Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
1.
Sci Rep ; 14(1): 10271, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704452

RESUMO

The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51-14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets' expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren't altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , MicroRNAs , Obesidade , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Sirtuína 1 , Humanos , RNA Longo não Codificante/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Masculino , MicroRNAs/genética , Obesidade/complicações , Obesidade/genética , Pessoa de Meia-Idade , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Sirtuína 1/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Regulação Neoplásica da Expressão Gênica , Idoso , Estudos de Casos e Controles , Fatores de Risco
2.
Gene ; 917: 148460, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604506

RESUMO

IGFBP3 (Insulin-like growth factor binding protein 3) constitutes a crucial constituent of the insulin-like growth factor (IGF), which are intimately associated with the organism's growth and development processes. Despite its significance, the precise function of IGFBP3 in yak liver development remains largely unexplored. In the present study, we systematically examined the expression profile of IGFBP3 in the liver tissues of yaks across various growth stages, elucidated its influence on the activity of yak hepatocytes, and probed its effects on murine liver development. A comparative analysis revealed that the expression of IGFBP3 was significantly higher in the liver tissue of 5-year-old yaks compared to their 15-month-old and 1-day-old counterparts (P < 0.01). To further validate its biological function, pET-28a-BgIGFBP3 prokaryotic expression vector was constructed. Upon exposing yak hepatocytes to varying concentrations of Bos grunniens (Bg) IGFBP3 protein, we observed augmented cellular activities and elevated colony formation rates. Moreover, our investigation revealed the upregulation of key genes within the PI3K-Akt signaling pathway, including ERBB2, IRS1, PIK3R1, AKT1, RAF1, MAP2K2, and MAPK3, in both yak hepatocyte cultures and murine models. These findings collectively indicate that BgIGFBP3 promotes the proliferation of yak hepatocytes and enhances murine liver development by modulating the PI3K-Akt signaling pathway. The functional relevance of BgIGFBP3 was substantiated through in vivo and in vitro experiments, thereby underscoring its potential as a regulatory factor in liver development processes.


Assuntos
Proliferação de Células , Hepatócitos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Hepatócitos/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Bovinos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Camundongos , Fígado/metabolismo , Células Cultivadas
3.
J Clin Lab Anal ; 38(5): e25021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468402

RESUMO

BACKGROUND: Insulin resistance has been correlated with the genetic diversity within the insulin-like binding proteins genes. Moreover, insulin resistance is one of the key characteristics of the widespread reproductive endocrine condition known as polycystic ovarian syndrome (PCOS). Hence, this study is aimed to determine the association between IGFBP3 and IGF2BP2 gene variants and PCOS risk. METHODS: A total of 300 subjects (150 PCOS cases diagnosed based on Rotterdam ESHRE/ASRM consensus criteria and 150 healthy subjects) were recruited in this case-control cross-sectional study. Tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR) was used for genotyping rs11705701, whereas genotyping of rs1470579 and rs2854744 was done employing PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS: The CC and AA+AC genotypes of rs1470579 conferred an increased risk of PCOS in our population. Regarding the rs2854744, an increased risk of PCOS was observed under the codominant homozygous (TT vs. GG) model by 2.54 fold. The C allele of rs1470579 and T allele of rs2854744 enhanced PCOS risk by 1.97 and 1.46 folds, respectively. Haplotype analysis showed that the Ars1470579Ars11705701 haplotype conferred a decreased risk of PCOS (odds ratio = 0.53, 95% confidence interval = 0.34-0.83, p = 0.006). The AC/GG/GT, AA/GA/GT, AC/GA/GG, and AC/GA/GT genotype combinations of rs1470579/rs11705701/rs2854744 were associated with a decreased risk of the disease. CONCLUSIONS: IGF2BP2 rs1470579 and IGFBP3 rs2854744 enhanced PCOS susceptibility in a Southeastern Iranian population. Further investigation involving larger cohorts representing diverse ethnic backgrounds is needed to confirm the current findings.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Resistência à Insulina/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos Transversais , Irã (Geográfico)/epidemiologia , Modelos Genéticos , Estudos de Casos e Controles , Genótipo , Frequência do Gene/genética , Proteínas de Ligação a RNA/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
4.
Eur J Pharmacol ; 969: 176421, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423242

RESUMO

Fluoroquinolones (FQs), commonly known for their antibiotic properties, exhibit additional pharmacological potential with anti-proliferative effects on various malignant cell types and immunomodulatory responses. Despite these observed effects, the precise mechanisms of action remain elusive. This study elucidates the biological impact of FQs on insulin-like growth factor-binding protein 3 (IGFBP-3) productions in a p53-dependent manner. Cultured cells and mouse models treated with FQs demonstrated increased IGFBP-3 mRNA expression and protein secretion. The FQ-induced IGFBP-3 was identified to impede cell growth by inhibiting IGF-I signaling and exerting effects through an IGF-independent pathway. Notably, FQ-mediated suppression of cell proliferation was reversed in p53-null and p53 knockdown cells, suggesting the pivotal role of p53 in FQ-induced IGFBP-3 production and IGFBP-3-mediated growth inhibition. Additionally, ciprofloxacin, a clinically used FQ, exhibited the induction of tumor cell apoptosis and attenuation of tumor growth in a syngeneic mouse hepatocellular carcinoma (HCC) model. These findings unveil a novel mechanism through which FQs act as anti-proliferative agents, prompting further exploration of their potential utility or derivative compounds in cancer treatment and prevention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Fluoroquinolonas/farmacologia , Peptídeos Semelhantes à Insulina , Proteína Supressora de Tumor p53 , Fator de Crescimento Insulin-Like I/metabolismo , Proliferação de Células
5.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224009

RESUMO

Mesenchymal stem cells play important roles in repairing injured endometrium. However, the molecular targets and potential mechanism of the endometrial recipient cells for stem cell therapy in intrauterine adhesion (IUA) are poorly understood. In this study, umbilical cord mesenchymal stem-cell-conditioned medium (UCMSCs-CM) produced positive effects on a Transforming growth factor beta (TGF-ß) induced IUA cell model. RNA-sequencing was performed on clinical IUA tissues, and the top 40 upregulated and top 20 downregulated mRNAs were selected and verified using high-throughput (HT) qPCR in both tissues and cell models. Based on a bioinformatic analysis of RNA-sequencing and HT-qPCR results, 11 mRNAs were uncovered to be the intervention targets of UCMSCs-CM on IUA endometrium cell models. Among them, IGFBP3 was striking as a key pathogenic gene and a potential diagnostic marker of IUA, which exhibited the area under the curve (AUC), sensitivity, specificity were 0.924, 93.1% and 80.6%, respectively in 60 endometrial tissues. The silencing of IGFBP3 exerted positive effects on the IUA cell model through partially upregulating MMP1 and KLF2. In conclusion, RNA-sequencing combined with HT qPCR based on clinical tissues and IUA cell models were used in IUA research and our results may provide some scientific ideas for the diagnosis and treatment of IUA.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Células-Tronco Mesenquimais , Doenças Uterinas , Feminino , Humanos , Meios de Cultivo Condicionados/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , RNA/metabolismo , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Aderências Teciduais/terapia , Cordão Umbilical/metabolismo , Cordão Umbilical/patologia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia
6.
Int J Oncol ; 64(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38186306

RESUMO

Prostate cancer (PCa) is a prevalent malignancy among men, with a majority of patients presenting with distant metastases at the time of initial diagnosis. These patients are at a heightened risk of developing more aggressive castration­resistant PCa following androgen deprivation therapy, which poses a greater challenge for treatment. Notably, the inhibition of tumor angiogenesis should not be considered an ineffective treatment strategy. The regulatory role of CDK12 in transcriptional and post­transcriptional processes is essential for the proper functioning of various cellular processes. In the present study, the expression of CDK12 was first knocked down in cells using CRISPR or siRNA technology. Subsequently, RNA­seq analysis, co­immunoprecipitation, western blotting, reverse transcription­quantitative polymerase chain reaction and the LinkedOmics database were employed to reveal that CDK12 inhibits insulin like growth factor binding protein 3 (IGFBP3). Western blot analysis also demonstrated that CDK12 promoted VEGFA expression by inhibiting IGFBP3, which involves the Akt signaling pathway. Then, CDK12 was found to promote PCa cell proliferation, cell migration and angiogenesis by inhibiting IGFBP3 through cell proliferation assays, cell migration assays and tube formation assays, respectively. Finally, animal experiments were performed for in vivo validation. It was concluded that CDK12 promoted PCa and its angiogenesis by inhibiting IGFBP3.


Assuntos
Neoplasias da Próstata , Animais , Masculino , Humanos , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Angiogênese , Agressão , Bioensaio , Quinases Ciclina-Dependentes , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
7.
Exp Mol Med ; 56(1): 177-191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177295

RESUMO

Dysregulation of wild-type p53 turnover is a key cause of hepatocellular carcinoma (HCC), yet its mechanism remains poorly understood. Here, we report that WD repeat and SOCS box containing protein 2 (WSB2), an E3 ubiquitin ligase, is an independent adverse prognostic factor in HCC patients. WSB2 drives HCC tumorigenesis and lung metastasis in vitro and in vivo. Mechanistically, WSB2 is a new p53 destabilizer that promotes K48-linked p53 polyubiquitination at the Lys291 and Lys292 sites in HCC cells, leading to p53 proteasomal degradation. Degradation of p53 causes IGFBP3-dependent AKT/mTOR signaling activation. Furthermore, WSB2 was found to bind to the p53 tetramerization domain via its SOCS box domain. Targeting mTOR with everolimus, an oral drug, significantly blocked WSB2-triggered HCC tumorigenesis and metastasis in vivo. In clinical samples, high expression of WSB2 was associated with low wild-type p53 expression and high p-mTOR expression. These findings demonstrate that WSB2 is overexpressed and degrades wild-type p53 and then activates the IGFBP3-AKT/mTOR axis, leading to HCC tumorigenesis and lung metastasis, which indicates that targeting mTOR could be a new therapeutic strategy for HCC patients with high WSB2 expression and wild-type p53.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética
8.
Arch Endocrinol Metab ; 68: e230017, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948568

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and a growing global epidemic. In NAFLD, liver fat surpasses 5% of hepatocytes without the secondary causes of lipid accumulation or excessive alcohol consumption. Given the link between NAFLD and insulin resistance, the possible association between the rs2854744 (-202 G>T) promoter polymorphism of insulin-like growth factor binding protein 3 (IGFBP3) gene and NAFLD was investigated in this study. Materials and methods: In this genetic case-control association study, the IGFBP3 rs2854744 genotypes of 315 unrelated individuals, including 156 patients with biopsy-proven NAFLD and 159 controls, were determined using polymerase chain reaction/restriction fragment length polymorphism analyses. Results: The "GT+TT" genotype of the IGFBP3 rs2854744 polymorphism, compared with the "GG" genotype, was associated with a 2.7-fold increased risk of NAFLD after adjustment for confounding factors (P = 0.009; odds ratio [OR] = 2.71; 95% confidence interval [CI] = 1.19-3.18). Additionally, the IGFBP3 rs2854744 "T" allele, in comparison with the "G" allele, was significantly overrepresented in NAFLD patients than the controls (P = 0.008; OR = 1.85; 95%CI = 1.23-2.94). Conclusion: Our findings first indicated that the IGFBP3 rs2854744 "GT+TT" genotype is a marker of increased NAFLD susceptibility; however, it needs to be supported by further investigations in other populations.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Estudos de Associação Genética , Genótipo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético/genética
9.
J Clin Endocrinol Metab ; 109(1): e96-e106, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595266

RESUMO

CONTEXT: Childhood overnutrition is associated with increased growth and bone mineral density (BMD) vs the opposite for undernutrition. The role of insulin receptor (InsR) signaling in these phenotypes is unclear. Rare disease patients with hyperinsulinemia and impaired InsR function (homozygous [-/-] or heterozygous [+/-] INSR pathogenic variants, type B insulin resistance [TBIR]) model increased InsR signaling, while patients with intact InsR function (congenital generalized lipodystrophy, CGL) model decreased InsR signaling. OBJECTIVE: This work aimed to understand mechanisms whereby InsR signaling influences growth. METHODS: A cross-sectional comparison was conducted of CGL (N = 23), INSR-/- (N = 13), INSR+/- (N = 17), and TBIR (N = 8) at the National Institutes of Health. Main outcome measures included SD scores (SDS) for height, body mass index, insulin-like growth factor (IGF)-1, and BMD, and IGF binding proteins (IGFBP)-1 and -3. RESULTS: INSR-/- vs CGL had higher insulin (median 266 [222-457] vs 33 [15-55] mcU/mL), higher IGFBP-1 (72 350 [55 571-103 107] vs 6453 [1634-26 674] pg/mL), lower BMI SDS (-0.7 ± 1.1 vs 0.5 ± 0.9), lower height SDS (-1.9[-4.3 to -1.3] vs 1.1 [0.5-2.5]), lower BMD SDS (-1.9 ± 1.4 vs 1.9 ± 0.7), and lower IGFBP-3 (0.37 [0.19-1.05] vs 2.00 [1.45-2.67] µg/mL) (P < .05 for all). INSR +/- were variable. Remission of TBIR lowered insulin and IGFBP-1, and increased IGF-1 and IGFBP-3 (P < .05). CONCLUSION: Patients with hyperinsulinemia and impaired InsR function exhibit impaired growth and lower BMD, whereas elevated InsR signaling (CGL) causes accelerated growth and higher BMD. These patients demonstrate that insulin action through the InsR stimulates direct anabolic effects in bone and indirect actions through the growth hormone (GH)-IGF-1 axis. TBIR patients exhibit abnormalities in the GH axis that resolve when InsR signaling is restored, supporting a causal relationship between InsR and GH axis signaling.


Assuntos
Hormônio do Crescimento Humano , Hiperinsulinismo , Criança , Humanos , Estudos Transversais , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptor de Insulina/genética
10.
PeerJ ; 11: e15554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397026

RESUMO

Background: IGFBP3 plays a pivotal role in carcinogenesis by being anomalously expressed in some malignancies. However, the clinical value of IGFBP3 and the role of IGFBP3-related signature in HCC remain unclear. Methods: Multiple bioinformatics methods were used to determine the expression and diagnostic values of IGFBP3. The expression level of IGFBP3 was validated by RT-qPCR and IHC. A IGFBP3-related risk score (IGRS) was built via correlation analysis and LASSO Cox regression analysis. Further analyses, including functional enrichment, immune status of risk groups were analyzed, and the role of IGRS in guiding clinical treatment was also evaluated. Results: IGFBP3 expression was significantly downregulated in HCC. IGFBP3 expression correlated with multiple clinicopathological characteristics and demonstrated a powerful diagnostic capability for HCC. In addition, a novel IGRS signature was developed in TCGA, which exhibited good performance for prognosis prediction and its role was further validated in GSE14520. In TCGA and GSE14520, Cox analysis also confirmed that the IGRS could serve as an independent prognostic factor for HCC. Moreover, a nomogram with good accuracy for predicting the survival of HCC was further formulated. Additionally, enrichment analysis showed that the high-IGRS group was enriched in cancer-related pathways and immune-related pathways. Additionally, patients with high IGRS exhibited an immunosuppressive phenotype. Therefore, patients with low IGRS scores may benefit from immunotherapy. Conclusions: IGFBP3 can act as a new diagnostic factor for HCC. IGRS signature represents a valuable predictive tool in the prognosis prediction and therapeutic decision making for Hepatocellular Carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Prognóstico , Nomogramas , Tomada de Decisões , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
11.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511378

RESUMO

Clarifying inflammatory processes and categorising asthma into phenotypes and endotypes improves asthma management. Obesity worsens severe asthma and reduces quality of life, although its specific molecular impact remains unclear. We previously demonstrated that hsa-miR-26a-1-3p and hsa-miR-376a-3p, biomarkers related to an inflammatory profile, discriminate eosinophilic from non-eosinophilic asthmatics. We aimed to study hsa-miR-26a-1-3p, hsa-miR-376a-3p, and their target genes in asthmatic subjects with or without obesity to find biomarkers and comprehend obese asthma mechanisms. Lung tissue samples were obtained from asthmatic patients (n = 16) and healthy subjects (n = 20). We measured miRNA expression using RT-qPCR and protein levels (IGF axis) by ELISA in confirmation samples from eosinophilic (n = 38) and non-eosinophilic (n = 39) obese (n = 26) and non-obese (n = 51) asthma patients. Asthmatic lungs showed higher hsa-miR-26a-1-3p and hsa-miR-376a-3p expression than healthy lungs. A study of seven genes regulated by these miRNAs revealed differential expression of IGFBP3 between asthma patients and healthy individuals. In obese asthma patients, we found higher hsa-miR-26a-1-3p and IGF-1R values and lower values for hsa-miR-376a-3p and IGFBP-3. Hsa-miR-26a-1-3p and IGFBP-3 were directly and inversely correlated with body mass index, respectively. Hsa-miR-26a-1-3p and hsa-miR-376a-3p could be used as biomarkers to phenotype patients with eosinophilic and non-eosinophilic asthma in relation to comorbid obesity.


Assuntos
Asma , MicroRNAs , Obesidade , Humanos , Asma/complicações , Asma/genética , Biomarcadores , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Fenótipo , Qualidade de Vida
12.
Arch Oral Biol ; 154: 105756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451139

RESUMO

OBJECTIVE: The odontogenic differentiation of human dental pulp stem cells (HDPSCs) is associated with reparative dentinogenesis. Transcription factor GATA binding protein 4 (GATA4) is proved to be essential for osteoblast differentiation and bone remodeling. This study clarified the function of GATA4 in HDPSCs odontoblast differentiation. METHODS: The change in GATA4 expression during reparative dentin formation was detected by immunohistochemistry staining. The expression of GATA4 during HDPSCs odontoblastic differentiation was detected by western blot and quantitative polymerase chain reaction. The effect of GATA4 on odontoblast differentiation was investigated following overexpression lentivirus transfection. RNA sequencing, dual luciferase assay and chromatin immunoprecipitation (CHIP) were conducted to verify downstream targets of GATA4. GATA4 overexpression lentivirus and small interference RNA targeting IGFBP3 were co-transfected to investigate the regulatory mechanism of GATA4. RESULTS: Upregulated GATA4 was observed during reparative dentin formation in vivo and the odontoblastic differentiation of HDPSCs in vitro. GATA4 overexpression suppressed the odontoblastic potential of HDPSCs, demonstrated by decreased alkaline phosphatase activity (p < 0.0001), mineralized nodules formation (p < 0.01), and odonto/osteogenic differentiation markers levels (p < 0.05). RNA sequencing revealed IGFBP3 was a potential target of GATA4. CHIP and dual luciferase assays identified GATA4 could activate IGFBP3 transcription. Additionally, IGFBP3 knockdown recovered the odontoblastic differentiation defect caused by GATA4 overexpression (p < 0.05). CONCLUSIONS: GATA4 inhibited odontoblastic differentiation of HDPSCs via activating the transcriptional activity of IGFBP3, identifying its promising role in regulating HDPSCs odontoblast differentiation and reparative dentinogenesis.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Células-Tronco , Odontoblastos , Diferenciação Celular/fisiologia , Células Cultivadas , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
13.
Biol Direct ; 18(1): 34, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365579

RESUMO

BACKGROUND: Tooth development, as one of the major mineralized tissues in the body, require fine-tuning of mineralization micro-environment. The interaction between dental epithelium and mesenchyme plays a decisive role in this process. With epithelium-mesenchyme dissociation study, we found interesting expression pattern of insulin-like growth factor binding protein 3 (IGFBP3) in response to disruption of dental epithelium-mesenchyme interaction. Its action and related mechanisms as regulator of mineralization micro-environment during tooth development are investigated. RESULTS: Expressions of osteogenic markers at early stage of tooth development are significantly lower than those at later stage. BMP2 treatment further confirmed a high mineralization micro-environment is disruptive at early stage, but beneficial at later stage of tooth development. In contrast, IGFBP3's expression increased gradually from E14.5, peaked at P5, and decreased afterwards, demonstrating an inverse correlation with osteogenic markers. RNA-Seq and Co-immunoprecipitation showed that IGFBP3 regulates the Wnt/beta-catenin signaling pathway activity by enhancing DKK1 expression and direct protein-protein interaction. The suppression of the mineralization microenvironment effectuated by IGFBP3 could be reversed by the DKK1 inhibitor WAY-262611, further demonstrating that IGFBP3 exerted its influence via DKK1. CONCLUSION: A deeper understanding of tooth development mechanisms is essential for tooth regeneration, which have great implications for dental care. The current study demonstrated that the IGFBP3 expression is regulated in accordance with the needs of the mineralization microenvironment during tooth development, and IGFBP3 exerts its modulating action on osteogenic/odontogenic differentiation of hDPSCs by DKK1-Wnt/ beta-catenin axis.


Assuntos
Dente , Via de Sinalização Wnt , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Diferenciação Celular
14.
J Endocrinol Invest ; 46(12): 2601-2607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37355525

RESUMO

PURPOSE: This study aimed to analyze the expression of the IGF type-1 receptor gene (IGF-1r) and IGF-I, GH, testosterone, and IGFBP-3 concentrations in young people subjected to 10 weeks of muscle hypertrophy training. METHODS: IGF-1r expression, serum concentrations of IGF-I, IGFBP-3, GH, and total testosterone, as well as body composition, fat percentage, and body mass index, were determined for 22 healthy young males at three moments of resistance training (first, fifth, and tenth week of training). RESULTS: Throughout the 10 weeks of training, a reduction was observed in the relative expression of the IGF-1r gene (2-ΔΔCT) and an increase in IGF-I and GH concentrations. A reduction in total testosterone concentrations was detected during the recovery period in the fifth week. The IGFBP-3 concentrations did not change throughout the training. CONCLUSIONS: The resistance training protocol prescribed for muscle hypertrophy did not suppress the GH-IGF-I axis, but it did cause alterations in IGF-1r gene expression and in IGF-I kinetics compatible with increased IGF bioactivity.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I , Masculino , Humanos , Adulto Jovem , Adolescente , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Testosterona , Hipertrofia , Músculos/metabolismo
15.
Reprod Sci ; 30(10): 2932-2944, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188982

RESUMO

MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.


Assuntos
Endometriose , MicroRNAs , Animais , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Endometriose/metabolismo , Papio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Linhagem Celular , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
16.
Sci Rep ; 13(1): 8739, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253773

RESUMO

Insulin-like growth factor binding protein-3 (IGFBP-3) has been known to inhibit cell proliferation and exert tumor-suppressing effects depending on the cell type. In this study, we aimed to show that IGFBP-3 induces cellular senescence via suppression of the telomerase activity, thereby inhibiting MCF-7 breast cancer cell proliferation. We found that the induction of IGFBP-3 in MCF-7 cells enhanced the loss of cell viability. Flow cytometry revealed a higher percentage of non-cycling cells among IGFBP-3-expressing cells than among controls. IGFBP-3 induction also resulted in morphological alterations, such as a flattened cytoplasm and increased granularity, suggesting that IGFBP-3 induces a senescence-like phenotype. The percentage of IGFBP-3 expressing cells with senescence-associated ß-galactosidase activity was 3.4 times higher than control cells. Telomeric repeat amplification and real-time PCR showed that IGFBP-3 decreased telomerase activity by reducing the levels of the RNA component (hTR) and catalytic protein component with reverse transcriptase activity (hTERT) of telomerase in a dose-dependent manner. These results suggest that IGFBP-3 is a negative regulator of MCF-7 breast cancer cell growth by inducing senescence through telomerase suppression.


Assuntos
Neoplasias da Mama , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Telomerase , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Senescência Celular , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Células MCF-7 , RNA , Telomerase/genética , Telomerase/metabolismo
17.
Cancer Med ; 12(13): 14426-14439, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212470

RESUMO

BACKGROUND: The overall survival of IDH-wildtype glioblastoma patients is poor despite best available treatments. There is an urgent need for new biomarkers to inform more precise disease stratification. Previous studies have identified insulin-like growth factor binding protein-2 (IGFBP-2) as a potential biomarker for glioblastoma diagnosis and therapeutic targeting. Other studies have indicated links between the insulin-like growth factor (IGF) axis and tumorigenic functions of a molecular chaperone glucose related protein of 78 kDa (GRP78). We aimed to interrogate the oncogenic effects of IGFBP-2 and GRP78 in our glioma stem cell (GSC) lines and clinical cohort. METHODS: Immunoblotting, reverse transcription quantitative real-time PCR were used to quantify protein and mRNA levels derived from GSCs and non-malignant neural stem cells (NSCs). Microarray analysis was used to compare the differences in IGFBP-2 (IGFBP-2) and GRP78 (HSPA5) transcript expression between NSCs, GSCs and adult human cortex samples. Immunohistochemistry was used to quantify IGFBP-2 and GRP78 expression in IDH-wildtype glioblastoma tissue sections (n = 92) and clinical implications assessed using survival analysis. Finally, the relationship between IGFBP-2 and GRP78 was further explored molecularly using coimmunoprecipitation. RESULTS: Here, we demonstrate that IGFBP-2 and HSPA5 mRNA is overexpressed in GSCs and NSCs in comparison to non-malignant brain tissue. We also determined a relationship in which G144 and G26 GSCs expressed higher IGFBP-2 protein and mRNA than GRP78, and this was reversed in mRNA isolated from adult human cortex samples. Clinical cohort analysis revealed that Glioblastomas with high IGFBP-2 protein expression paired with low GRP78 protein expression were significantly associated with a much shorter survival time (Median = 4 months, p = 0.019) compared with 12-14 months for any other combination of high/low protein expression. CONCLUSIONS: Inverse levels of IGFBP-2 and GRP78 may be adverse clinical prognostic markers in IDH-wildtype glioblastoma. Further interrogation of the mechanistic link between IGFBP-2 and GRP78 may be important for rationalisation of their potential as biomarkers and therapeutic targets.


Assuntos
Glioblastoma , Adulto , Humanos , Biomarcadores , Chaperona BiP do Retículo Endoplasmático , Glioblastoma/patologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/metabolismo , Prognóstico , RNA Mensageiro/genética
18.
Anim Biotechnol ; 34(9): 4580-4587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36794322

RESUMO

This study aimed to identify the target genes of IGFBP3(insulin growth factor binding protein)protein and to investigate its target genes effects on the proliferation and differentiation of Hu sheep skeletal muscle cells. IGFBP3 was an RNA-binding protein that regulates mRNA stability. Previous studies have reported that IGFBP3 promotes the proliferation of Hu sheep skeletal muscle cells and inhibits differentiation, but the downstream genes that bind to it have not been reported yet. We predicted the target genes of IGFBP3 through RNAct and sequencing data, and verified by qPCR and RIP(RNA Immunoprecipitation)experiments, and demonstrated GNAI2(G protein subunit alpha i2)as one of the target gene of IGFBP3. After interference with siRNA, we carried out qPCR, CCK8, EdU, and immunofluorescence experiments, and found that GNAI2 can promote the proliferation and inhibit differentiation of Hu sheep skeletal muscle cells. This study revealed the effects of GNAI2 and provided one of the regulatory mechanisms of IGFBP3 protein underlying sheep muscle development.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Fibras Musculares Esqueléticas , Animais , Ovinos/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , RNA Interferente Pequeno , Diferenciação Celular , Proliferação de Células/genética , Músculo Esquelético/metabolismo
19.
Eur J Pharmacol ; 942: 175494, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657656

RESUMO

Cardiac fibrosis remains an unresolved problem in heart disease. Its etiology is directly caused by the activation and proliferation of cardiac fibroblasts (CFs). However, there is limited information regarding the biological role of cardiac fibroblasts in cardiac fibrosis. Herein, we screened out a gene, IGFBP3, whose expression significantly increased in TGF-ß1-stimulated human primary CFs by mining RNA-Seq data for differential and WGCNA. We verified the IGFBP3's expression in transverse aortic constriction (TAC) surgery, isoproterenol (ISO)-induced cardiac fibrosis models, and TGFß1-stimulated mouse primary CFs. We also found that the knockdown of IGFBP3 could inhibit the migration and proliferation ability of CFs. Furthermore, we found that aberrant N6-methyladenosine(m6A) mRNA modifications in the animal model and activated CFs may regulate the expression of IGFBP3 in developing cardiac fibrosis. Silencing METTL3 could downregulate the expression of IGFBP3 and inhibit the activation of CFs and the degree of cardiac fibrosis both in vitro and in vivo. Indeed, we also verified the expression of METTL3 and IGFBP3 in the atrial tissues of patients with atrial fibrillation (AF). Thus, METTL3 may regulate IGFBP3's expression and CFs activation via RNA epigenetic modifications, laying the foundation for a specific and novel therapeutic target in cardiac fibrosis.


Assuntos
Cardiomiopatias , Animais , Humanos , Camundongos , Cardiomiopatias/metabolismo , Proliferação de Células/genética , Epigênese Genética , Fibroblastos/metabolismo , Fibrose , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Miocárdio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Aging (Albany NY) ; 15(1): 164-178, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602546

RESUMO

Doxorubicin (Dox) causes the generation of intracellular reactive oxygen species (ROS) and inactivates insulin-like growth factor 1 (IGF1) signaling, leading to cardiomyocyte apoptosis. IGF-binding protein 3 (IGFBP3) is the most abundant circulating IGF1 carrier protein with high affinity, which has been reported to mediate ROS-induced apoptosis. Hypoxia-inducible factor 1α (HIF1A), an upstream protein of IGFBP3 is regulated by prolyl hydroxylase domain (PHD) through hydroxylation. In this study, we investigated the role of IGFBP3, HIF1A, and PHD in Dox-induced cardiac apoptosis.Cells challenged with 1 µM Dox for 24 h increased ROS generation, augmented intracellular and secreted IGFBP3 levels, and reduced IGF1 signaling. Further, we showed that Dox enhanced the extracellular association of IGF1 with IGFBP3. Moreover, echocardiography parameters, especially ejection fraction (EF) and fractional shortening (FS) were significantly reduced in ventricle tissue of Dox challenged rats. Notably, siRNA approach against IGFBP3 or an anti-IGFBP3 antibody rescued Dox-induced cardiac apoptosis, mitochondrial ROS, and the decrease in the IGF1 signaling activity. Furthermore, silencing HIF1A either using siRNA or inhibitor downregulated intracellular IGFBP3, rescued apoptosis, mitochondrial generation, and reduction in IGF1 signaling. Finally, western blot data revealed that ROS scavenger reversed Dox-induced cardiac apoptosis, increased levels of HIF1A and secreted IGFBP3, and decreased IGF1 survival signaling and PHD expression.These findings suggest that Dox-induced ROS generation suppressed PHD, which might stabilize nuclear HIF1A protein, leading to increased IGFBP3 expression and secretion. This in turn results in enhanced extracellular association of the latter with IGF1 and blocks IGF1 pro-survival signaling and may result in inducing cardiac apoptosis.


Assuntos
Doxorrubicina , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Animais , Ratos , Apoptose , Doxorrubicina/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA