Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell Mol Life Sci ; 81(1): 189, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643448

RESUMO

Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-ß1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-ß signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-ß1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-ß signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/genética , Fator de Crescimento Transformador beta1 , Glicólise , Neoplasias Colorretais/genética , Células-Tronco , Microambiente Tumoral , Proteína Smad3/genética , Proteína 4 Semelhante a Angiopoietina/genética
2.
Ann Med ; 56(1): 2337740, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38574398

RESUMO

BACKGROUND: Angiopoietin-like protein 4 (ANGPTL4) is recognized as a crucial regulator in lipid metabolism. Acetyl-CoA carboxylases (ACACAs) play a role in the ß-oxidation of fatty acids. Yet, the functions of ANGPTL4 and ACACA in dyslipidemia of obstructive sleep apnea (OSA) remain unclear. METHODS: This study included 125 male OSA subjects from the Shanghai Sleep Health Study (SSHS) who were matched for age, body mass index (BMI), and lipid profile. Serum ANGPTL4 levels were measured via ELISA. The ANGPTL4 T266M variants of 4455 subjects along with their anthropometric, fasting biochemical, and standard polysomnographic parameters were collected. Linear regression was used to analyze the associations between quantitative traits and ANGPTL4 T266M. Molecular docking and molecular dynamic simulation were employed to compare the effects of the wild-type ANGPTL4 and its T266M mutation on ACACA. RESULTS: Serum ANGPTL4 levels significantly decreased with increasing OSA severity (non-OSA: 59.6 ± 17.4 ng/mL, mild OSA: 50.0 ± 17.5 ng/mL, moderate OSA: 46.3 ± 15.5 ng/mL, severe OSA: 19.9 ± 14.3 ng/mL, respectively, p = 6.02 × 10-16). No associations were found between T266M and clinical characteristics. Molecular docking indicated that mutant ANGTPL4 T266M had stronger binding affinity for the ACACA protein, compared with wild-type ANGPTL4. In terms of protein secondary structure, mutant ANGTPL4 T266M demonstrated greater stability than wild-type ANGPTL4. CONCLUSIONS: Serum ANGTPL4 levels were significantly decreased in OSA patients, particularly among individuals with severe OSA. Although functional ANGTPL4 T266M variants were not associated with lipid levels in OSA, ANGTPL4 T266M could enhance binding affinity for the ACACA protein, potentially regulating lipid metabolism.


Assuntos
Acetil-CoA Carboxilase , Apneia Obstrutiva do Sono , Humanos , Masculino , Proteína 4 Semelhante a Angiopoietina/genética , Metabolismo dos Lipídeos/genética , Simulação de Acoplamento Molecular , China , Apneia Obstrutiva do Sono/genética , Lipídeos
3.
J Lipid Res ; 65(4): 100526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431115

RESUMO

ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.


Assuntos
Tecido Adiposo , Proteína 4 Semelhante a Angiopoietina , Fígado , Hormônios Peptídicos , Caracteres Sexuais , Animais , Masculino , Feminino , Humanos , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Camundongos , Fígado/metabolismo , Tecido Adiposo/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Proteína 8 Semelhante a Angiopoietina , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Camundongos Endogâmicos C57BL
4.
DNA Cell Biol ; 43(4): 175-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466955

RESUMO

To investigate the functional differences of angiopoietin-related protein 4 (ANGPTL4) transcripts in hepatocellular carcinoma (HCC) cells. By transfecting ANGPTL4-Transcript 1 and ANGPTL4-Transcript 3 overexpression vectors into HepG2 and Huh7 cell lines with ANGPTL4 knockdown, the effects of overexpression of two transcripts on cell viability, invasion, migration, and apoptosis were analyzed. The expression of two transcripts was compared in human liver cancer tissue, and their effects on tumor development were validated in vivo experiments in mice. Compared with control, the overexpression of ANGPTL4-Transcript 1 had no significant effect on viability, invasion, healing, and apoptosis of HepG2 and Huh7 cells. However, these two cell lines overexpressing ANGPTL4-Transcript 3 showed remarkably enhanced cell viability, invasive and healing ability, and decreased apoptosis ability. Furthermore, the mRNA level of ANGPTL4-Transcript 3 was significantly increased in human HCC tissues and promoted tumor growth compared with Transcript 1. Different transcripts of gene ANGPTL4 have distinct effects on HCC. The abnormally elevated Transcript 3 with the specific ability of promoting HCC proliferation, infiltration, and migration is expected to become a new biological marker and more precise intervention target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
5.
In Vitro Cell Dev Biol Anim ; 60(3): 258-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424378

RESUMO

It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.


Assuntos
Adipogenia , Proteína 4 Semelhante a Angiopoietina , Metabolismo dos Lipídeos , Animais , Adipogenia/genética , Proteína 4 Semelhante a Angiopoietina/genética , Autofagia/genética , Diferenciação Celular/genética , Suínos
6.
Mol Biotechnol ; 66(5): 1290-1302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381376

RESUMO

Anoikis plays an important role in cancer invasion and metastasis. However, the role of anoikis-related genes, AnRGs, in lung adenocarcinoma (LUAD) is not clear. First, anoikis-related genes (AnRGs) were obtained from the Genecard database. Second, the prognostic risk model of AnRGs was established by univariate Cox analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox analysis. Finally, in vitro cell experiments were carried out to determine the expression and function of the key gene AnRGs. Three AnRGs (angiopoietin-like 4, ANGPTL4; Cyclin-Dependent Kinase Inhibitor 3, CDKN3; Solute Carrier Organic Anion Transporter Family Member 1B3, SLCO1B3) were screened for the construction of risk prediction model. Additionally, ANGPTL4 was significantly highly expressed in tumor cells, and the knockdown of ANGPTL4 expression on tumor cells could inhibit tumor cell migration and apoptosis. Constructing a risk model based on anoikis-related genes can effectively differentiate the prognosis of LUAD. ANGPTL4 can be used as a potential new target for LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Proteína 4 Semelhante a Angiopoietina , Anoikis , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Humanos , Anoikis/genética , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Feminino , Movimento Celular/genética , Masculino , Oncogenes/genética , Pessoa de Meia-Idade
7.
Discov Med ; 36(180): 173-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273757

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a malignant tumor that impacts individuals worldwide and is particularly prevalent in Asia. Angiopoietin-like protein 4 (ANGPTL4) plays an important role in regulating glucose and lipid metabolism in mouse liver. We sought to explore the effects of the ANGPTL4 gene on cell viability, migration, invasive capacity, and apoptosis of HCC cells. METHODS: The expression of ANGPTL4 in HCC and paracancerous tissues was determined by immunohistochemistry and immunofluorescence assays. The ANGPTL4 knockdown cells were established by shRNA transfection. The effect of ANGPTL4 knockdown on HepG2 and Huh7 cells was determined by Cell Count Kit-8 (CCK-8), wound healing and transwell assays. Cell apoptosis was determined by flow cytometry. RESULTS: The ANGPTL4 expression was dramatically enhanced in HCC tissues than in paracancerous tissues (p < 0.001). HCC cell lines HepG2 and Huh7 with knockdown of ANGPTL4 gene showed lower cell viability, migration, and invasion ability while inducing higher apoptosis levels than the control group (p < 0.001). CONCLUSIONS: High expression of ANGPTL4 is closely related to HCC. Knockdown of ANGPTL4 significantly inhibits the proliferation of HCC cells. This study provides a rationale for the ANGPTL4 gene, a molecular marker of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
8.
J Transl Med ; 22(1): 46, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212795

RESUMO

BACKGROUND: Ovarian cancer (OC) is a malignant neoplasm that displays increased vascularization. Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that functions as a regulator of cell metabolism and angiogenesis and plays a critical role in tumorigenesis. However, the precise role of ANGPTL4 in the OC microenvironment, particularly its involvement in angiogenesis, has not been fully elucidated. METHODS: The expression of ANGPTL4 was confirmed by bioinformatics and IHC in OC. The potential molecular mechanism of ANGPTL4 was measured by RNA-sequence. We used a series of molecular biological experiments to measure the ANGPTL4-JAK2-STAT3 and ANGPTL4-ESM1 axis in OC progression, including MTT, EdU, wound healing, transwell, xenograft model, oil red O staining, chick chorioallantoic membrane assay and zebrafish model. Moreover, the molecular mechanisms were confirmed by Western blot, Co-IP and molecular docking. RESULTS: Our study demonstrates a significant upregulation of ANGPTL4 in OC specimens and its strong association with unfavorable prognosis. RNA-seq analysis affirms that ANGPTL4 facilitates OC development by driving JAK2-STAT3 signaling pathway activation. The interaction between ANGPTL4 and ESM1 promotes ANGPTL4 binding to lipoprotein lipase (LPL), thereby resulting in reprogrammed lipid metabolism and the promotion of OC cell proliferation, migration, and invasion. In the OC microenvironment, ESM1 may interfere with the binding of ANGPTL4 to integrin and vascular-endothelial cadherin (VE-Cad), which leads to stabilization of vascular integrity and ultimately promotes angiogenesis. CONCLUSION: Our findings underscore that ANGPTL4 promotes OC development via JAK signaling and induces angiogenesis in the tumor microenvironment through its interaction with ESM1.


Assuntos
Cistadenocarcinoma Seroso , Janus Quinase 2 , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Microambiente Tumoral , Simulação de Acoplamento Molecular , Angiogênese , Peixe-Zebra/metabolismo , Carcinogênese , Proliferação de Células , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Proteína 4 Semelhante a Angiopoietina/genética , Proteínas de Neoplasias , Proteoglicanas
9.
Nat Commun ; 14(1): 8251, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086791

RESUMO

Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.


Assuntos
Angiogênese , Células Endoteliais , Animais , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Angiopoietinas/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout
10.
Neurobiol Aging ; 131: 209-221, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37690345

RESUMO

Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Longevidade , Proteínas de Peixe-Zebra , Peixe-Zebra , Idoso , Animais , Humanos , Envelhecimento/genética , Expressão Gênica , Longevidade/genética , Isolamento Social , Proteína 4 Semelhante a Angiopoietina/genética , Proteínas de Peixe-Zebra/genética
11.
Inflamm Res ; 72(6): 1303-1313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37300585

RESUMO

BACKGROUND: Angiopoietin-like 4 (ANGPTL4) belongs to the angiopoietin-like protein family and mediates the inhibition of lipoprotein lipase activity. Emerging evidence suggests that ANGPTL4 has pleiotropic functions with anti- and pro-inflammatory properties. METHODS: A thorough search on PubMed related to ANGPTL4 and inflammation was performed. RESULTS: Genetic inactivation of ANGPTL4 can significantly reduce the risk of developing coronary artery disease and diabetes. However, antibodies against ANGPTL4 result in several undesirable effects in mice or monkeys, such as lymphadenopathy and ascites. Based on the research progress on ANGPTL4, we systematically discussed the dual role of ANGPTL4 in inflammation and inflammatory diseases (lung injury, pancreatitis, heart diseases, gastrointestinal diseases, skin diseases, metabolism, periodontitis, and osteolytic diseases). This may be attributed to several factors, including post-translational modification, cleavage and oligomerization, and subcellular localization. CONCLUSION: Understanding the potential underlying mechanisms of ANGPTL4 in inflammation in different tissues and diseases will aid in drug discovery and treatment development.


Assuntos
Inflamação , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Inflamação/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo
12.
BMC Cancer ; 23(1): 524, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291514

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers based on five-year survival rates. Genes contributing to chemoresistance represent novel therapeutic targets that can improve treatment response. Increased expression of ANGPTL4 in tumors correlates with poor outcomes in pancreatic cancer. METHODS: We used statistical analysis of publicly available gene expression data (TCGA-PAAD) to test whether expression of ANGPTL4 and its downstream targets, ITGB4 and APOL1, were correlated with patient survival. We measured the impact of ANGPTL4 overexpression in a common pancreatic cancer cell line, MIA PaCa-2 cells, using CRISPRa for overexpression and DsiRNA for knockdown. We characterized global gene expression changes associated with high levels of ANGPTL4 and response to gemcitabine treatment using RNA-sequencing. Gemcitabine dose response curves were calculated on modified cell lines by measuring cell viability with CellTiter-Glo (Promega). Impacts on cell migration were measured using a time course scratch assay. RESULTS: We show that ANGPTL4 overexpression leads to in vitro resistance to gemcitabine and reduced survival times in patients. Overexpression of ANGPTL4 induces transcriptional signatures of tumor invasion and metastasis, proliferation and differentiation, and inhibition of apoptosis. Analyses revealed an overlapping signature of genes associated with both ANGPTL4 activation and gemcitabine response. Increased expression of the genes in this signature in patient PDAC tissues was significantly associated with shorter patient survival. We identified 42 genes that were both co-regulated with ANGPTL4 and were responsive to gemcitabine treatment. ITGB4 and APOL1 were among these genes. Knockdown of either of these genes in cell lines overexpressing ANGPTL4 reversed the observed gemcitabine resistance and inhibited cellular migration associated with epithelial to mesenchymal transition (EMT) and ANGPTL4 overexpression. CONCLUSIONS: These data suggest that ANGPTL4 promotes EMT and regulates the genes APOL1 and ITGB4. Importantly, we show that inhibition of both targets reverses chemoresistance and decreases migratory potential. Our findings have revealed a novel pathway regulating tumor response to treatment and suggest relevant therapeutic targets in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transcriptoma , Transição Epitelial-Mesenquimal , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Gencitabina , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Neoplasias Pancreáticas
13.
Mol Biol (Mosk) ; 57(3): 501-502, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326053

RESUMO

Angiopoietin-like protein 4 (ANGPTL4) is considered to be one of the important circulating mediators linking intestinal microorganisms and host lipid metabolism. The objective of this study was to assess the effects of peroxisome proliferator-activated receptor у (PPARγ) on modulating ANGPTL4 synthesis in Caco-2 cells exposed to Clostridium butyricum. The viability of Caco-2 cells and the expression of PPARγ and ANGPTL4 in Caco-2 cells were detected after the Caco-2 cells were co-cultured with C. butyricum at the concentration of 1 x 10^(6), 1 x 10^(7) and 1 x 10^(8) CFU/mL. The results showed that cell viability was enhanced by C. butyricum. Besides, PPARγ and ANGPTL4 expression and secretion in Caco-2 cells was significantly increased by 1 x 10^(7) and 1 x 10^(8) CFU/mL of C. butyricum. Furthermore, the effects of PPARγ on modulating ANGPTL4 synthesis in Caco-2 cells regulated by 1 x 10^(8) CFU/mL of C. butyricum was also be expounded in PPARγ activation/inhibition model based on Caco-2 cells and via ChIP technique. It was found that C. butyricum promoted the binding of PPARγ to the PPAR binding site (chr19: 8362157-8362357, located upstream of the transcriptional start site of angptl4) of the angptl4 gene in Caco-2 cells. However, the PPARγ was not the only way for C. butyricum to stimulate ANGPTL4 production. Taken together, PPARγ played a role in the regulation of ANGPTL4 synthesis by C. butyricum in Caco-2 cells.


Assuntos
Clostridium butyricum , PPAR gama , Humanos , PPAR gama/genética , Células CACO-2 , Proteína 4 Semelhante a Angiopoietina/genética , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Sobrevivência Celular
14.
J Gene Med ; 25(8): e3506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994700

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a critical role in regulating various human diseases including cancer. In colorectal cancer (CRC), there are still some undervalued lncRNAs with potential functions and mechanisms that need to be clarified. The present study aimed to investigate the role of linc02231 in the progression of CRC. METHODS: The proliferation of CRC cells was evaluated using Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell migration was examined through wound healing and Transwell analyses. The impact of linc02231 on angiogenesis was determined through a tube formation assay. Western blotting was used to detect the expression of specific proteins. A mouse xenograft model is established to observe the effect of linc02231 on the in vivo growth of CRC cells. Target genes of linc02231 are screened using high-throughput sequencing. The transcriptional activity of STAT2 on linc02231 and the binding activity between linc02231/miR-939-5p/hnRNPA1 were analyzed by a luciferase assay. RESULTS: Based on public databases and comprehensive bioinformatics analysis, we found that lncRNA linc02231 was upregulated in CRC tumor tissues, which is consistent with our clinical results. linc02231 promoted the proliferation and migration of CRC cells in vitro and their tumorigenicity in vivo. Furthermore, linc02231 promotes the angiogenic ability of human umbilical vein endothelial cells. Mechanistically, the transcription factor STAT2 binds to the promoter region of linc02231 and activates its transcription. linc02231 also competes with miR-939-5p for binding to the pro-oncogenic target gene hnRNPA1, preventing its degradation. hnRNPA1 prevents the maturation of angiopoietin-like protein 4 (ANGPTL4) messenger RNA, leading to impaired tumor angiogenesis and increased metastasis of CRC. CONCLUSIONS: The expression of linc02231, which is induced by STAT2, has been found to enhance the proliferation, metastasis, and angiogenesis of CRC by binding to miR-939-5p and increasing the expression of hnNRPA1 at the same time as suppressing ANGPTL4. These findings suggest that linc02231 could serve as a potential biomarker and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
15.
J Nutr Biochem ; 116: 109324, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963729

RESUMO

Skeletal muscle differentiation is an essential process in embryonic development as well as regeneration and repair throughout the lifespan. It is well-known that dietary fat intake impacts biological and physiological function in skeletal muscle, however, understanding of the contribution of nutritional factors in skeletal muscle differentiation is limited. Therefore, the objective of the current study was to evaluate the effects of free fatty acids (FFAs) on skeletal muscle differentiation in vitro. We used C2C12 murine myoblasts and treated them with various FFAs, which revealed a unique response of angiopoietin-like protein-4 (ANGPTL4) with linoleic acid (LA) treatment that was associated with reduced differentiation. LA significantly inhibited myotube formation and lowered the protein expression of myogenic regulatory factors, including MyoD and MyoG and increased Pax7 during cell differentiation. Next, recombinant ANGPTL4 protein or siRNA knockdown of ANGPTL4 was employed to examine its role in skeletal muscle differentiation, and we confirmed that ANGPTL4 knockdown at day two and six of differentiation restored myotube formation in the presence of LA. RNA-sequencing analysis revealed that ANGPTL4-mediated inhibition of skeletal muscle differentiation at day two as well as LA at day two or -6 led to a reduction in Wnt/ß-catenin signaling pathways. We confirmed that LA reduced Wnt11 and Axin2 while increasing expression of the Wnt inhibitor, Dkk2. ANGPTL4 knockdown increased ß-catenin protein in the nucleus in response to LA and increased Axin2 and Wnt11 expression. Taken together, these results demonstrate that LA induced ANGPTL4 inhibits C2C12 differentiation by suppressing Wnt/ß-catenin signaling.


Assuntos
Ácido Linoleico , beta Catenina , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/farmacologia , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Diferenciação Celular , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Via de Sinalização Wnt , Desenvolvimento Muscular
16.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795484

RESUMO

Ovarian cancer (OvCa) preferentially metastasizes in association with mesothelial cell-lined surfaces. We sought to determine if mesothelial cells are required for OvCa metastasis and detect alterations in mesothelial cell gene expression and cytokine secretion upon interaction with OvCa cells. Using omental samples from patients with high-grade serous OvCa and mouse models with Wt1-driven GFP-expressing mesothelial cells, we validated the intratumoral localization of mesothelial cells during human and mouse OvCa omental metastasis. Removing mesothelial cells ex vivo from human and mouse omenta or in vivo using diphtheria toxin-mediated ablation in Msln-Cre mice significantly inhibited OvCa cell adhesion and colonization. Human ascites induced angiopoietin-like 4 (ANGPTL4) and stanniocalcin 1 (STC1) expression and secretion by mesothelial cells. Inhibition of STC1 or ANGPTL4 via RNAi obstructed OvCa cell-induced mesothelial cell to mesenchymal transition while inhibition of ANGPTL4 alone obstructed OvCa cell-induced mesothelial cell migration and glycolysis. Inhibition of mesothelial cell ANGPTL4 secretion via RNAi prevented mesothelial cell-induced monocyte migration, endothelial cell vessel formation, and OvCa cell adhesion, migration, and proliferation. In contrast, inhibition of mesothelial cell STC1 secretion via RNAi prevented mesothelial cell-induced endothelial cell vessel formation and OvCa cell adhesion, migration, proliferation, and invasion. Additionally, blocking ANPTL4 function with Abs reduced the ex vivo colonization of 3 different OvCa cell lines on human omental tissue explants and in vivo colonization of ID8p53-/-Brca2-/- cells on mouse omenta. These findings indicate that mesothelial cells are important to the initial stages of OvCa metastasis and that the crosstalk between mesothelial cells and the tumor microenvironment promotes OvCa metastasis through the secretion of ANGPTL4.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Ascite , Neoplasias Peritoneais/secundário , Microambiente Tumoral , Proteína 4 Semelhante a Angiopoietina/genética
17.
FASEB J ; 37(2): e22693, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607250

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Estudos de Casos e Controles , Células da Granulosa/metabolismo , Proliferação de Células , Receptores ErbB/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/farmacologia , Janus Quinase 1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
18.
J Lipid Res ; 64(1): 100313, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372100

RESUMO

Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.


Assuntos
Lipase , Hormônios Peptídicos , Animais , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Triglicerídeos/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
19.
Biochem Biophys Res Commun ; 639: 176-182, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36495766

RESUMO

BACKGROUND: lipopolysaccharide (LPS) can induce nephrotic syndrome-like features such as massive proteinuria, hyperlipidemia, and fusion of glomerular podocytes with foot processes (FPs) in mice. Angiopoietin-like protein 4 (ANGPTL4) neutralized the negative charge of glomerular basement membrane charge and aggravated renal injury. The mechanism of ANGPTL4 aggravating podocyte injury has not been well clarified. In this study, we aimed to investigate the potential role of ANGPTL4 on podocyte FPs fusion and podocyte signal molecules. METHODS: We built angptl4 gene knocked out in C57BL6 mice using CRISPR/Cas9 technique. Nephrotic model was built by LPS in wild type and angptl4-/- mice. Expression of ACTN4, podocin and TRPC6 in the glomerulus were determined by immunohistochemistry. RESULTS: In physical condition, the wild type and angptl4-/- mice showed no significant differences in biochemical indicators and kidney pathology. But in nephrotic condition, compared with wild type mice hyperlipidemia and proteinuria with the angptl4-/- mice was significantly relieved. Moreover, the degree of FPs fusion was notably improved in the nephrotic mice knocked out angptl4 gene. Expression of ACTN4 and podocin decreased drastically in the glomerulus of wild-type nephrotic mice. Different from wild-type, the ACTN4 and podocin expression showed slight weakening in angptl4-/- nephrotic mice. As transient receptor potential cation channel subfamily member, TRPC6 expression had no visible change in glomerulus of each group. CONCLUSIONS: ANGPTL4 induces hyperlipidemia and podocyte injury in nephrotic mice, thereby promoting the formation of proteinuria. Its molecular mechanism may be related to ANGPTL4 down-regulating actin cytoskeletal regulatory signals ACTN4 and podocin.


Assuntos
Síndrome Nefrótica , Podócitos , Animais , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/patologia , Canal de Cátion TRPC6/metabolismo
20.
J Ovarian Res ; 15(1): 131, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517864

RESUMO

BACKGROUND: Angiopoietin-like 4 (ANGPTL4) is highly expressed in a variety of neoplasms and promotes cancer progression. Nevertheless, the mechanism of ANGPTL4 in ovarian cancer (OC) metastasis remains unclear. This study aimeds to explore whether ANGPTL4 regulates OC progression and elucidate the underlying mechanism. METHODS: ANGPTL4 expression in clinical patient tumor samples was determined by immunohistochemistry (IHC) and high-throughput sequencing. ANGPTL4 knockdown (KD) and the addition of exogeneous cANGPTL4 protein were used to investigate its function. An in vivo xenograft tumor experiment was performed by intraperitoneal injection of SKOV3 cells transfected with short hairpin RNAs (shRNAs) targeting ANGPTL4 in nude mice. Western blotting and qRT-PCR were used to detect the levels of ANGPTL4, CDH5, p-AKT, AKT, ETV5, MMP2 and MMP9 in SKOV3 and HO8910 cells transfected with sh-ANGPTL4 or shRNAs targeting ETV5. RESULTS: Increased levels of ANGPTL4 were associated with poor prognosis and metastasis in OC and induced the angiogenesis and metastasis of OC cells both in vivo and in vitro. This tumorigenic effect was dependent on CDH5, and the expression levels of ANGPTL4 and CDH5 in human OC werepositively correlated. In addition, CDH5 activated p-AKT, and upregulated the expression of MMP2 and MMP9. We also found that the expression of ETV5 was upregulated by ANGPTL4, which could bind the promoter region of CDH5, leading to increased CDH5 expression. CONCLUSION: Our data indicated that an increase in the ANGPTL4 level results in increased ETV5 expression in OC, leading to metastasis via activation of the CDH5/AKT/MMP9 signaling pathway.


Assuntos
Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz/genética , Camundongos Nus , Oncogenes/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt , RNA Interferente Pequeno , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA