Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
PLoS One ; 19(8): e0309335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39178289

RESUMO

Mosquito-borne viral diseases such as dengue fever, chikungunya, and yellow fever have been documented in Ethiopia since the 1960s. However, the efficacy of public health insecticides against Aedes aegypti that transmits these viruses remains poorly understood in the country, particularly in the Afar Region. Thus, the aim of the study was to assess the susceptibility status of Ae. aegypti to deltamethrin, permethrin, alpha-cypermethrin, pirimiphos-methyl, bendiocarb, and propoxur insecticides. Larvae and pupae of Aedes species were collected from Awash Arba, Awash Sebat, and Werer towns of the Afar Region of Ethiopia during July-October 2022, brought to the Aklilu Lemma Institute of Pathobiology, insectary and reared to adults. Non-blood-fed, 3-5 days-old females Ae. aegypti were exposed to pyrethroid, carbamate, and organophosphate insecticide impregnated papers in tube test following the standard guidelines. Knockdown rates were noted at 10 minutes interval until one hour. The mortality in mosquitoes was recorded 24 hours after 60 minutes of exposure. The mortality rates of Ae. aegypti exposed to propoxur were 87% in all the study towns. Similarly, 88% mortality in Ae. aegypti was recorded when tested with bendiocarb in Awash Sebat and Awash Arba towns. Suspected resistance of Ae. aegypti (95% mortality) to alpha-cypermethrin was observed in Awash Arba town. However, Ae. aegypti collected from all the three sites was observed to be susceptible to deltamethrin, permethrin, and pirimiphos-methyl. Ae. aegypti was resistant to 0.1% bendiocarb and 0.1% propoxur and possibly resistant to 0.05% alpha-cypermethrin. On the other hand, it was susceptible to 0.05% deltamethrin, 0.75% permethrin, and 0.25% pirimiphos-methyl. Thus, vector control products with deltamethrin, permethrin, and pirimiphos-methyl can be used in the control of adult Ae. aegypti in the Afar Region of Ethiopia. However, further studies should be carried out to evaluate the susceptibility status of Ae. aegypti to alpha-cypermethrin in the Awash Arba area.


Assuntos
Aedes , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Piretrinas , Animais , Aedes/efeitos dos fármacos , Etiópia , Inseticidas/farmacologia , Piretrinas/farmacologia , Feminino , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Permetrina/farmacologia , Controle de Mosquitos/métodos , Larva/efeitos dos fármacos , Propoxur/farmacologia , Fenilcarbamatos/farmacologia , Saúde Pública , Compostos Organotiofosforados
2.
Environ Sci Process Impacts ; 26(3): 611-621, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38329146

RESUMO

Pesticides due to their extensive use have entered the soil and water environment through various pathways, causing great harm to the environment. Herbicides and insecticides are common pesticides with long-term biological toxicity and bioaccumulation, which can harm the human body. The concept of the adverse outcome pathway (AOP) involves systematically analyzing the response levels of chemical mixtures to health-related indicators at the molecular and cellular levels. The AOP correlates the structures of chemical pollutants, toxic molecular initiation events and adverse outcomes of biological toxicity, providing a new model for toxicity testing, prediction, and evaluation of pollutants. Therefore, typical pesticides including diquat (DIQ), cyanazine (CYA), dipterex (DIP), propoxur (PRO), and oxamyl (OXA) were selected as research objects to explore the combined toxicity of typical pesticides on Chlorella pyrenoidosa (C. pyrenoidosa) and their adverse outcome pathways (AOPs). The mixture systems of pesticides were designed by the direct equipartition ray (EquRay) method and uniform design ray (UD-Ray) method. The toxic effects of single pesticides and their mixtures were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. The interactions of their mixtures were analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The toxicity data showed a good concentration-effect relationship; the toxicities of five pesticides were different and the order was CYA > DIQ > OXA > PRO > DIP. Binary, ternary and quaternary mixture systems exhibited antagonism, while quinary mixture systems exhibited an additive effect. The AOP of pesticides showed that an excessive accumulation of peroxide in green algae cells led to a decline in stress resistance, inhibition of the synthesis of chlorophyll and protein in algal cells, destruction of the cellular structure, and eventually led to algal cell death.


Assuntos
Rotas de Resultados Adversos , Chlorella , Poluentes Ambientais , Inseticidas , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Propoxur/farmacologia , Poluentes Químicos da Água/farmacologia
3.
Exp Parasitol ; 251: 108569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330107

RESUMO

Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 µM compared to propoxur (IC50: 5.13 ± 0.62 µM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 µM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 µM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.


Assuntos
Anopheles , Inseticidas , Malária , Óleos Voláteis , Animais , Feminino , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Propoxur/farmacologia , Farneseno Álcool/farmacologia , Mosquitos Vetores , Larva , Estágios do Ciclo de Vida
4.
Pestic Biochem Physiol ; 187: 105186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127048

RESUMO

The house fly (Musca domestica L.) (Diptera: Muscidae) is a global vector that can transmit >250 human and animal diseases. The control of house flies has heavily relied on the application of various chemical insecticides. The carbamate insecticide propoxur has been widely used for the control of house flies, and resistance to propoxur has been documented in many house fly populations worldwide. Previous studies have identified several propoxur resistance-conferring mutations in the target protein acetylcholinesterase; however, the molecular basis for metabolic resistance to propoxur remains unknown. In this study, we investigated the involvement of CYP6G4, a cytochrome P450 overexpressed in many insecticide resistant populations of Musca domestica, in propoxur metabolism and resistance by using combined approaches of recombinant protein-based insecticide metabolism and the Drosophila GAL4/UAS transgenic system. The recombinant CYP6G4 and its redox partners (NADPH-dependent cytochrome P450 reductase and cytochrome b5) were functionally expressed in Escherichia coli. Metabolism experiments showed that CYP6G4 was able to transform propoxur with a turnover rate of around 0.79 min-1. Six metabolites were putatively identified, suggesting that CYP6G4 could metabolize propoxur via hydroxylation, O-depropylation and N-demethylation. Moreover, bioassay results showed that ectopic overexpression of CYP6G4 in fruit flies significantly increased their tolerance to propoxur. Our in vivo and in vitro data convincingly demonstrate that CYP6G4 contributes to propoxur metabolism and resistance.


Assuntos
Sistema Enzimático do Citocromo P-450 , Moscas Domésticas , Inseticidas , Acetilcolinesterase/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5 , Escherichia coli , Moscas Domésticas/enzimologia , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , NADP , NADPH-Ferri-Hemoproteína Redutase , Propoxur/farmacologia , Proteínas Recombinantes
5.
Pest Manag Sci ; 77(10): 4321-4330, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33942965

RESUMO

BACKGROUND: The control of the housefly, Musca domestica, heavily relies on the application of insecticides. Propoxur, a carbamate, has been widely used for vector control. The housefly populations with high propoxur resistance display point mutations and overexpression of acetylcholinesterase. However, the roles of cytochrome P450 monoxygenases (P450s), as important detoxification enzymes, remain poorly understand in the housefly resistant to propoxur. RESULTS: P450s were implied to contribute to propoxur resistance based on the synergism of piperonyl butoxide (PBO) and the increase of P450 enzyme activity in the near-isogenic line propoxur resistant strain (N-PRS). Five P450 genes (CYP6G4, CYP6A25, CYP304A1, CYP6D3, and CYP6A1) by RNA-sequencing comparison were significantly up-regulated in the N-PRS strain with >1035-fold resistance to propoxur. A total of 13 non-synonymous mutations of three P450 genes (CYP6G4, CYP6D3, and CYP6D8) were found in the N-PRS strain. The amino acid substitutions of CYP6D3 and CYP6D8 were probably not resistance-associated single nucleotide polymorphisms (SNPs) because they were also found in the aabys susceptible strain. However, CYP6G4 variant in the N-PRS strain was not found in the aabys strain. The conjoint analysis of mutations and a series of genetic crosses exhibited that the housefly propoxur resistance was strongly associated with the mutations of CYP6G4 gene. CONCLUSION: Our results suggested that a combination of up-regulated transcript levels and mutations of CYP6G4 contributed to propoxur resistance in the housefly. © 2021 Society of Chemical Industry.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450/genética , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Propoxur/farmacologia
6.
Sci Rep ; 10(1): 8400, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439946

RESUMO

Two unique housefly strains, PSS and N-PRS (near-isogenic line with the PSS), were used to clarify the mechanisms associated with propoxur resistance in the housefly, Musca domestica. The propoxur-selected resistant (N-PRS) strain exhibited >1035-fold resistance to propoxur and 1.70-, 12.06-, 4.28-, 57.76-, and 57.54-fold cross-resistance to beta-cypermethrin, deltamethrin, bifenthrin, phoxim, and azamethiphos, respectively, compared to the susceptible (PSS) strain. We purified acetylcholinesterase (AChE) from the N-PRS and PSS strains using a procainamide affinity column and characterized the AChE. The sensitivity of AChE to propoxur based on the bimolecular rate constant (Ki) was approximately 100-fold higher in the PSS strain compared to the N-PRS strain. The cDNA encoding Mdace from both the N-PRS strain and the PSS strain were cloned and sequenced using RT-PCR. The cDNA was 2073 nucleotides long and encoded a protein of 691 amino acids. A total of four single nucleotide polymorphisms (SNPs), I162M, V260L, G342A, and F407Y, were present in the region of the active site of AChE from the N-PRS strain. The transcription level and DNA copy number of Mdace were significantly higher in the resistant strain than in the susceptible strain. These results indicated that mutations combined with the up-regulation of Mdace might be essential in the housefly resistance to propoxur.


Assuntos
Acetilcolinesterase/genética , Moscas Domésticas/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Propoxur/farmacologia , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Regulação Enzimológica da Expressão Gênica , Moscas Domésticas/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Mutação , Polimorfismo de Nucleotídeo Único
7.
Pestic Biochem Physiol ; 161: 77-85, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685200

RESUMO

The incidence of mosquito-borne disease poses a significant threat to human and animal health throughout the world, with effective chemical control interventions limited by widespread insecticide resistance. Recent evidence suggests that gut bacteria of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may also play a significant role in facilitating insecticide resistance. This study investigated the extent to which bacteria contribute to the general esterase and cytochrome P450 monooxygenase (P450)-mediated detoxification of the insecticides propoxur and naled, as well as the insecticidal activity of these chemistries to the yellow fever mosquito, Aedes aegypti. Experiments conducted using insecticide synergists that reduce general esterase and P450 activity demonstrate a role for both groups of enzymes in the metabolic detoxification of propoxur and naled. Furthermore, reduction of bacteria in mosquito larvae using broad-spectrum antibiotics was found to decrease the metabolic detoxification of propoxur and naled, suggesting that the bacteria themselves may be contributing to the in vivo metabolic detoxification of these insecticides. This was supported by in vitro assays using culturable gut bacteria isolated from mosquito larvae which demonstrated that the bacteria were capable of reducing insecticide toxicity. More work is needed, however, to fully elucidate the contribution of bacteria in Ae. aegypti larvae to the metabolic detoxification of insecticides.


Assuntos
Aedes/efeitos dos fármacos , Bactérias/metabolismo , Inseticidas/farmacologia , Naled/farmacologia , Propoxur/farmacologia , Acetilcolinesterase/metabolismo , Aedes/embriologia , Aedes/microbiologia , Aedes/virologia , Animais , Antibacterianos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica , Larva/efeitos dos fármacos , Larva/microbiologia
8.
Parasit Vectors ; 12(1): 337, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287014

RESUMO

BACKGROUND: Aedes aegypti were found developing in the water in open public drains (drain-water, DW) in Jaffna city in northern Sri Lanka, a location where the arboviral diseases dengue and chikungunya are endemic. METHODS: Susceptibilities to the common insecticides dichlorodiphenyltrichloroethane (DDT), malathion, propoxur, permethrin and deltamethrin and activities of the insecticide-detoxifying enzymes carboxylesterase (EST), glutathione S-transferase (GST) and monooxygenase (MO) were compared in adult Ae. aegypti developing in DW and fresh water (FW). RESULTS: DW Ae. aegypti were resistant to the pyrethroids deltamethrin and permethrin, while FW Ae. aegypti were susceptible to deltamethrin but possibly resistant to permethrin. Both DW and FW Ae. aegypti were resistant to DDT, malathion and propoxur. Greater pyrethroid resistance in DW Ae. aegypti was consistent with higher GST and MO activities. CONCLUSIONS: The results demonstrate the potential for insecticide resistance developing in Ae. aegypti adapted to DW. Urbanization in arboviral disease-endemic countries is characterized by a proliferation of open water drains and therefore the findings identify a potential new challenge to global health.


Assuntos
Aedes/enzimologia , Arbovírus/fisiologia , Resistência a Inseticidas , Mosquitos Vetores/enzimologia , Águas Residuárias/parasitologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Feminino , Saúde Global , Glutationa Transferase/metabolismo , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Camundongos , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia
9.
Parasit Vectors ; 12(1): 13, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616643

RESUMO

BACKGROUND: Sri Lanka has been malaria-free since 2013 but re-introduction of malaria transmission by infected overseas travelers is possible due to a prevalence of potent malaria vectors. Knowledge of the insecticide resistance status among Anopheles vectors is important if vector control has to be reintroduced in the island. The present study investigated the insecticide susceptibility levels and resistance mechanisms of Anopheles sundaicus (sensu lato) (previously classified as Anopheles subpictus species B) an important malaria vector in the Jaffna Peninsula and it surroundings in northern Sri Lanka after indoor residual spraying of insecticides was terminated in 2013. RESULTS: Species-specific PCR assays identified An. sundaicus (s.l.) in four locations in the Jaffna and adjacent Kilinochchi districts. Bioassays confirmed that An. sundaicus (s.l.) collected in Kilinochchi were completely susceptible to 0.05% deltamethrin and 5% malathion and resistant to 4% dichlorodiphenyltrichloroethane (DDT), whereas those from Jaffna were relatively susceptible to all three insecticides. Kilinochchi populations of An. sundaicus (s.l.) showed significantly higher glutathione S-transferase activity than population from Jaffna. However, Jaffna An. sundaicus (s.l.) had significantly higher Propoxur-resistant acetylcholinesterase activity. Activities of non-specific esterases and monooxygenases were not significantly elevated in An. sundaicus (s.l.) collected in both districts. CONCLUSIONS: The susceptibility to malathion and deltamethrin in An. sundaicus (s.l.) suggests that they can be still used for controlling this potential malaria vector in the Jaffna Peninsula and adjacent areas. Continuing country-wide studies on other malaria vectors and their insecticide susceptibilities are important in this regard.


Assuntos
Anopheles/enzimologia , Inativação Metabólica , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/enzimologia , Animais , Anopheles/efeitos dos fármacos , DDT/farmacologia , Malation/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia , Sri Lanka
10.
Parasit Vectors ; 10(1): 358, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28768553

RESUMO

BACKGROUND: Northern fowl mites (Ornithonyssus sylviarum) are obligate hematophagous ectoparasites of both feral birds and poultry, particularly chicken layers and breeders. They complete their entire life-cycle on infested birds while feeding on blood. Infestations of O. sylviarum are difficult to control and resistance to some chemical classes of acaricides is a growing concern. The contact susceptibility of O. sylviarum to a new active ingredient, fluralaner, was evaluated, as well as other compounds representative of the main chemical classes commonly used to control poultry mite infestations in Europe and the USA. METHODS: Six acaricides (fluralaner, spinosad, phoxim, propoxur, permethrin, deltamethrin) were dissolved and serially diluted in butanol:olive oil (1:1) to obtain test solutions used for impregnation of filter paper packets. A carrier-only control was included. Thirty adult northern fowl mites, freshly collected from untreated host chickens, were inserted into each packet for continuous compound exposure. Mite mortality was assessed after incubation of the test packets for 48 h at 75% relative humidity and a temperature of 22 °C. RESULTS: Adult mite LC50 /LC99 values were 2.95/8.09 ppm for fluralaner, 1587/3123 ppm for spinosad, 420/750 ppm for phoxim and 86/181 ppm for propoxur. Permethrin and deltamethrin LC values could not be calculated due to lack of mortality observed even at 1000 ppm. CONCLUSIONS: Northern fowl mites were highly sensitive to fluralaner after contact exposure. They were moderately sensitive to phoxim and propoxur, and less sensitive to spinosad. Furthermore, the tested mite population appeared to be resistant to the pyrethroids, permethrin and deltamethrin, despite not being exposed to acaricides for at least 10 years.


Assuntos
Acaricidas/farmacologia , Ácaros/efeitos dos fármacos , Animais , Galinhas/parasitologia , Combinação de Medicamentos , Resistência a Medicamentos , Europa (Continente)/epidemiologia , Macrolídeos/farmacologia , Infestações por Ácaros/tratamento farmacológico , Infestações por Ácaros/parasitologia , Infestações por Ácaros/veterinária , Nitrilas/farmacologia , Compostos Organotiofosforados/farmacologia , Permetrina/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Propoxur/farmacologia , Piretrinas/farmacologia
11.
Parasitol Res ; 114(12): 4693-702, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344869

RESUMO

Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.


Assuntos
Aedes/efeitos dos fármacos , Febre de Chikungunya/transmissão , Dengue/transmissão , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Feminino , Humanos , Índia , Insetos Vetores/crescimento & desenvolvimento , Ilhas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malation/farmacologia , Masculino , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia , Temefós/farmacologia
12.
PLoS One ; 10(5): e0126406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961834

RESUMO

Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.


Assuntos
Carbamatos/farmacologia , DEET/farmacologia , Repelentes de Insetos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Aedes , Animais , Sinergismo Farmacológico , Humanos , Insetos Vetores , Propoxur/farmacologia
13.
Acta Med Iran ; 52(10): 728-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369005

RESUMO

UNLABELLED: There is a great concern about the effect of propoxur, as one of the more common N-methyl carbamate pesticides, on human health due to its extensive use in agricultural and non-agricultural applications. Caco-2 cells became resistant to propoxur, and the resistance was confirmed through MTT assay. Then the cell membrane integrity and P-glycoprotein expression were measured by LDH assay and western blot analysis, respectively and compared to the parent cells.  Contrary to what was expected, the expression of P-glycoprotein in propoxur resistant cells was lower than parent cells. CONCLUSION: This study indicates that the resistance to propoxur may not be related to P-glycoprotein expression directly, since P-glycoprotein expression has decreased in these cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membrana Celular/metabolismo , Propoxur/farmacologia , Células CACO-2 , Resistência a Medicamentos , Humanos
14.
PLoS One ; 9(5): e95260, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788312

RESUMO

Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1) was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A). Analysis of the correlation between mutation frequencies and resistance levels (LC50) suggests that two point mutations, G247S (r2 = 0.732, P = 0.065) and A328S (r2 = 0.891, P = 0.016), are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036). And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045) resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.


Assuntos
Carbamatos/farmacologia , Culex/efeitos dos fármacos , Culex/genética , Resistência a Inseticidas/genética , Organofosfatos/farmacologia , Mutação Puntual , Acetilcolinesterase/química , Acetilcolinesterase/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico , Inibidores da Colinesterase/farmacologia , Diclorvós/farmacologia , Feminino , Frequência do Gene , Ligação Genética , Desequilíbrio de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Propoxur/farmacologia , Conformação Proteica
15.
Pestic Biochem Physiol ; 107(1): 98-105, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25149242

RESUMO

Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the eleventh month. In the field, where 1 ppm concentration is gradually decreased with water usage, 100% mortality was observed only for the first four months, <50% mortality for the next two months, and 0% mortality was observed eight months after the application of temephos. Deltacide can be effectively used for space spraying programmes in Sri Lanka. Larval control can be successfully achieved through temephos with public participation.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Aedes/metabolismo , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Dengue/prevenção & controle , Feminino , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/metabolismo , Malation/farmacologia , Oxigenases de Função Mista/metabolismo , Propoxur/farmacologia , Piretrinas/farmacologia , Sri Lanka , Temefós/farmacologia
16.
Biomarkers ; 17(6): 566-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22780197

RESUMO

Carbamate insecticide propoxur is widely used in agriculture and public health programs. To prevent adverse health effects arising from exposure to this insecticide, sensitive methods for detection of early stage organismal changes are necessary. We present here an integrative metabonomic approach to investigate toxic effects of pesticide in experimental animals. Results showed that propoxur even at low dose levels can induce oxidative stress, impair liver function, enhance ketogenesis and fatty acid ß-oxidation, and increase glycolysis, which contribute to the hepatotoxocity. These findings highlight the applicability of (1)H NMR spectroscopy and multivariate statistics in elucidating the toxic effects of propoxur.


Assuntos
Inseticidas/toxicidade , Metaboloma/efeitos dos fármacos , Propoxur/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/urina , Inseticidas/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Análise Multivariada , Estresse Oxidativo , Reconhecimento Automatizado de Padrão , Análise de Componente Principal , Propoxur/farmacologia , Ratos , Ratos Wistar , Testes de Toxicidade Subaguda
17.
Parasit Vectors ; 5: 46, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22397726

RESUMO

BACKGROUND: Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. METHODS: Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). RESULTS: Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. CONCLUSIONS: The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.


Assuntos
Vetores de Doenças , Resistência a Inseticidas , Inseticidas/farmacologia , Phlebotomus/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Glutationa Transferase/metabolismo , Malation/farmacologia , Prevalência , Propoxur/farmacologia , Sudão
18.
Parasitol Res ; 111(1): 423-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22392132

RESUMO

The present study was undertaken to investigate the effects of organophosphate and carbamate insecticides namely, temephos and propoxur respectively, on the life history of Anopheles stephensi Liston (Culicidae) under laboratory conditions. The late third instar larvae of the mosquito were exposed to sublethal concentrations of temephos and propoxur at LC(10), LC(30) and LC(50), respectively, and adult survivors were evaluated for fitness parameters. Sublethal effects were also evaluated in subsequent generations. Fecundity, egg hatchability, sex ratio, adult longevity and morphology of gonads were the end points studied and compared to the untreated control. Adverse changes in developmental traits were mainly observed in fecundity, egg hatchability and sex ratio. However, significant differences in adult longevity were observed in the insecticide-exposed population. Pleiotropic effects through prolonged larval duration and enhanced longevity of adults were observed. Morphology of gonads in the insecticide-exposed population was severely affected and is represented by rudimentary and atrophied testes, and the size of the vas deferens was very much reduced when compared to that of the control. In another set of experiments, circadian rhythm (for pupation and adult emergence) of LC(10), LC(30) and LC(50) values to abovementioned insecticides exposed to late third instar larvae was studied. Pupation and adult emergence rhythms were found to be disturbed with an increase in concentrations of insecticides when compared to that of untreated control.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Inseticidas/farmacologia , Propoxur/farmacologia , Temefós/farmacologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Vetores de Doenças , Feminino , Fertilidade/efeitos dos fármacos , Aptidão Genética/efeitos dos fármacos , Gônadas/anatomia & histologia , Gônadas/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Masculino , Razão de Masculinidade
19.
Vector Borne Zoonotic Dis ; 12(4): 325-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22029425

RESUMO

The susceptibility of Aedes aegypti adults of three places in Abidjan city selected for an entomological surveillance of potential arbovirus vectors to permethrin, deltamethrin, lambdacyhalothrin, and propoxur was determined using WHO standard procedures. The wild populations of A. aegypti were susceptible to permethrin, deltamethirn, and lambdacyhalothin. Resistance to propoxur was detected in strains collected at the Autonomous Port of Abidjan and at Koumassi (mortality rate: 77%) but possibly resistance to this insecticide at the national zoological park (mortality rate: 90.8%). Populations of the national zoological park were possibly resistant to propoxur whereas those of the Autonomous port of Abidjan and of Koumassi were resistant.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Propoxur/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Côte d'Ivoire , DDT/farmacologia , Feminino , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia , Fatores de Tempo
20.
Vet Dermatol ; 22(1): 17-23, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20609205

RESUMO

Chorioptes bovis infestation is a common cause of pastern dermatitis in the horse, with a predilection in draft horses and other horses with thick hair 'feathers' on the distal limbs. The treatment of this superficial mite is challenging; treatment failure and relapse are common. Furthermore, C. bovis infestation may affect the progression of chronic pastern dermatitis (also known as chronic proliferative pastern dermatitis, chronic progressive lymphoedema and dermatitis verrucosa) in draft horses, manifesting with oedema, lichenification and excessive skin folds that can progress to verruciform lesions. An effective cure for C. bovis infestation would therefore be of great clinical value. In a prospective, double-blind, placebo-controlled study, the efficacy of oral moxidectin (0.4 mg/kg body weight) given twice with a 3 week interval in combination with environmental treatment with 4-chloro-3-methylphenol and propoxur was tested in 19 heavily feathered horses with clinical pastern dermatitis and C. bovis infestation. Follow-up examinations over a period of 180 days revealed significantly more skin crusting in the placebo group than in the treatment group. However, no other differences in clinical signs or the numbers of mites detected were found between the two groups. The results of this study suggest that moxidectin in combination with environmental insecticide treatment as used in this study is ineffective in the treatment of C. bovis in feathered horses.


Assuntos
Criação de Animais Domésticos , Doenças dos Cavalos/tratamento farmacológico , Inseticidas/uso terapêutico , Infestações por Ácaros/veterinária , Psoroptidae , Animais , Cresóis/farmacologia , Extremidades , Feminino , Cabelo , Cavalos , Macrolídeos/uso terapêutico , Masculino , Infestações por Ácaros/tratamento farmacológico , Propoxur/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA