Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834462

RESUMO

Autophagy is an evolutionarily conserved mechanism for degrading and recycling various cellular components, functioning in both normal development and stress conditions. This process is tightly regulated by a set of autophagy-related (ATG) proteins, including ATG2 in the ATG9 cycling system and ATG5 in the ATG12 conjugation system. Our recent research demonstrated that autophagy-mediated compartmental cytoplasmic deletion is essential for pollen germination. However, the precise mechanisms through which autophagy regulates pollen germination, ensuring its fertility, remain largely unknown. Here, we applied multi-omics analyses, including transcriptomic and metabolomic approaches, to investigate the downstream pathways of autophagy in the process of pollen germination. Although ATG2 and ATG5 play similar roles in regulating pollen germination, high-throughput transcriptomic analysis reveals that silencing ATG5 has a greater impact on the transcriptome than silencing ATG2. Cross-comparisons of transcriptome and proteome analysis reveal that gene expression at the mRNA level and protein level is differentially affected by autophagy. Furthermore, high-throughput metabolomics analysis demonstrates that pathways related to amino acid metabolism and aminoacyl-tRNA biosynthesis were affected by both ATG2 and ATG5 silencing. Collectively, our multi-omics analyses reveal the central role of autophagy in cellular metabolism, which is critical for initiating pollen germination and ensuring pollen fertility.


Assuntos
Autofagia , Multiômica , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Pólen/genética , Pólen/metabolismo , Germinação/genética
2.
Cell Death Dis ; 14(1): 10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624091

RESUMO

Circular RNAs are key regulators in regulating the progression and chemoresistance of gastric cancer (GC), suggesting circular RNAs as potential therapeutic targets for GC. The roles of a novel circular RNA circPOFUT1 in GC are unknown. Here, we found that circPOFUT1 was upregulated in GC tissues and cells, and increased circPOFUT1 expression indicated poor prognosis. Overexpression of circPOFUT1 enhanced cell proliferation, migration, invasion and autophagy-associated chemoresistance in GC, which were suppressed by miR-488-3p overexpression. CircPOFUT1 reduced miR-488-3p expression via sponging miR-488-3p in GC cells. PLAG1 interacted with ATG12 and promoted its expression. MiR-488-3p bound to PLAG1 and suppressed the expression of PLAG1 and ATG12 in GC cells. Overexpression of circPOFUT1 enhanced autophagy-associated chemoresistance of GC cells in vivo, but it was inhibited by overexpression of miR-488-3p. Collectively, circPOFUT1 directly sponged miR-488-3p to activate the expression of PLAG1 and ATG12, thus enhancing malignant phenotypes and autophagy-associated chemoresistance in GC. Our findings show the potential of circPOFUT1 as biomarkers and targeting circPOFUT1 as a therapeutic strategy for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Fenótipo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
3.
Pharmacology ; 108(1): 61-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36382664

RESUMO

INTRODUCTION: During breast cancer chemotherapy, the chemoresistance that frequently accompanies the treatment has become a big challenge. Long noncoding RNAs (LncRNAs) have been related to the development of chemoresistance in multiple cancer types. LncRNA DDX11-AS1 has shown a carcinogenic role in lung and colorectal cancer and was reported to enhance oxaliplatin resistance in gastric cancer and Taxol insensitivity in esophageal cancer. But its role in breast cancer chemotherapy drug resistance remains unknown. This study aimed to investigate the function and mechanism of lncRNA DDX11-AS1 in breast cancer chemoresistance. METHODS: The relationship between DDX11-AS1 and adriamycin (ADR) resistance was confirmed by qPCR, cell viability tests, and survival analysis. Then, RNA immunoprecipitation was conducted to evaluate the interaction between DDX11-AS1 and RNA-binding protein LIN28A. The regulation effect of LIN28A on autophagy-related genes ATG7 or ATG12 was detected by RNA stability assay and Western blot. Their correlation analysis was evaluated in GEO datasets and further validated by immunohistochemical results. The clinical significance of DDX11-AS1, ATG7, or ATG12 was evaluated by Kaplan-Meier Plotter analysis. RESULTS: Here, we reported DDX11-AS1 was significantly upregulated in chemoresistant breast cancer cells and overexpression of DDX11-AS1 promoted ADR resistance in breast cancer. LIN28A could interact with DDX11-AS1 and was involved in DDX11-AS1-mediated ADR resistance. Interfering with LIN28A reversed DDX11-AS1-induced ADR resistance. LIN28A could increase the protein level of ATG7 and ATG12 by increasing their mRNA stability. Survival analysis showed that ATG12 expression level was negatively correlated with the prognosis of breast cancer patients. CONCLUSION: This study clarifies the role of DDX11-AS1 in breast cancer chemoresistance and revealed a new mechanism, that is, interacting with LIN28A to stabilize ATG7 and ATG12 and jointly promote chemorefractory. These findings warrant further in vivo investigations to study DDX11-AS1 as a potential target to overcome chemoresistance.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
4.
Cell Biochem Funct ; 40(7): 650-667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36062813

RESUMO

Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Ligases , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
5.
Dev Comp Immunol ; 132: 104406, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364136

RESUMO

In innate immunity, autophagy is an important molecular mechanism that plays a critical role in the animal defense system. Given the importance of anti-microbial autophagy in the innate immune processes, the relationship between anti-microbial autophagy and LPS-induced innate immunity in A. pernyi was investigated. Quantitative RT-PCR analysis revealed that autophagy-related genes (ATG6, ATG5, and ATG12) were induced following LPS injection. LPS treatment in the Relish knockdown larvae reduced the expression of autophagy-related genes, especially ATG5. Furthermore, ATG5 depletion decreased the innate immune effect, while its over-expression with ATG12 was induced after the LPS challenge. The dual-luciferase assay revealed that Relish could regulate ATG5 expression by binding directly to the promoter of the ATG5 gene. Overall, our findings show that Relish regulates the ATG5 transcription to eliminate Gram-negative bacteria by anti-microbial autophagy, implying a strong connection between autophagy and innate immunity in immunologic homeostasis.


Assuntos
Lipopolissacarídeos , Mariposas , Animais , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Imunidade Inata
6.
J Cell Physiol ; 237(4): 2140-2154, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35019151

RESUMO

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.


Assuntos
Ornitina Descarboxilase , Lesões por Radiação , Apoptose/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Humanos , Ornitina Descarboxilase/genética , Raios Ultravioleta
7.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34870550

RESUMO

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína 12 Relacionada à Autofagia , Autofagia , Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas
8.
Autophagy ; 18(8): 1898-1914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34904929

RESUMO

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy. Paradoxically, in several cancer types, mutations or loss of essential autophagy genes have been reported that are associated with earlier onset of tumor growth. However, to our knowledge, the phenotypic and therapeutic consequences of autophagy deficiency have remained unexplored. In this study, we determined autophagy-defects in head and neck squamous cell carcinoma (HNSCC) and observed that expression of ATG12 (autophagy related 12) was lost in 25%-40% of HNSCC. In line, ATG12 loss is associated with absence of hypoxia, as determined by pimonidazole immunohistochemistry. Hence, ATG12 loss is associated with improved prognosis after therapy in two independent HNSCC cohorts and 7 additional cancer types. In vivo, ATG12 targeting resulted in decreased hypoxia tolerance, increased necrosis and sensitivity of the tumor to therapy, but in vitro ATG12-deficient cells displayed enhanced survival in nutrient-rich culture medium. Besides oxygen, delivery of glucose was hampered in hypoxic regions in vivo, which increases the reliance of cells on other carbon sources (e.g., L-glutamine). We observed decreased intracellular L-glutamine levels in ATG12-deficient cells during hypoxia and increased cell killing after L-glutamine depletion, indicating a central role for ATG12 in maintaining L-glutamine homeostasis. Our results demonstrate that ATG12low tumors represent a phenotypically different subtype that, due to the lowered hypoxia tolerance, display a favorable outcome after therapy.Abbreviations: ARCON:accelerated radiotherapy with carbogen and nicotinamide; ATG: autophagy related; BrdUrd: bromodeoxyuridine; CA9/CAIX: carbonic anhydrase 9; HIF1A/HIF1α: hypoxia inducible factor 1 subunit alpha; HNSCC: head and neck squamous cell carcinoma; HPV: human papilloma virus; HR: hazard ratio; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; mRNA: messenger ribonucleic acid; PCR: polymerase chain reaction; SLC2A1/GLUT1: solute carrier family 2 member 1; TCGA: the Cancer Genome Atlas; TME: tumor microenvironment; UTR: untranslated region; VEGF: vascular endothelial growth factor.


Assuntos
Proteína 12 Relacionada à Autofagia , Glutamina , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Fibroblastos/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Hipóxia Tumoral , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Technol Cancer Res Treat ; 20: 15330338211052150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723728

RESUMO

Background: Resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia (CML) remains a problem in clinical treatment, and the mechanism has not been fully clarified. Autophagy can protect cancer cells under chemotherapeutic stimulation. Long noncoding RNAs (lncRNAs) are critical in drug resistance of CML. The role of lncRNAs in autophagy and drug resistance of CML needs to be further explored. Methods: Western blot and immunofluorescence were used to evaluate the autophagy activity in the drug-resistant CML cell line K562/G01 and its parental cell line K562. Then the sensitivity of K562/G01 cells to the first generation TKI imatinib (IM) after autophagy inhibition was determined by CCK-8 assays. The lncRNA OIP5-AS1 related to the drug resistance of CML cells was determined by Gene Expression Omnibus database analysis. Western blot and drug-sensitivity assays were used to detect changes in autophagy and sensitivity to the IM in resistant CML cells after OIP5-AS1 knockdown. The interactions of OIP5-AS1, miR-30e-5p, and ATG12 were explored by RNA immunoprecipitation and dual-luciferase reporter assays. Results: In this study, we found that autophagy was associated with drug resistance in CML cells. Moreover, the upregulation of OIP5-AS1 in K562/G01 cells was related to the enhancement of autophagy. Knockdown of OIP5-AS1 suppressed autophagy and enhanced the sensitivity of K562/G01 cells to IM. Furthermore, OIP5-AS1 regulated ATG12 by competitively binding miR-30e-5p, thereby affecting autophagy-related drug resistance. Conclusion: Our study reveals that OIP5-AS1 promotes the autophagy-related IM resistance in CML cells by regulating miR-30e-5p/ATG12 axis, providing new insights into the drug resistance mechanism of CML.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Bases de Dados Genéticas , Técnicas de Silenciamento de Genes , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/genética , Interferência de RNA , Transcriptoma
10.
Int J Mol Med ; 48(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608496

RESUMO

The main aim of the present study was to explore the role of long­chain non­coding RNA (lncRNA) growth arrest­specific transcript 5 (GAS5) in macrophage autophagy. Firstly, the expression of lncRNA GAS5 during cell starvation or following treatment with 3­methyladenine was determined using reverse transcription­quantitative PCR (RT­qPCR). Additionally, fluorescent in situ hybridization (FISH) assay was utilized to determine the localization of the expression of lncRNA GAS5 in RAW264.7 cells. In vitro cell models were established through the transfection of LV5­lncRNA GAS5 (LV5­GAS5) or LV3­shRNA­lnc GAS5 (sh­GAS5), in order to overexpress or knockdown lncRNA GAS5 expression in RAW264.7 cells. The potential target microRNAs (miRNAs/miRs) of lncRNA GAS5 were analyzed using bioinformatics. The formation of autophagic bodies was detected with the use of laser confocal and transmission electron microscopy. Dual­luciferase reporter assay was performed to determine the target specificities of miR­181c­5p or miR­1192 to lncRNA GAS5 and autophagy­related gene (ATG) or ATG12. The mRNA levels of miR181c­5p, miR­1192, as well as ATG5 and ATG12 were detected using RT­qPCR. The protein levels of microtubule­associated proteins 1A/1B light chain 3B (LC3), p62, ATG5 and ATG12 were measured using western blot analysis. It was revealed that lncRNA GAS5 expression in RAW264.7 macrophages increased significantly during starvation­induced autophagy, and that lncRNA GAS5 overexpression was able to markedly promote the formation of autophagic bodies. Bioinformatics analysis demonstrated that miR­181c­5p and miR­1192 were potential targets of lncRNA GAS5, which was further confirmed by RT­qPCR, western blot analysis and the dual­luciferase reporter assay. Finally, it was confirmed that lncRNA GAS5 promoted autophagy by sponging miR­181c­5p and miR­1192, and upregulating the expression levels of the key autophagic regulators, ATG5 and ATG12. On the whole, the present study demonstrates that total, lncRNA GAS5 promotes macrophage autophagy by targeting the miR­181c­5p/ATG5 and miR­1192/ATG12 axes.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Proteína 12 Relacionada à Autofagia/genética , Regulação da Expressão Gênica , Camundongos , Células RAW 264.7
11.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34699746

RESUMO

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Células-Tronco Neurais/enzimologia , Neurogênese , Neurônios/enzimologia , Proteoma , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteostase , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/genética
12.
Mol Biol Rep ; 48(10): 7041-7047, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453672

RESUMO

BACKGROUND: Autophagy process is an important defense mechanism against intracellular infection. This process plays a critical role in limiting the development of Toxoplasma gondii. This study aimed to investigate the effects of T. gondii profilin and tachyzoites on the expression of autophagy genes. METHODS AND RESULTS: PMA-activated THP-1 cell line was incubated with T. gondii profilin and tachyzoites for 6 h. After RNA extraction and cDNA synthesis, the expression of Atg5, Atg7, Atg12, and LC3b was evaluated using real-time PCR. The results revealed statistically significant downregulation of Atg5 for 1.43 (P-value = 0.0062) and 4.15 (P-value = 0.0178) folds after treatment with T. gondii profilin and tachyzoites, respectively. Similar to Atg 5, Atg 12 revealed a statistically significant downregulation for profilin (1.41 fold; P-value = 0.0047) and T. gondii tachyzoites (3.25 fold; P-value = 0.011). The expression of Atg7 elevated in both T. gondii profilin (2.083 fold; P-value = 0.0087) and tachyzoites (1.64 fold; P-value = 0.206). T. gondii profilin and tachyzoites downregulated (1.04 fold; P-value = 0.0028) and upregulated (twofold; P-value = 0.091) the expression of LC3b, respectively. CONCLUSIONS: Our findings suggest that T. gondii and profilin may manipulate autophagy via preventing from the formation of Atg5-12-16L complex to facilitate replication of T. gondii and development of toxoplasmosis.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia , Regulação para Baixo , Profilinas/metabolismo , Toxoplasma/metabolismo , Regulação para Cima , Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Regulação para Baixo/genética , Interações Hospedeiro-Parasita/genética , Humanos , Modelos Biológicos , Células THP-1 , Regulação para Cima/genética
13.
Biol Pharm Bull ; 44(9): 1337-1343, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193767

RESUMO

Autophagy is an intracellular degradation system regulating cellular homeostasis. The two ubiquitin-like modification systems named the Atg8 system and the Atg12 system are essential for autophagy. Atg8 and Atg12 are ubiquitin-like proteins covalently conjugated with a phosphatidylethanolamine (PE) and Atg5, respectively, via enzymatic reactions. The Atg8-PE conjugate binds to autophagic membranes and recruits various proteins through direct interaction, whereas the Atg12-Atg5 conjugate recognizes Atg3, the E2 enzyme for Atg8, and facilitates Atg8-PE conjugation by functioning as the E3 enzyme. Although structural and biochemical analyses have well established the Atg8-family interacting motif (AIM), studies on the interacting sequence for Atg12 are rare (only one example for human ATG12-ATG3), thereby making it challenging to define a binding motif. Here we determined the crystal structure of the plant ATG12b as a complex with the ATG12b-binding region of ATG3 and revealed that ATG12b recognizes the aspartic acid (Asp)-methionine (Met) motif in ATG3 via a hydrophobic pocket and a basic residue, which we confirmed critical for the complex formation by mutational analysis. This recognition mode is similar to that reported between human ATG12 and ATG3, suggesting that the Asp-Met sequence is a conserved Atg12-interacting motif (AIM12). These data suggest that AIM12 mediates E2-E3 interaction during Atg8 lipidation and provide structural basis for developing chemicals that regulate autophagy by targeting Atg12-family proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteína 12 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/ultraestrutura , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/ultraestrutura , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Fosfatidiletanolaminas/metabolismo , Proteínas de Plantas/ultraestrutura
14.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066497

RESUMO

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citologia , Fusarium/genética , Genes Fúngicos , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Doenças das Plantas/genética , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico/genética
15.
Int J Mol Med ; 47(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33907824

RESUMO

Circular (circ)RNA has been demonstrated to serve crucial roles in cell proliferation, differentiation and autophagy. However, to date, the function and mechanism of action of circRNA in preeclampsia have not been reported. The present study aimed to analyze the roles of circRNA­0004904 in preeclampsia and to clarify its underlying pathogenic mechanism. The expression levels of circ­0004904, microRNA (miR)­570 and autophagy­related 12 (ATG12) were detected by reverse transcription­quantitative (RT­q)PCR. In addition, the protein levels of ATG12, vascular endothelial growth factor (VEGF) and fused in sarcoma (FUS) were determined by western blot assay. The distribution of mRFP­GFP­LC3 in HTR8 and JEG3 cells was analyzed by confocal microscopy. Fluorescence in situ hybridization assay was utilized to identify the colocalization of circ­0004904 and miR­570. Cell proliferation was determined by 5­ethynyl­2'­deoxyuridine assay, and invasion was evaluated by Matrigel invasion assay. The results of the present study demonstrated that the expression levels of circ­0004904 were elevated in the placental tissues and plasma samples of patients with preeclampsia compared with those in the control group samples. Ectopic expression of circ­0004904 promoted autophagy, but inhibited migration and proliferation of HTR8 cells compared with those in the negative control group. Silencing of circ­0004904 inhibited autophagy, and induced migration and proliferation in JEG3 cells compared with those in the negative control group. In addition, circ­0004904 regulated the levels of ATG12 via interaction with miR­570. Furthermore, circ­0004904 regulated the FUS/VEGF axis in HTR8 and JEG3 cells. In conclusion, circ­0004904 was abnormally expressed in the plasma and placental tissues of patients with preeclampsia. In addition, circ­0004904 was involved in the regulation of proliferation, invasion and autophagy in HTR8 and JEG3 cells. Thus, circ­0004904 may be used as a potential diagnostic biomarker and therapeutic target for preeclampsia.


Assuntos
Autofagia/genética , Pré-Eclâmpsia/genética , RNA Circular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Sequência de Bases , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
16.
J Steroid Biochem Mol Biol ; 208: 105829, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513383

RESUMO

OBJECTIVE: Women with polycystic ovary syndrome (PCOS) are at higher risk for metabolic disorders compared to healthy women, and about 51 % of women with PCOS suffer from non-alcoholic fatty liver disease (NAFLD). Investigation into the pathological mechanism behind this association will provide insights for the prevention and treatment of this complication. METHODS: Dihydrotestosterone (DHT), a nonaromatic androgen, was used to mimic the pathological conditions of hyperandrogenism and insulin resistance. Hematoxylin and eosin staining, Oil Red O staining, immunofluorescent staining, Western blots, and qRT-PCR were used to verify the hepatic steatosis and inflammation, and the latter two methods were also used for energy and mitochondrion-related assays. ELISA was used to measure the level of reactive oxygen species. RESULTS: Twelve weeks of DHT exposure led to obesity and insulin resistance as well as hepatic steatosis, lipid deposition, and different degrees of inflammation. The expression of molecules involved in respiratory chain and aerobic respiration processes, such as electron transfer complex II, pyruvate dehydrogenase, and succinate dehydrogenase complex subunit A, was inhibited. In addition, molecules associated with apoptosis and autophagy were also abnormally expressed, such as increased Bak mRNA, an increased activated caspase-3 to caspase-3 ratio, and increased Atg12 protein expression. All of these changes are associated with the mitochondria and lead to lipid deposition and inflammation in the liver. CONCLUSIONS: Long-term androgen excess contributes to insulin resistance and hepatic steatosis by affecting mitochondrial function and causing an imbalance in apoptosis and autophagy, thus suggesting the pathogenesis of NAFLD in women with PCOS.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Resistência à Insulina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Síndrome do Ovário Policístico/genética , Androgênios/genética , Androgênios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Di-Hidrotestosterona/efeitos adversos , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/genética , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteína Killer-Antagonista Homóloga a bcl-2/genética
17.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484718

RESUMO

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 5 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
18.
Mol Ther ; 29(3): 1258-1278, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068778

RESUMO

Long non-coding RNAs (lncRNAs) are under active investigation in the development of cancers, including gastric cancer (GC). Oncogenic autophagy is required for cancer cell survival. The present study aimed to investigate the regulatory role of lncRNA small nucleolar host gene 11 (SNHG11) in GC. We show that SNHG11 is upregulated in GC, and that its upregulation correlated with dismal patient outcomes. Functionally, SNHG11 aggravated oncogenic autophagy to facilitate cell proliferation, stemness, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in GC. Mechanistically, SNHG11 post-transcriptionally upregulated catenin beta 1 (CTNNB1) and autophagy related 12 (ATG12) through miR-483-3p/miR-1276, while the processing of precursor (pre-)miR-483/pre-miR-1276 was hindered by SNHG11. SNHG11 induced GSK-3ß ubiquitination through interacting with Cullin 4A (CUL4A) to further activate the Wnt/ß-catenin pathway. Intriguingly, SNHG11 regulated autophagy in a manner dependent on ATG12 rather than the Wnt/ß-catenin pathway, whereas SNHG11 contributed to the malignant behaviors of GC cells via both pathways. Finally, SNHG11 upregulation in GC cells was shown to be transcriptionally induced by TCF7L2. In conclusion, we reveal that SNHG11 is an onco-lncRNA in GC and might be a promising prognostic and therapeutic target for GC.


Assuntos
Autofagia , Carcinogênese , Transição Epitelial-Mesenquimal , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Proteínas Culina/genética , Proteínas Culina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
19.
Intervirology ; 63(1-6): 57-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33202415

RESUMO

BACKGROUND: Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe dengue diseases. The underlying mechanisms leading to severe dengue fever remain unclear. METHODS: THP-1 cells were treated with an autophagy inducer (rapamycin) or inhibitor (3-methyladenine [3-MA]) and infected with DENV and DENV-ADE. In order to investigate the expression profile of autophagy-related genes in DENV-ADE and DENV direct infection of THP-1 cells, the PCR array including 84 autophagy-related genes was selected to detect the expression of related genes, and then heat map and clustergram were established by analysis software to compare the expression differences of these genes between the DENV-ADE and DENV direct infection. RESULTS: Autophagy-inducing complex related genes ATG5 and ATG12 were upregulated, and autophagosomes were also observed by transmission electron microscopy among DENV-ADE- and DENV-infected THP-1 cells, which indicated that autophagy was involved in dengue infection. The results show that 3-MA has a significant inhibitory effect on ATG12 in THP-1 cells; on the contrary, the expression of ATG12 was upreg-ulated in THP-1 cells that were treated with rapamycin. The autophagy-related genes ESR1, INS, BNIP3, FAS, TGM2, ATG9B, and DAPK1 exhibited significant differences between DENV-ADE and DENV direct infection groups. CONCLUSION: In the present study, an additional mechanism of autophagy was inhibited by the autophagy inhibitor (3-MA) in DENV- and DENV-ADE-infected THP-1 cells. Our finding provided a clear link between autophagy and antibody-enhanced infection of DENV.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Autofagia , Vírus da Dengue/imunologia , Dengue/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Autofagossomos/ultraestrutura , Proteína 12 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Humanos , Sirolimo/farmacologia , Células THP-1 , Transcriptoma
20.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147747

RESUMO

In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/genética , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Humanos , Sistema Imunitário , Inflamação , Lisossomos/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA