The absence of encapsidated Tat decreased the efficiency of reverse transcription by ~50% and transcription by more than 90%. We thus identified a Tat-CypA-CA complex that enables Tat encapsidation and showed that encapsidated Tat is required to initiate robust viral transcription and thus viral production at the beginning of cell infection, before neosynthesized Tat becomes available. IMPORTANCE The viral transactivating protein Tat has been shown to stimulate several steps of HIV gene expression. It was found to facilitate reverse transcription. Moreover, Tat is strictly required for the transcription of viral genes. Although the presence of Tat within HIV virions would undoubtedly favor these steps and therefore enable the incoming virus to boost initial viral production, whether and how Tat is present within virions has been a matter a debate. We here described and characterized a tripartite complex between Tat, HIV capsid protein, and the cellular chaperone cyclophilin A that enables efficient and specific Tat encapsidation within HIV virions. We further showed that Tat encapsidation is required for the virus to efficiently initiate infection and viral production. This effect is mainly due to the transcriptional activity of Tat.


Assuntos
Proteínas do Capsídeo , Ciclofilina A , Infecções por HIV , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Ressonância de Plasmônio de Superfície , Citosol/metabolismo , Linhagem Celular
19.
Viruses ; 15(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112931

RESUMO

HIV resistance to the Tat inhibitor didehydro-cortistatin A (dCA) in vitro correlates with higher levels of Tat-independent viral transcription and a seeming inability to enter latency, which rendered resistant isolates more susceptible to CTL-mediated immune clearance. Here, we investigated the ability of dCA-resistant viruses to replicate in vivo using a humanized mouse model of HIV infection. Animals were infected with WT or two dCA-resistant HIV-1 isolates in the absence of dCA and followed for 5 weeks. dCA-resistant viruses exhibited lower replication rates compared to WT. Viral replication was suppressed early after infection, with viral emergence at later time points. Multiplex analysis of cytokine and chemokines from plasma samples early after infection revealed no differences in expression levels between groups, suggesting that dCA-resistance viruses did not elicit potent innate immune responses capable of blocking the establishment of infection. Viral single genome sequencing results from plasma samples collected at euthanasia revealed that at least half of the total number of mutations in the LTR region of the HIV genome considered essential for dCA evasion reverted to WT. These results suggest that dCA-resistant viruses identified in vitro suffer a fitness cost in vivo, with mutations in LTR and Nef pressured to revert to wild type.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Camundongos , Animais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Replicação Viral , Repetição Terminal Longa de HIV
20.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047108

RESUMO

Tat is an essential gene for increasing the transcription of all HIV genes, and affects HIV replication, HIV exit from latency, and AIDS progression. The Tat gene frequently mutates in vivo and produces variants with diverse activities, contributing to HIV viral heterogeneity as well as drug-resistant clones. Thus, identifying the transcriptional activities of Tat variants will help to better understand AIDS pathology and treatment. We recently reported the missense mutation landscape of all single amino acid Tat variants. In these experiments, a fraction of double missense alleles exhibited intragenic epistasis. However, it is too time-consuming and costly to determine the effect of the variants for all double mutant alleles through experiments. Therefore, we propose a combined GigaAssay/deep learning approach. As a first step to determine activity landscapes for complex variants, we evaluated a deep learning framework using previously reported GigaAssay experiments to predict how transcription activity is affected by Tat variants with single missense substitutions. Our approach achieved a 0.94 Pearson correlation coefficient when comparing the predicted to experimental activities. This hybrid approach can be extensible to more complex Tat alleles for a better understanding of the genetic control of HIV genome transcription.


Assuntos
Síndrome da Imunodeficiência Adquirida , Aprendizado Profundo , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Ativação Transcricional , Mutação de Sentido Incorreto , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA