Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 349: 132-144, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211741

RESUMO

BACKGROUND: Synaptic plasticity changes in presynaptic terminals or postsynaptic membranes play a critical role in cognitive impairments and emotional disorders, but the underlying molecular mechanisms in depression remain largely unknown. METHODS: The regulation effects of F-box and leucine-rich repeat protein 20 (FBXL20), vesicular glutamate transporter 1 (VGLUT1) and vesicle-associated membrane protein 1 (VAMP1) on synaptic plasticity and depressive-like behaviors examined by proteomics analysis, viral stereotaxic injection, transmission electron microscope and biochemical methods. The glutamate release detected by fluorescent probe in cultured primary pyramidal neurons. RESULTS: We found that chronic unpredictable mild stress (CUMS) induced significant synaptic deficits within hippocampus of depressed rats, accompanied with the decreased expression of VGLUT1 and VAMP1. Moreover, knockdown of VGLUT1 or VAMP1 in hippocampal pyramidal neurons resulted in abnormal glutamatergic neurotransmitter release. In addition, we found that the E3 ubiquitin ligase FBXL20 was increased within hippocampus, which may promote ubiquitination and degradation of VGLUT1 and VAMP1, and thus resulted in the reduction of glutamatergic neurotransmitter release, the disruptions of synaptic transmission and the induction of depression-like behaviors in rats. In contrast, shRNA knockdown of FBXL20 within the hippocampus of depressed rats significantly ameliorated synaptic damage and depression-like behaviors. LIMITATION: Only one type of depression model was used in the present study, while other animal models should be used in the future to confirm the underlying mechanisms reported here. CONCLUSIONS: This study provides new insights that inhibiting FBXL20 pathway in depressed rats may be an effective strategy to rescue synaptic transmission and depression-like behaviors.


Assuntos
Depressão , Proteína 1 Associada à Membrana da Vesícula , Animais , Ratos , Depressão/metabolismo , Hipocampo/metabolismo , Neurotransmissores , Transmissão Sináptica , Proteína 1 Associada à Membrana da Vesícula/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674850

RESUMO

The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.


Assuntos
Toxinas Botulínicas , Canais de Potencial de Receptor Transitório , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Toxinas Botulínicas/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/metabolismo
3.
FEBS J ; 290(9): 2320-2337, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36047592

RESUMO

Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner, identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact cellular trafficking.


Assuntos
Ácido Aspártico Endopeptidases , Proteínas de Membrana , Animais , Camundongos , Ácido Aspártico Endopeptidases/metabolismo , Homeostase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Proteína 1 Associada à Membrana da Vesícula/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35951651

RESUMO

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Assuntos
Proteínas de Ligação a DNA , Neurônios GABAérgicos , Proteínas do Tecido Nervoso , Neuropeptídeo Y , Convulsões , Proteína 1 Associada à Membrana da Vesícula , Animais , Bumetanida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/metabolismo , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/metabolismo , Deleção de Genes , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Convulsões/genética , Convulsões/metabolismo , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Neural Plast ; 2022: 1353778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494481

RESUMO

Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.


Assuntos
Dexmedetomidina , MicroRNAs , Complicações Cognitivas Pós-Operatórias , Idoso , Animais , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacologia , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Ratos , Proteína 1 Associada à Membrana da Vesícula/metabolismo
6.
Neurobiol Learn Mem ; 185: 107509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454100

RESUMO

During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.


Assuntos
Cognição/fisiologia , Redes Reguladoras de Genes/fisiologia , Córtex Pré-Frontal/metabolismo , Proteína 1 Associada à Membrana da Vesícula/fisiologia , Atenção/fisiologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Neuroimagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Meio Social , Memória Espacial/fisiologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo
7.
Pharmacol Res ; 170: 105722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116208

RESUMO

A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.


Assuntos
Comportamento Animal , Fissura , Comportamento de Procura de Droga , Dependência de Morfina/metabolismo , Núcleo Accumbens/metabolismo , RNA Circular/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Sinais (Psicologia) , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Dependência de Morfina/genética , Dependência de Morfina/fisiopatologia , Dependência de Morfina/psicologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Núcleo Accumbens/fisiopatologia , RNA Circular/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo
8.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906003

RESUMO

Targeted delivery of potent inhibitor of cytokine/pain-mediator into inflammatory or pain-sensing cells is a promising avenue for treating chronic pain, a world-wide major healthcare burden. An unmet need exists for a specific and effective delivery strategy. Herein, we describe a new approach using sortase to site-specifically ligate a non-toxic botulinum neurotoxin D (BoNT/D) core-therapeutic (synaptobrevin-cleaving protease and translocation domains) to cell-specific targeting ligands. An engineered core-therapeutic was efficiently ligated to IL-1ß ligand within minutes. The resultant conjugate specifically entered into cultured murine primary macrophages, cleaved synaptobrevin 3 and inhibited LPS/IFN-γ evoked IL-6 release. Likewise, a CGRP receptor antagonist ligand delivered BoNT/D protease into sensory neurons and inhibited K+-evoked substance P release. As cytokines and neuropeptides are major regulators of inflammation and pain, blocking their release by novel engineered inhibitors highlights their therapeutic potential. Our report describes a new and widely-applicable strategy for the production of targeted bio-therapeutics for numerous chronic diseases.


Assuntos
Toxinas Botulínicas/farmacologia , Dor Crônica/tratamento farmacológico , Engenharia de Proteínas/métodos , Animais , Toxinas Botulínicas/genética , Sobrevivência Celular/efeitos dos fármacos , Citocinas , Macrófagos , Camundongos , Neuropeptídeos , Peptídeo Hidrolases/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Substância P/efeitos dos fármacos , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula
9.
Toxicon ; 147: 38-46, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273248

RESUMO

Botulinum neurotoxin (BoNT) type FA is the only known naturally occurring chimeric BoNT of domains of BoNT/A and BoNT/F. BoNT/FA consists of an F5-like light chain (LC), a unique heavy chain (HC) translocation domain, and a HC receptor binding domain similar to BoNT/A1. Previous analyses of purified BoNT/FA have indicated a 5-10-fold greater potency in cultured human or rat neurons as compared to BoNT/A1 and a 400-500-fold greater potency compared to BoNT/B1. However, in vivo potency in mice was about 5-fold lower than BoNT/A1 or/B1. In this report, species specificity was examined by cell-based assays using primary neurons from mice and examining VAMP1 and 2 cleavage. The data indicated similar potency of BoNT/FA in primary mouse spinal cord neurons as previously observed in primary rat and human induced pluripotent stem cell (hiPSC) derived neuronal cell models, and equal enzymatic cleavage of mouse VAMP1 and 2 isoforms. Since the duration of action of BoNTs is due to continuous enzymatic activity of the LC in the neuronal cytosol, BoNT/FA was expected to have a short duration of action due to its F-type LC. In this report the duration of action of BoNT/FA was compared to that of BoNT/F1,/F5, and/B1 in both hiPSC derived neurons and in the in vivo mouse model. The data indicate a duration of action of BoNT/FA similar to BoNT/B1, while BoNT/F5 had a short duration of action similar to BoNT/F1.


Assuntos
Toxinas Botulínicas/farmacologia , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Camundongos , Atividade Motora/efeitos dos fármacos , Paralisia/induzido quimicamente , Medula Espinal/citologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
10.
PLoS One ; 12(10): e0185628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982136

RESUMO

Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Toxinas Botulínicas Tipo A/genética , Catálise , Células Cultivadas , Clonagem Molecular , Escherichia coli/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ratos
11.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703738

RESUMO

The alterations that underlie the pathophysiology of schizophrenia (SCZ) include the dysregulation of structural and functional properties of neurons. Among these, the secretion of neurotransmitters and hormones, which plays a key role for neuronal communication and development, is altered. Neuronal precursors from the human olfactory epithelium have been recently characterized as a reliable model for studying the etiopathogenesis of neuropsychiatric diseases. Our previous work has shown that melatonin enhances the development of morphological and functional features of cloned olfactory neuronal precursors (ONPs) from a healthy subject. In this work we found that primary cultures of ONPs obtained from a schizophrenic patient display an increased potassium-evoked secretion, when compared with ONPs from an age- and gender-matched healthy control subject (HCS). Secretion was evaluated by FM1-43 fluorescence cumulative changes in response to depolarization. Interestingly, a 12 h-melatonin treatment modulated the abnormally increased secretion in SCZ ONPs and brought it to levels similar to those found in the HCS ONPs. Our results suggest that the actin cytoskeleton might be a target for melatonin effects, since it induces the thickening of actin microfilament bundles. Further research will address the mechanisms by which melatonin modulates neurochemical secretion from ONPs.


Assuntos
Melatonina/farmacologia , Células-Tronco Neurais/metabolismo , Mucosa Olfatória/patologia , Esquizofrenia/patologia , Citoesqueleto de Actina/metabolismo , Adulto , Cálcio/farmacologia , Humanos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Projetos Piloto , Potássio/farmacologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
12.
Biochem Cell Biol ; 95(4): 500-509, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28314111

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are essential constituents of the intracellular trafficking machinery. The variable C-terminus in the 2 rat VAMP-1 splice isoforms VAMP-1a and -1b potentially acts as a sorting signal, because similar changes at the C-terminal end of a human VAMP-1 splice isoform resulted in its sorting to mitochondria. To evaluate the differences in the subcellular localization of these two v-SNARE proteins, VAMP-1a and -1b proteins tagged with green fluorescent protein (GFP) and red fluorescent protein (RFP) were expressed in HeLa, COS-7, and MDCK cells and evaluated by conventional confocal as well as total internal reflection fluorescence microscopy. Regions consistent with the endoplasmic reticulum and Golgi apparatus demonstrated a major overlap of both signals. In the periphery, vesicular structures were observed that mainly expressed one of the 2 isoforms. Within our experimental settings, we could not observe sorting of any of the 2 isoforms to mitochondria or peroxisomes, whereas both isoforms were found expressed in a minor subset of singular vesicles, which sporadically appeared to co-localize with the exocyst marker EXOC3/Sec6. Because vesicular structures were seen that expressed only one of the two splice variants, it is possible that VAMP-1a and VAMP-1b are sorted to distinct cellular compartments that require further characterization.


Assuntos
Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Animais , Humanos , Microscopia de Fluorescência , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Células Tumorais Cultivadas , Proteína 1 Associada à Membrana da Vesícula/análise
14.
Proc Natl Acad Sci U S A ; 113(43): 12280-12285, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791016

RESUMO

In the central nervous system, NMDA receptors mediate excitatory neurotransmissions and play important roles in synaptic plasticity. The regulation of NMDA receptor trafficking is critical for neural functions in the brain. Here, we directly visualized individual exocytic events of NMDA receptors in rat hippocampal neurons by total internal reflection fluorescence microscopy (TIRFM). We found that the constitutive exocytosis of NMDA receptors included both de novo exocytic and recycling events, which were regulated by different Rab proteins. We also identified the SNAP25-VAMP1-syntaxin4 complex mediating the constitutive exocytosis of NMDA receptors. Transient knockdown of each component of the SNARE complex interfered with surface delivery of NMDA receptors to both extrasynaptic and synaptic membranes. Our study uncovers the postsynaptic function of the SNAP25-VAMP1-syntaxin4 complex in mediating the constitutive exocytosis of NMDA receptors, suggesting that this SNARE complex is involved in excitatory synaptic transmission.


Assuntos
Proteínas Qa-SNARE/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Animais , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Exocitose/genética , Hipocampo/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Qa-SNARE/química , Ratos , Receptores de N-Metil-D-Aspartato/genética , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Transmissão Sináptica/genética , Proteína 25 Associada a Sinaptossoma/química , Proteína 1 Associada à Membrana da Vesícula/química
15.
Sci Rep ; 6: 21226, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888187

RESUMO

Transient receptor potential (TRP) A1 and V1 channels relay sensory signals, yet little is known about their transport to the plasmalemma during inflammation. Herein, TRPA1 and TRPV1 were found on vesicles containing calcitonin gene-related peptide (CGRP), accumulated at sites of exo- and endo-cytosis, and co-localised on fibres and cell bodies of cultured sensory neurons expressing both. A proinflammatory cytokine, TNFα, elevated their surface content, and both resided in close proximity, indicating co-trafficking. Syntaxin 1-interacting protein, Munc18-1, proved necessary for the response to TNFα, and for TRPV1-triggered CGRP release. TNFα-induced surface trafficking of TRPV1 and TRPA1 required a synaptic vesicle membrane protein VAMP1 (but not 2/3), which is essential for CGRP exocytosis from large dense-core vesicles. Inactivation of two proteins on the presynaptic plasma membrane, syntaxin-1 or SNAP-25, by botulinum neurotoxin (BoNT)/C1 or /A inhibited the TNFα-elevated delivery. Accordingly, enhancement by TNFα of Ca(2+) influx through the upregulated surface-expressed TRPV1 and TRPA1 channels was abolished by BoNT/A. Thus, in addition, the neurotoxins' known inhibition of the release of pain transmitters, their therapeutic potential is augmented by lowering the exocytotic delivery of transducing channels and the resultant hyper-sensitisation in inflammation.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas Munc18/metabolismo , Células Receptoras Sensoriais/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Animais , Humanos , Fusão de Membrana/fisiologia , Proteínas Munc18/genética , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Vesículas Sinápticas/genética , Proteína 25 Associada a Sinaptossoma/genética , Sintaxina 1/genética , Canal de Cátion TRPA1 , Canais de Cátion TRPC/genética , Canais de Cátion TRPV/genética , Fator de Necrose Tumoral alfa/genética , Proteína 1 Associada à Membrana da Vesícula/genética
16.
Neuropharmacology ; 101: 566-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26116815

RESUMO

Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-ß (Aß), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aß-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 µM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aß-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases.


Assuntos
Doença de Alzheimer/patologia , Inibidores Enzimáticos/farmacologia , Fosfolipases A2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido Valproico/farmacologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Células Cultivadas , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Ionomicina/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Príons/farmacologia , Sinapses/patologia , Sinaptofisina/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo
17.
Neurotox Res ; 29(1): 1-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407673

RESUMO

Granule secretory content is released in either basal or calcium-activated complete exocytosis mode. A vital element in these processes is the establishment of a fusion pore between the granule membrane and the plasma membrane, initiated by the formation of a circular rosette docking arrangement of SNARE protein complexes. The controversially disputed number of SNARE complexes needed for granule priming leading to the formation of the fusion pore, is granule-size dependent and varies between secretion modes. Resorting to a statistical mechanics approach that views SNARE complexes and Ca(2+) ions as interacting particles, we have developed a relationship that links secretion rate to SNARE rosette size, Ca(2+) concentration and Ca(2+) ion cooperativity. Data are presented and discussed which suggest this SNARE-dependent generalization of existing narrow-range biophysical models that correlate secretion rate with Ca(2+) concentration and maximal Ca(2+) ion cooperativity. Evidence from dozens of examples in the literature advocate for this relation, which holds through the entire biological range. The coalescence of so many areas of diverse research methodologies has greatly augmented our understanding of so many different sequences of granule life cycle. Accordingly, these new tools may become valuable in a variety of electrophysiological experiments.


Assuntos
Exocitose/fisiologia , Junção Neuromuscular/metabolismo , Proteínas SNARE/metabolismo , Animais , Astacoidea , Toxinas Botulínicas/farmacologia , Exocitose/efeitos dos fármacos , Exocitose/genética , Camundongos , Camundongos Knockout , Junção Neuromuscular/efeitos dos fármacos , Proteínas SNARE/genética , Toxina Tetânica/farmacologia , Proteína 1 Associada à Membrana da Vesícula/deficiência , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/deficiência , Proteína 2 Associada à Membrana da Vesícula/metabolismo
18.
Epilepsia ; 57(1): 99-110, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26714441

RESUMO

OBJECTIVE: Thirty percent of patients with epilepsy are refractory to medication. The majority of these patients have mesial temporal lobe epilepsy (MTLE). This prompts for new pharmacologic targets, like ATP-mediated signaling pathways, since the extracellular levels of the nucleotide dramatically increase during in vitro epileptic seizures. In this study, we investigated whether sodium-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake by isolated nerve terminals of the human neocortex could be modulated by ATP acting via slow-desensitizing P2X7 receptor (P2X7R). METHODS: Modulation of [(3) H]GABA and [(14) C]glutamate uptake by ATP, through activation of P2X7R, was investigated in isolated nerve terminals of the neocortex of cadaveric controls and patients with drug-resistant epilepsy (non-MTLE or MTLE) submitted to surgery. Tissue density and distribution of P2X7R in the human neocortex was assessed by Western blot analysis and immunofluorescence confocal microscopy. RESULTS: The P2X7R agonist, 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-100 µm) decreased [(3) H]GABA and [(14) C]glutamate uptake by nerve terminals of the neocortex of controls and patients with epilepsy. The inhibitory effect of BzATP (100 µm) was prevented by the selective P2X7R antagonist, A-438079 (3 µm). Down-modulation of [(14) C]glutamate uptake by BzATP (100 µm) was roughly similar in controls and patients with epilepsy, but the P2X7R agonist inhibited more effectively [(3) H]GABA uptake in the epileptic tissue. Neocortical nerve terminals of patients with epilepsy express higher amounts of the P2X7R protein than control samples. SIGNIFICANCE: High-frequency cortical activity during epileptic seizures releases huge amounts of ATP, which by acting on low-affinity slowly desensitizing ionotropic P2X7R, leads to down-modulation of neuronal GABA and glutamate uptake. Increased P2X7R expression in neocortical nerve terminals of patients with epilepsy may, under high-frequency firing, endure GABA signaling and increase GABAergic rundown, thereby unbalancing glutamatergic neuroexcitation. This study highlights the relevance of the ATP-sensitive P2X7R as an important negative modulator of GABA and glutamate transport and prompts for novel antiepileptic therapeutic targets.


Assuntos
Epilepsia/patologia , Neocórtex/ultraestrutura , Receptores Purinérgicos P2X7/metabolismo , Sinaptossomos/metabolismo , Regulação para Cima/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Idoso , Ácido Aspártico/farmacologia , Isótopos de Carbono/metabolismo , Criança , Proteína 4 Homóloga a Disks-Large , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Sinaptofisina/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/farmacologia
19.
Toxins (Basel) ; 7(12): 5322-36, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26670253

RESUMO

Botulinum neurotoxins (BoNTs) and some animal neurotoxins (ß-Bungarotoxin, ß-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.


Assuntos
Toxinas Botulínicas/toxicidade , Bungarotoxinas/toxicidade , Neurotoxinas/toxicidade , Venenos de Aranha/toxicidade , Animais , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Serpentes , Aranhas , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo
20.
Toxicon ; 101: 63-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25937339

RESUMO

Botulinum Neurotoxin type D (BoNT/D) causes periodic outbreaks of botulism in cattle and horses, but is rarely associated with human botulism. Previous studies have shown that humans responded poorly to peripheral injection of up to 10U of BoNT/D. Isolated human pyramidalis muscle preparations were resistant to BoNT/D, whereas isolated human intercostal muscle preparations responded to BoNT/D similarly as to other BoNT serotypes. In vitro data indicate that BoNT/D does not cleave human VAMP1 efficiently, and differential expression of the VAMP 1 and 2 isoforms may be responsible for the above observations. Here we examined sensitivity of cultured human neurons derived from human induced pluripotent stem cells to BoNT/D. Our data indicate that BoNT/D can enter and cleave VAMP 2 in human neurons, but at significantly lower efficiency than other BoNT serotypes. In addition, BoNT/D had a short duration of action in the cultured neurons, similar to that of BoNT/E. In vivo analyses indicated a slower time to death in mice, as well as a later onset and shorter duration of action than BoNT/A1. Finally, examination of BoNT/D activity in various rodent and human cell models resulted in dramatic differences in sensitivity, indicating a unique cell entry mechanism of BoNT/D.


Assuntos
Toxinas Botulínicas/toxicidade , Botulismo/diagnóstico , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA