Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Food Chem Toxicol ; 172: 113555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493944

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD), glycidol, together with their fatty acid esters are commonly presented in various food and have shown carcinogenicity in various laboratory animals. Public health risk assessment of 3-MPCD and glycidol exposure relies on quantitative tools that represent their in vivo toxicokinetics. In order to better understand the absorption, distribution, metabolism, and excretion profiles of 3-MCPD and glycidol in male rats, a physiologically based pharmacokinetic (PBTK) model was developed. The model's predictive power was evaluated by comparing in silico simulations to in vivo time course data obtained from experimental studies. Results indicate that our PBTK model successfully captured the toxicokinetics of both free chemicals in key organs, and their metabolites in accessible biological fluids. With the validated PBTK model, we then gave an animal-free example on how to extrapolate the toxicological knowledge acquired from a single gavage to a realistic dietary intake scenario. Three biomarkers, free compound in serum, urinary metabolite DHPMA, and glycidol-hemoglobin adduct (diHOPrVal) were selected for in silico simulation following constant dietary intakes, and their internal levels were correlated with proposed external daily exposure via reverse dosimetry approaches. Taken together, our model provides a computational approach for extrapolating animal toxicokinetic experiments to biomonitoring measurement and risk assessment.


Assuntos
alfa-Cloridrina , Masculino , Ratos , Animais , alfa-Cloridrina/toxicidade , Toxicocinética , Propanóis/toxicidade , Propanóis/metabolismo , Compostos de Epóxi/toxicidade , Modelos Biológicos
3.
Environ Toxicol Pharmacol ; 87: 103735, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34461274

RESUMO

3-chloropropane-1,2-diol (3-MCPD) and its toxic metabolite glycidol were classified by the International Agency for Research on Cancer (IARC) as belonging to group 2B and 2A for humans. This study aimed to determine the sub-acute toxicity of these agents. Rats were exposed to 3-MCPD at 0.87 and 10 mg/kg/bw and glycidol (2,4 and 37,5 mg/kg/bw) for 90 days. miR-21 gene expression levels significantly decreased in all group's cerebellar tissues compared with control. Exposure to 10 mg/kg/bw 3-MCPD showed significant increases in PTEN in brain as compared to control group. The Akt gen expressions were significantly decreased in 3-MCPD and glycidol groups when compared to control group brains. Additionally, Caspase 3 and AIF immunopositivity significantly increased in 3-MCPD high dose and glycidol high dose groups in cerebellum granular layers compared to control. The results of the present study conclude that 3-MCPD and glycidol can induce apoptosis in rat brain tissue.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Esterilizantes Químicos/toxicidade , Compostos de Epóxi/toxicidade , Propanóis/toxicidade , alfa-Cloridrina/toxicidade , Animais , Fator de Indução de Apoptose/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Caspase 3/metabolismo , Masculino , MicroRNAs , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos Wistar
4.
Neurochem Res ; 46(8): 2056-2065, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34043140

RESUMO

Prion disease is a neurodegenerative disorder with progressive neurologic symptoms and accelerated cognitive decline. The causative protein of prion disease is the prion protein (PrP), and structural transition of PrP from the normal helix rich form (PrPC) to the abnormal ß-sheet rich form (PrPSc) occurs in prion disease. While so far numerous therapeutic agents for prion diseases have been developed, none of them are still useful. A fluorinated alcohol, hexafluoro isopropanol (HFIP), is a precursor to the inhalational anesthetic sevoflurane and its metabolites. HFIP is also known as a robust α-helix inducer and is widely used as a solvent for highly aggregated peptides. Here we show that the α-helix-inducing activity of HFIP caused the conformational transformation of the fibrous structure of PrP into amorphous aggregates in vitro. HFIP added to the ScN2a cell medium, which continuously expresses PrPSc, reduced PrPSc protease resistance after 24-h incubation. It was also clarified that ScN2a cells are more susceptible to HFIP than any of the cells being compared. Based on these findings, HFIP is expected to develop as a therapeutic agent for prion disease.


Assuntos
Proteínas Priônicas/metabolismo , Propanóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Animais , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Camundongos , Propanóis/toxicidade
7.
Food Chem Toxicol ; 141 Suppl 1: 111337, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339751

RESUMO

The existing information supports the use of this material as described in this safety assessment. Cinnamyl alcohol was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization, and environmental safety. Data show that cinnamyl alcohol is not genotoxic. Data on read-across analog cinnamaldehyde (CAS # 104-55-2) provide a calculated margin of exposure (MOE) >100 for the repeated dose and local respiratory toxicity endpoints. The developmental and reproductive toxicity endpoint was evaluated using the threshold of toxicological concern (TTC) for a Cramer Class I material, and the exposure to cinnamyl alcohol is below the TTC (0.03 mg/kg/day). Data provided a No Expected Sensitization Induction Level (NESIL) of 2900 µg/cm2 for the skin sensitization endpoint. The phototoxicity/photoallergenicity endpoints were evaluated based on UV spectra; cinnamyl alcohol is not expected to be phototoxic/photoallergenic. The environmental endpoints were evaluated; cinnamyl alcohol was found not to be persistent, bioaccumulative, and toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.


Assuntos
Perfumes/química , Propanóis/toxicidade , Animais , Humanos , Testes de Mutagenicidade , Odorantes , Propanóis/metabolismo , Testes de Toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-32087848

RESUMO

The environmental and food contaminant, benzo[a]pyrene {B[a]P, a polycyclic aromatic hydrocarbon (PAH)}, is classified as a human carcinogen by the International Agency for Research on Cancer. The carcinogenicity of B[a]P is linked to the formation of electrophilic metabolites, namely B[a]P-diol epoxides (BPDEs) occurring as stereoisomers. In this work, we quantified the metabolic formation of BPDE isomers and the genotoxic effect in B[a]P-exposed mice, with an aim to estimate the genotoxic potency of B[a]P per in vivo dose of its most potent metabolite [i.e. (+)-anti-BPDE]. The increase in frequency of micronuclei (fMN) in erythrocytes was measured as a biomarker for genotoxic effect. Covalent adducts to serum albumin (SA) and those to DNA from the BPDEs were analysed using liquid chromatography tandem mass spectrometry (LC-MS/MS), as adducts to histidine (BPDE-His-Pro) and deoxyguanosine (BPDE-dG), respectively. For the first time in animal experiments it was possible to resolve adducts to SA from (+)-anti-, (-)-anti- and (±)-syn-BPDE isomers by LC-MS/MS. The adduct levels in the protein were about 16 fmol/mg SA, which was orders of magnitude lower than that in the nucleic acid, 28 pmol/mg DNA, in mice exposed to 100 mg B[a]P per kg body weight (bw). Using SA adduct levels, the in vivo dose of (+)-anti-BPDE was calculated to be approximately 50 nM·h per mg B[a]P per kg bw. This allowed to make a preliminary estimate of the genotoxic potency as 2‰ fMN per µM·h of (+)-anti-BPDE. This estimate was compared to that from another food toxicant, glycidol, studied with similar methods, which indicated that the BPDE has several orders of magnitude higher genotoxic potency. The demonstrated approach on integrating biomarkers of internal dose of a causative agent and that of genotoxic effect for assessing genotoxic potency, using B[a]P as a model, has a potential for improving cancer risk assessment procedures for PAHs.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/química , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Albumina Sérica/química , Animais , Biotransformação , Compostos de Epóxi/química , Compostos de Epóxi/toxicidade , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes para Micronúcleos , Propanóis/toxicidade
9.
J Appl Toxicol ; 40(2): 313-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701564

RESUMO

An understanding of the bioavailability of topically applied cosmetics ingredients is key to predicting their local skin and systemic toxicity and making a safety assessment. We investigated whether short-term incubations with S9 from the reconstructed epidermal skin model, EpiSkin™, would give an indication of the rate of chemical metabolism and produce similar metabolites to those formed in incubations with human skin explants. Both have advantages: EpiSkin™ S9 is a higher-throughput assay, while the human skin explant model represents a longer incubation duration (24 hours) model integrating cutaneous distribution with metabolite formation. Here, we compared the metabolism of 10 chemicals (caffeine, vanillin, cinnamyl alcohol, propylparaben, 4-amino-3-nitrophenol, resorcinol, 4-chloroaniline, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline and 2-acetyl aminofluorene) in both models. Both models were shown to have functional Phase 1 and 2 enzymes, including cytochrome P450 activities. There was a good concordance between the models with respect to the level of metabolism (stable vs. slowly vs. extensively metabolized chemicals) and major early metabolites produced for eight chemicals. Discordant results for two chemicals were attributed to a lack of the appropriate cofactor (NADP+ ) in S9 incubations (cinnamyl alcohol) and protein binding influencing chemical uptake in skin explants (4-chloroaniline). These data support the use of EpiSkin™ S9 as a screening assay to provide an initial indication of the metabolic stability of a chemical applied topically. If required, chemicals that are not metabolized by EpiSkin™ S9 can be tested in longer-term incubations with in vitro human explant skin to determine whether it is slowly metabolized or not metabolized at all.


Assuntos
Células Cultivadas/efeitos dos fármacos , Cosméticos/metabolismo , Cosméticos/toxicidade , Testes de Irritação da Pele/métodos , Pele/efeitos dos fármacos , Acetofenonas/metabolismo , Acetofenonas/toxicidade , Compostos de Anilina/metabolismo , Compostos de Anilina/toxicidade , Animais , Benzaldeídos/metabolismo , Benzaldeídos/toxicidade , Benzilaminas/metabolismo , Benzilaminas/toxicidade , Cafeína/metabolismo , Humanos , Parabenos/metabolismo , Parabenos/toxicidade , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/toxicidade , Propanóis/metabolismo , Propanóis/toxicidade , Resorcinóis/metabolismo , Resorcinóis/toxicidade
11.
J Toxicol Sci ; 44(11): 759-776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708533

RESUMO

In order to estimate the potential risk of chemicals including drug in patients with type 2 diabetes mellitus (T2DM), we investigated allyl alcohol induced liver injury using SD rats and Spontaneously Diabetic Torii-Leprfa (SDT fatty) rats as a model for human T2DM. The diabetic state is one of the risk factors for chemically induced liver injury because of lower levels of glutathione for detoxification by conjugation with chemicals and environmental pollutants and their reactive metabolites. Allyl alcohol is metabolized to a highly reactive unsaturated aldehyde, acrolein, which is detoxified by conjugation with glutathione. Therefore, we used allyl alcohol as a model compound. Our investigations showed that SDT fatty rats appropriately mimic the diabetic state in humans. The profiles of glucose metabolism, hepatic function tests and glutathione synthesis in the SDT fatty rats were similar to those in patients with T2DM. Five-week oral dosing with allyl alcohol to the SDT fatty rats revealed that the allyl alcohol induced liver injury was markedly enhanced in the SDT fatty rats when compared with the SD rats and the difference was considered to be due to lower hepatic detoxification of acrolein, the reactive metabolite of allyl alcohol, by depleted hepatic glutathione synthesis. Taking all the results of the present study into consideration, the potential for allyl alcohol to induce liver injury is considered to be higher in diabetic patients than in healthy humans.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Diabetes Mellitus Tipo 2 , Propanóis/toxicidade , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Risco
14.
Food Chem Toxicol ; 128: 54-60, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30914355

RESUMO

Here we evaluate a multiplicative (relative) risk model for improved cancer risk estimation of genotoxic compounds. According to this model, cancer risk is proportional to the background tumor incidence and to the internal dose of the genotoxic compound. Furthermore, the relative risk coefficient per internal dose is considered to be approximately the same across tumor sites, sex, and species. In the present study, we demonstrate that the relative risk model is valid for cancer risk estimation of glycidol, a common food contaminant. Published tumor data from glycidol carcinogenicity studies in mice and rats were evaluated in combination with internal dose estimates from hemoglobin adduct measurements in blood from mice and rats treated with glycidol in short-term studies. A good agreement between predicted and observed tumor incidence in responding sites was demonstrated in the animals, supporting a relative risk coefficient that is independent of tumor site, sex, and species. There was no significant difference between the risk coefficients for mice (5.1% per mMh) and rats (5.4% per mMh) when considering internal doses of glycidol. Altogether, this mechanism-based risk model gives a reliable risk coefficient, which then was extrapolated to humans considering internal dose, and background cancer incidence.


Assuntos
Carcinógenos/toxicidade , Compostos de Epóxi/toxicidade , Modelos Teóricos , Neoplasias Experimentais/induzido quimicamente , Propanóis/toxicidade , Animais , Área Sob a Curva , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacocinética , Feminino , Hemoglobinas/metabolismo , Masculino , Camundongos , Propanóis/administração & dosagem , Propanóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Medição de Risco
15.
Arch Toxicol ; 93(2): 331-340, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30535712

RESUMO

Fatty acid esters of glycidol (glycidyl esters) are heat-induced food contaminants predominantly formed during industrial deodorization of vegetable oils and fats. After consumption, the esters are digested in the gastrointestinal tract, leading to a systemic exposure to the reactive epoxide glycidol. The compound is carcinogenic, genotoxic and teratogenic in rodents, and rated as probably carcinogenic to humans (IARC group 2A). Assessment of exposure from occurrence and consumption data is difficult, as lots of different foods containing refined oils and fats may contribute to human exposure. Therefore, assessment of the internal exposure using the hemoglobin adduct of glycidol, N-(2,3-dihydroxypropyl)-valine (2,3-diHOPr-Val), may be promising, but a proof-of-principle study is needed to interpret adduct levels with respect to the underlying external exposure. A controlled exposure study was conducted with 11 healthy participants consuming a daily portion of about 36 g commercially available palm fat with a relatively high content of ester-bound glycidol (8.7 mg glycidol/kg) over 4 weeks (total amount 1 kg fat, individual doses between 2.7 and 5.2 µg/kg body weight per day). Frequent blood sampling was performed to monitor the 2,3-diHOPr-Val adduct levels during formation and the following removal over 15 weeks, using a modified Edman degradation and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results demonstrated for the first time that the relatively high exposure during the intervention period was reflected in corresponding distinct increases of 2,3-diHOPr-Val levels in all participants, following the expected slope for hemoglobin adduct formation and removal over time. The mean adduct level increased from 4.0 to 12.2 pmol 2,3-diHOPr-Val/g hemoglobin. By using a nonlinear mixed model, values for the adduct level/dose ratio (k, mean 0.082 pmol 2,3-diHOPr-Val/g hemoglobin per µg glycidol/kg body weight) and the adduct lifetime (τ, mean 104 days, likely the lifetime of the erythrocytes) were determined. Interindividual variability was generally low. 2,3-DiHOPr-Val was therefore proven to be a biomarker of the external dietary exposure to fatty acid esters of glycidol. From the background adduct levels observed in our study, a mean external glycidol exposure of 0.94 µg/kg body weight was estimated. This value is considerably higher than current estimates for adults using occurrence and consumption data of food. Possible reasons for this discrepancy are discussed (other oral or inhalational glycidol sources, endogenous formation, exposure to other chemicals also forming the adduct 2,3-diHOPr-Val). Further research is necessary to clarify the issue.


Assuntos
Biomarcadores/sangue , Exposição Dietética/análise , Compostos de Epóxi/toxicidade , Hemoglobinas/efeitos dos fármacos , Óleo de Palmeira/administração & dosagem , Propanóis/toxicidade , Valina/análogos & derivados , Adulto , Cromatografia Líquida de Alta Pressão , Exposição Dietética/efeitos adversos , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Feminino , Fluoresceína-5-Isotiocianato/química , Hemoglobinas/química , Humanos , Masculino , Pessoa de Meia-Idade , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Valina/sangue , Valina/química
16.
Toxicol Pathol ; 46(7): 835-846, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205766

RESUMO

More than 80,000 chemicals are in commercial use worldwide. Hepatic metabolism to toxic intermediates is often a key mechanism leading to tissue damage and organ dysfunction. Effective treatment requires prompt detection of hepatotoxicity, ideally with rapid, minimally invasive diagnostic assays. In this study, archetypal histologic features of chemically induced hepatic injury were compared with clinical chemistries (including liver enzymes) and serum concentrations of microRNA-122 (miR-122, the processed form miR-122-5p), a biomarker of liver injury. The hepatotoxicants 4,4'-methylenedianiline (4,4'-MDA), allyl alcohol (AA), or carbon tetrachloride (CCl4) were orally administered to male Sprague-Dawley rats for 1, 5, 14, or 28 days to induce liver damage. Formalin-fixed, paraffin-embedded liver sections were evaluated histologically for inflammation, fibrosis, necrosis, and lipid accumulation. Liver enzymes were measured in serum, and serum miR-122 concentrations were assessed by quantitative polymerase chain reaction (qPCR). Histologic features of hepatic injury dose-dependently increased in both severity and frequency. Increases in liver enzymes and bilirubin were more pronounced in response to AA or 4,4'-MDA than to CCl4 at early time points. Elevated serum miR-122 levels in animals administered CCl4, AA, or 4,4'-MDA were more strongly associated with degree of hepatic histopathology than with dosage. Given this sensitive expression pattern postexposure, liver-specific miR-122 may improve the diagnostic accuracy of early hepatic injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/enzimologia , MicroRNAs/sangue , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Compostos de Anilina/toxicidade , Animais , Biomarcadores/sangue , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Propanóis/toxicidade , Ratos Sprague-Dawley
18.
Artigo em Alemão | MEDLINE | ID: mdl-28523455

RESUMO

The production and preparation of foodstuffs may entail at high temperatures the generation of undesirable, potentially harmful compounds. Among the best investigated heat-induced contaminants are acrylamide, furan, and the fatty acid esters of glycidol and the monochloropropanediols. This article presents the main insights into the formation, toxicology, and exposure of these compounds. Acrylamide and glycidol were characterized as carcinogens with a genotoxic mechanism in animal experiments. Their content in foods should be minimized. For 3­monochloropropanediol (3-MCPD), a tolerable daily intake can be derived. In contrast, a complete risk assessment is currently not possible for furan and 2­MCPD owing to insufficient data.Many other heat-induced substances in foodstuffs were identified in addition to the compounds mentioned above, but for most no data on their toxicological properties and human exposure is available. Therefore, no risk assessment can currently be undertaken for these compounds. To prioritize this large number of compounds according to their possible hazard potential, it is reasonable to utilize computer modeling programs for the prediction of defined toxicological endpoints based on the molecular chemical structures. However, substances classed as a priority must be further investigated with regard to the toxicology and quantification of the food content of these compounds to allow a meaningful risk assessment.


Assuntos
Carcinógenos/análise , Carcinógenos/toxicidade , Culinária , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Calefação/efeitos adversos , Acrilamida/análise , Acrilamida/toxicidade , Simulação por Computador , Compostos de Epóxi/análise , Compostos de Epóxi/toxicidade , Furanos/análise , Furanos/toxicidade , Propanóis/análise , Propanóis/toxicidade , Medição de Risco , alfa-Cloridrina/análise , alfa-Cloridrina/toxicidade
19.
Exp Toxicol Pathol ; 69(7): 517-526, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28495474

RESUMO

Developmental exposure to glycidol of rats causes axonal injury targeting axon terminals in dams and transient disruption of late-stage differentiation of hippocampal neurogenesis, accompanying sustained increase in the number of reelin-producing or calretinin-expressing interneurons in offspring. The molecular mechanism of disruptive neurogenesis probably targets the newly generating nerve terminals. We previously found differences between mice and rats in the effects on hippocampal neurogenesis after developmental exposure to the same neurotoxic substances. In the present study, we examined the effects and underlying mechanisms of developmental exposure to glycidol on hippocampal neurogenesis in mice. Glycidol (800 or 1600ppm) was administered in drinking water to mated female mice from gestational day 6 to postnatal day 21. Compared to mice drinking water without glycidol (control), the exposed dams showed axon terminal injury at both concentrations of glycidol. The offspring of the dams that had received 1600ppm glycidol had fewer parvalbumin (PVALB)+ γ-aminobutyric acid (GABA)-ergic interneurons and neuron-specific nuclear protein+ postmitotic neurons in the hilus of the hippocampal dentate gyrus. Thus, exposure of glycidol to adult mice induced axonal degeneration equivalent to that seen in the rat; however, the target mechanism for the disruption of hippocampal neurogenesis by developmental exposure was different from that in rats, with the hilar neuronal population not affected until adulthood. Considering the role of PVALB+ GABAergic interneurons in the brain, developmental glycidol exposure in mice may cause a decline in cognitive function in later life, and involve a different mechanism from that targeting axon terminals in rats.


Assuntos
Compostos de Epóxi/toxicidade , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Propanóis/toxicidade , Animais , Feminino , Hipocampo/patologia , Interneurônios/patologia , Camundongos , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Parvalbuminas , Gravidez , Proteína Reelina
20.
Drug Chem Toxicol ; 40(4): 432-439, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27884059

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 µM and 1000 µM for 3-MCPD and 100 µM and 500 µM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.


Assuntos
Carcinógenos/toxicidade , Esterilizantes Químicos/toxicidade , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Compostos de Epóxi/toxicidade , Túbulos Renais/efeitos dos fármacos , Propanóis/toxicidade , alfa-Cloridrina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ilhas de CpG/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Concentração Inibidora 50 , Túbulos Renais/metabolismo , Regiões Promotoras Genéticas , Ratos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA