Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Virus Res ; 271: 197673, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330205

RESUMO

African swine fever virus (ASFV) is the only known DNA arbovirus, and the ability to replicate efficiently in both insect and mammalian cells is encoded in its viral genome. Despite having a relatively low overall genomic mutation rate, ASFV demonstrates genetic diversity in certain genes and complexity in gene content in other genomic regions, indicating that ASFV may exploit multiple mechanisms for diversification and acquire new phenotype characteristics. ASFV antigenic diversity is reflected in the ability to type cross-protective viruses together into serogroups, largely based on antibody-mediated inhibition of hemadsorption. Here we review ASFV genetic signatures of ASFV type specificity, genome variability, and the hemadsorption as a means of defining virus antigenic type, and how these may be used toward defining antigenic and phenotypic diversity that is problematic for development of vaccine solutions to ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Variação Antigênica , Variação Genética , Interações Hospedeiro-Patógeno , Febre Suína Africana/metabolismo , Animais , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Genoma Viral , Genótipo , Sorogrupo , Suínos , Proteínas Virais/genética
2.
J Infect Dis ; 220(7): 1141-1146, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31165164

RESUMO

To substantiate cross-protection reported across AS04-adjuvanted bivalent human papillomavirus (HPV) vaccine (2vHPV) studies, we reevaluated vaccine effectiveness against type-specific HPV positivity as a function of phylogenetic distance to vaccine target types HPV-16 and -18. We provide evidence of sustained cross-protection up to 8 years postvaccination in a high-risk population in the Netherlands. Moreover, our findings suggest that genomic distance better explains cross-protection than distance measures based on capsid antigens only. Taken together, 2vHPV is predicted to provide partial cross-protection against HPV-31, -33, -35, -45, -52, and possibly -58, that is, acknowledged oncogenic types with close phylogenetic relationships to HPV-16 or -18.


Assuntos
Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Filogenia , Adolescente , Proteínas do Capsídeo/genética , Proteção Cruzada/genética , Estudos Transversais , Feminino , Genótipo , Humanos , Países Baixos , Teste de Papanicolaou , Vacinas contra Papillomavirus/imunologia , Reação em Cadeia da Polimerase , Resultado do Tratamento , Esfregaço Vaginal , Adulto Jovem
3.
PLoS One ; 13(12): e0208028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30507951

RESUMO

BACKGROUND AND AIM: The majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model. METHODS AND RESULTS: Ferrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages. CONCLUSIONS: In this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.


Assuntos
Proteção Cruzada/imunologia , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinação/métodos , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada/genética , Modelos Animais de Doenças , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vírus da Influenza B/patogenicidade , Vacinas contra Influenza/administração & dosagem , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
4.
Sci Rep ; 8(1): 7481, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748549

RESUMO

Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Proteção Cruzada , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/terapia , Vacinas contra Encefalite Japonesa/uso terapêutico , Vacinação/métodos , Animais , Anticorpos Neutralizantes/genética , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/classificação , Encefalite Japonesa/genética , Encefalite Japonesa/imunologia , Feminino , Genótipo , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Suínos , Vacinação/veterinária , Células Vero , Vírion/genética , Vírion/imunologia
5.
Hum Vaccin Immunother ; 14(8): 2025-2033, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683766

RESUMO

Current available human papillomavirus (HPV) vaccines are based on the major capsid protein L1 virus-like particles (VLPs), which mainly induce type-specific neutralizing antibodies against vaccine types. Continuing to add more types of VLPs in a vaccine raises the complexity and cost of production which remains the principal impediment to achieve broad implementation of HPV vaccines, particularly in developing regions. In this study, we constructed 16L1-31L2 chimeric VLP (cVLP) by displaying HPV31 L2 aa.17-38 on the h4 coil surface region of HPV16 L1, and assessed its immunogenicity in mouse model. We found that the cVLP adjuvanted with alum plus monophosphoryl lipid A could induce cross-neutralizing antibody responses against 16 out of 17 tested HPV pseudoviruses, and the titer against HPV16 was as high as that was induced by HPV16 L1VLP (titer > 105), more importantly, titers over 103 were observed against two HR-HPVs including HPV31 (titer, 2,200) and -59 (titer, 1,013), among which HPV59 was not covered by Gardasil-9, and medium or low titers of cross-neutralizing antibodies against other 13 tested HPV pseudoviruses were also observed. Our data demonstrate that 16L1-31L2 cVLP is a promising candidate for the formulation of broader spectrum HPV vaccines.


Assuntos
Papillomavirus Humano 16/imunologia , Papillomavirus Humano 31/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 31/genética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/genética , Peptídeos , Engenharia de Proteínas , Vacinas de Partículas Semelhantes a Vírus/genética
6.
PLoS Genet ; 14(4): e1007335, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649251

RESUMO

Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of "hotspot" loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype-ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Variação Genética , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genética , Catalase/genética , Catalase/metabolismo , Mapeamento Cromossômico , Cromossomos Fúngicos/genética , Proteção Cruzada/genética , Proteínas de Ligação a DNA/genética , Farmacorresistência Fúngica/genética , Etanol/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/metabolismo , Oxidantes/farmacologia , Peroxidase/genética , Peroxidase/metabolismo , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
7.
Influenza Other Respir Viruses ; 11(6): 531-542, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29054116

RESUMO

BACKGROUND: Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T-cell epitope cross-conservation may play an important role in cross-strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no similar correlate of protection has been identified for T-cell epitopes. OBJECTIVE: We developed a computational method (EpiCC) that facilitates pairwise comparison of protein sequences based on an immunological property-T-cell epitope content-rather than sequence identity, and evaluated its ability to classify swine IAV strain relatedness to estimate cross-protective potential of a vaccine strain for circulating viruses. METHODS: T-cell epitope relatedness scores were assessed for 23 IAV HA sequences representing the major H1 swine IAV phylo-clusters circulating in North American swine and HA sequences in a commercial inactivated vaccine (FluSure XP® ). Scores were compared to experimental data from previous efficacy studies. RESULTS: Higher EpiCC scores were associated with greater protection by the vaccine against strains for 23 field IAV strain vaccine comparisons. A threshold for EpiCC relatedness associated with full or partial protection in the absence of cross-reactive HI antibodies was identified. EpiCC scores for field strains for which FluSure protective efficacy is not yet available were also calculated. CONCLUSION: EpiCC thresholds can be evaluated for predictive accuracy of protection in future efficacy studies. EpiCC may also complement HI cross-reactivity and phylogeny for selection of influenza strains in vaccine development.


Assuntos
Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Hemaglutininas/imunologia , Vírus da Influenza A/química , Algoritmos , Animais , Computadores Moleculares , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/química , Hemaglutininas/química , Hemaglutininas/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/virologia , Análise de Sequência de Proteína/métodos , Suínos , Doenças dos Suínos/virologia , Potência de Vacina
8.
Sci Rep ; 7(1): 12326, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951612

RESUMO

While about a quarter of individuals clear their primary hepatitis C (HCV) infections spontaneously, clearance (spontaneous or treatment-induced) does not confer sterilizing immunity against a future infection. Since successful treatment does not prevent future infections either, an effective vaccine is highly desirable in preventing HCV (re)infection. However, development of an effective vaccine has been complicated by the diversity of HCV genotypes, and complexities in HCV immunological responses. Smaller studies on humans and chimpanzees reported seemingly opposing results regarding cross-neutralizing antibodies. We report a lack of cross-genotype immunity in the largest cohort of people to date. In the adjusted Cox proportional hazards model, reinfection with a heterologous HCV genotype (adjusted Hazard Ratio [aHR]: 0.45, 95% CI: 0.25-0.84) was associated with a 55% lower likelihood of re-clearance. Among those who cleared their first infection spontaneously, the likelihood of re-clearance was 49% lower (aHR: 0.51, 95% CI: 0.27-0.94) when reinfected with a heterologous HCV genotype. These findings indicate that immunity against a particular HCV genotype does not offer expanded immunity to protect against subsequent infections with a different HCV genotype. A prophylactic HCV vaccine boosted with multiple HCV genotype may offer a broader and more effective protection.


Assuntos
Proteção Cruzada/genética , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Proteção Cruzada/imunologia , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/sangue , Anticorpos Anti-Hepatite C/imunologia , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vacinação/métodos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/uso terapêutico
10.
PLoS One ; 8(12): e83560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358292

RESUMO

Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.


Assuntos
Proteínas de Bactérias/genética , Proteção Cruzada , Imunidade Inata/genética , Proteínas de Membrana/genética , Peste/imunologia , Tularemia/imunologia , Yersinia pestis/genética , Animais , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Feminino , Francisella tularensis/imunologia , Variação Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peste/prevenção & controle , Vacina contra a Peste/imunologia , Tularemia/prevenção & controle , Yersiniose/imunologia
11.
BMC Med ; 11: 153, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23800265

RESUMO

BACKGROUND: Influenza vaccines are most effective when the antigens in the vaccine match those of circulating strains. However, antigens contained in the vaccines do not always match circulating strains. In the present work we aimed to examine the vaccine efficacy (VE) afforded by influenza vaccines when they are not well matched to circulating strains. METHODS: We identified randomized clinical trials (RCTs) through MEDLINE, EMBASE, the Cochrane Library, and references of included RCTs. RCTs reporting laboratory-confirmed influenza among healthy participants vaccinated with antigens of matching and non-matching influenza strains were included. Two independent reviewers screened citations/full-text articles, abstracted data, and appraised risk of bias. Conflicts were resolved by discussion. A random effects meta-analysis was conducted. VE was calculated using the following formula: (1 - relative risk × 100%). RESULTS: We included 34 RCTs, providing data on 47 influenza seasons and 94,821 participants. The live-attenuated influenza vaccine (LAIV) showed significant protection against mismatched (six RCTs, VE 54%, 95% confidence interval (CI) 28% to 71%) and matched (seven RCTs, VE 83%, 95% CI 75% to 88%) influenza strains among children aged 6 to 36 months. Differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 75%, 95% CI 41% to 90%) and mismatched influenza B (five RCTs, VE 42%, 95% CI 22% to 56%) estimates among children aged 6 to 36 months. The trivalent inactivated vaccine (TIV) also afforded significant protection against mismatched (nine RCTs, VE 52%, 95% CI 37% to 63%) and matched (eight RCTs, VE 65%, 95% CI 54% to 73%) influenza strains among adults. Numerical differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 64%, 95% CI 23% to 82%) and mismatched influenza B (eight RCTs, VE 52%, 95% CI 19% to 72%) estimates among adults. Statistical heterogeneity was low (I2 <50%) across all meta-analyses, except for the LAIV meta-analyses among children (I2 = 79%). CONCLUSIONS: The TIV and LAIV vaccines can provide cross protection against non-matching circulating strains. The point estimates for VE were different for matching versus non-matching strains, with overlapping CIs.


Assuntos
Vacinas contra Influenza/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/genética , Influenza Humana/prevenção & controle , Proteção Cruzada/genética , Humanos , Influenza Humana/virologia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Especificidade da Espécie , Resultado do Tratamento , Vacinas Atenuadas/genética , Vacinas Atenuadas/uso terapêutico
12.
Methods Mol Biol ; 894: 69-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22678573

RESUMO

Viral cross protection in plants is known as an acquired immunity phenomenon, where a mild virus isolate/strain can protect plants against economic damage caused by a severe challenge strain/isolate of the same virus. Mild strain cross protection (MSCP) has been used extensively to control losses caused by a few major virus diseases in some parts of the world. So far, none of the many proposed mechanisms can fully explain the intact process of MSCP. In fact, it may be that different mechanisms are involved in MSCP against different viruses, even when different research approaches are used for the same virus, different mechanisms could be proposed. The molecular detail of MSCP still remains unclear, although several lines of evidence imply that the resistance is protein and/or RNA mediated. Some data to date have shown that a minimum time (a few days to less than a month) is required for the mild virus strain to establish MSCP. To investigate interference among virus strains and the plant host at an early stage of MSCP at a subcellular level, we developed a rapid micro-extraction method for the preparation of total nucleic acid (TNA), combined with other molecular methods, to monitor the interaction of virus strains at short time intervals in young plants. This method was initially developed to further study the mechanism of MSCP against Citrus tristeza virus, but has potentially widespread application to other viruses after having been efficiently used to extract over 50,000 TNA samples of citrus viruses, viroids, and bacteria.


Assuntos
Citrus/virologia , Closterovirus/genética , Proteção Cruzada , Doenças das Plantas/prevenção & controle , Citrus/genética , Closterovirus/imunologia , Closterovirus/patogenicidade , Proteção Cruzada/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia
13.
PLoS One ; 6(1): e16247, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21283631

RESUMO

BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.


Assuntos
Proteção Cruzada/genética , Vetores Genéticos , Hemaglutininas/biossíntese , Virus da Influenza A Subtipo H5N1/química , Vacinas/imunologia , Vaccinia virus/genética , Animais , Humanos , Camundongos , Especificidade da Espécie , Vacinação
14.
Nat Med ; 16(12): 1389-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21135852

RESUMO

The immune system normally responds to influenza virus by making neutralizing antibodies to regions of the viral spike, the hemagglutinin, that vary year to year. This natural response protects against circulating subtypes but necessitates production of new vaccines annually. Newer vaccine approaches have succeeded in eliciting broadly neutralizing antibodies to highly conserved yet vulnerable regions of the hemagglutinin and suggest potential pathways for the development of universal influenza vaccines.


Assuntos
Sequência Conservada/genética , Proteção Cruzada/genética , Hemaglutininas Virais/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Modelos Moleculares , Anticorpos Monoclonais/genética , Evolução Molecular , Variação Genética , Humanos , Filogenia , Especificidade da Espécie
15.
Infect Immun ; 78(12): 5033-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20823200

RESUMO

Thirty percent of Streptococcus pneumoniae isolates contain pilus islet 1, coding for a pilus composed of the backbone subunit RrgB and two ancillary proteins, RrgA and RrgC. RrgA is the major determinant of in vitro adhesion associated with pilus 1, is protective in vivo in mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the "head" of the protein, which contains the putative binding domains, whereas the elongated "stalk" was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the "head" domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.


Assuntos
Adesinas Bacterianas/fisiologia , Fímbrias Bacterianas/fisiologia , Streptococcus pneumoniae/patogenicidade , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Western Blotting , Proteção Cruzada/genética , Proteção Cruzada/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Fímbrias Bacterianas/genética , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/microbiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA