Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.065
Filtrar
1.
FASEB J ; 38(19): e70105, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39387631

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a critical role in the regulation of blood pressure and fluid balance, with angiotensin-converting enzyme (ACE) being a key transmembrane enzyme that converts angiotensin I to angiotensin II. Hence, ACE activity is an important drug target in cardiovascular pathologies such as hypertension. Our study demonstrates that human pulmonary microvascular endothelial cells (HPMECs) are an important source of proteolytically released ACE. The proteolytic release of transmembrane proteins, a process known as ectodomain shedding, is facilitated by membrane proteases called sheddases. By knockout and inhibition studies, we identified ADAM10 (A disintegrin and metalloprotease 10) as a primary sheddase responsible for ACE release in HEK293 cells. The function of ADAM10 as primary, constitutive sheddase of ACE was confirmed in HPMECs. Moreover, we demonstrated the physiological relevance of ADAM10 for ACE shedding in ex vivo precision cut lung slices (PCLS) from human and mouse lungs. Notably, ADAM17 activity is not directly involved in ACE shedding but indirectly by regulating ACE mRNA and protein levels, leading to increased ADAM10-mediated ACE shedding. Importantly, soluble ACE generated by shedding is enzymatically active and can thereby participate in systemic RAAS functions. Taken together, our findings highlight the critical role of ADAM10 (directly) and ADAM17 (indirectly) in ACE shedding and RAAS modulation.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Pulmão , Proteínas de Membrana , Peptidil Dipeptidase A , Humanos , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Animais , Camundongos , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Células HEK293 , Células Endoteliais/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Sistema Renina-Angiotensina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Endotélio Vascular/metabolismo
2.
Sci Rep ; 14(1): 23401, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379424

RESUMO

Natural killer group 2 member D ligands (NKG2DLs) are expressed as stress response proteins in cancer cells. NKG2DLs induce immune cell activation or tumor escape responses, depending on their expression. Human pancreatic cancer cells, PANC-1, express membrane MHC class I polypeptide-related sequence A/B (mMICA/B), whereas soluble MICB (sMICB) is detected in the culture supernatant. We hypothesized that sMICB saturates NKG2D in NKG2DLow T cells and inhibits the activation signal from mMICB to NKG2D. Knockdown of MICB by siRNA reduced sMICB level, downregulated mMICB expression, maintained NKG2DLow T cell activation, and inhibited NKG2DHigh T cell activation. To maintain mMICB expression and downregulate sMICB expression, we inhibited a disintegrin and metalloproteinase (ADAM), a metalloproteinase that sheds MICB. Subsequently, the shedding of MICB was prevented using ADAM17 inhibitors, and the activation of NKG2DLow T cells was maintained. In vivo xenograft model revealed that NKG2DHigh T cells have superior anti-tumor activity. These results elucidate the mechanism of immune escape via sMICB and show potential for the activation of NKG2DLow T cells within the tumor microenvironment.


Assuntos
Antígenos de Histocompatibilidade Classe I , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias Pancreáticas , Linfócitos T , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária/imunologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Evasão Tumoral
3.
Cell Death Dis ; 15(10): 753, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419989

RESUMO

MicroRNAs, including the tumor-suppressor miR-126 and the oncogene miR-221, regulate tumor formation and growth in colitis-associated cancer (CAC) and colorectal cancer (CRC). This study explores the impact of the epithelial cytokine heparin-binding epidermal growth factor (HB-EGF) and its receptor epidermal growth factor receptor (EGFR) on the pathogenesis of CAC and CRC, particularly in the regulation of microRNA-driven tumor growth and protease expression. In murine models of CRC and CAC, lack of miR-126 and elevated miR-221 expression in colonic tissues enhanced tumor formation and growth. MiR-126 downregulation in colon cells established a pro-tumorigenic proteolytic niche by targeting HB-EGF-active metalloproteinase-7, -9 (MMP7/MMP9), disintegrin, and metalloproteinase domain-containing protein 9, and modulating chemokine-mediated recruitment of HB-EGF-loaded inflammatory cells. Mechanistically, downregulation of HB-EGF and EGFR in the colon suppressed miR-221 and enhanced miR-126 expression via activating enhancer-binding protein 2 alpha. Reintroducing miR-126 reduced tumor development and HB-EGF expression. Combining miR-126 reintroduction, which targets specific HB-EGF-active proteases but not ADAM17, with MMP inhibitors like Batimastat or Marimastat effectively suppressed tumor growth. This combination normalized protease expression and balanced miR-126 and miR-221 levels in developing and growing tumors. These findings demonstrate that suppressing HB-EGF and EGFR1 shifts the balance from oncogenic miR-221 to tumor-suppressive miR-126 action. Consequently, normalizing miR-126 expression could open new avenues for treating patients with CAC and CRC, and this normalization is intertwined with the anticancer efficacy of MMP inhibitors.


Assuntos
Neoplasias Associadas a Colite , Neoplasias Colorretais , Modelos Animais de Doenças , Receptores ErbB , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Camundongos , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Ácidos Hidroxâmicos/farmacologia , Colite/complicações , Colite/metabolismo , Colite/patologia , Colite/genética
4.
Viruses ; 16(10)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39459898

RESUMO

Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.


Assuntos
Proteína ADAM17 , Vírus da Diarreia Viral Bovina , Pestivirus , Animais , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Pestivirus/genética , Bovinos , Vírus da Diarreia Viral Bovina/fisiologia , Linhagem Celular , Suínos , Especificidade da Espécie , Infecções por Pestivirus/veterinária , Infecções por Pestivirus/virologia , Vírus da Febre Suína Clássica/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Interações Hospedeiro-Patógeno
5.
Signal Transduct Target Ther ; 9(1): 273, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39406701

RESUMO

The pathogenesis of doxorubicin-induced cardiomyopathy remains unclear. This study was carried out to test our hypothesis that ADAM17 aggravates cardiomyocyte apoptosis induced by doxorubicin and inhibition of ADAM17 may ameliorate doxorubicin-induced cardiomyopathy. C57BL/6J mice were intraperitoneally injected with a cumulative dose of doxorubicin to induce cardiomyopathy. Cardiomyocyte-specific ADAM17-knockout (A17α-MHCKO) and ADAM17-overexpressing (AAV9-oeA17) mice were generated. In addition, RNA sequencing of the heart tissues in different mouse groups and in vitro experiments in neonatal rat cardiomyocytes (NRCMs) receiving different treatment were performed. Mouse tumor models were constructed in A17fl/fl and A17α-MHCKO mice. In addition, cardiomyocyte-specific TRAF3-knockdown and TRAF3-overexpressing mice were generated. ADAM17 expression and activity were markedly upregulated in doxorubicin-treated mouse hearts and NRCMs. A17α-MHCKO mice showed less cardiomyocyte apoptosis induced by doxorubicin than A17fl/fl mice, and cardiomyocyte ADAM17 deficiency did not affect the anti-tumor effect of doxorubicin. In contrast, AAV9-oeA17 mice exhibited markedly aggravated cardiomyocyte apoptosis relative to AAV9-oeNC mice after doxorubicin treatment. Mechanistically, doxorubicin enhanced the expression of transcription factor C/EBPß, leading to increased expression and activity of ADAM17 in cardiomyocyte, which enhanced TNF-α shedding and upregulated the expression of TRAF3. Increased TRAF3 promoted TAK1 autophosphorylation, resulting in activated MAPKs pathway and cardiomyocyte apoptosis. ADAM17 acted as a positive regulator of cardiomyocyte apoptosis and cardiac remodeling and dysfunction induced by doxorubicin by upregulating TRAF3/TAK1/MAPKs signaling. Thus, targeting ADAM17/TRAF3/TAK1/MAPKs signaling holds a promising potential for treating doxorubicin-induced cardiotoxicity.


Assuntos
Proteína ADAM17 , Cardiomiopatias , Doxorrubicina , MAP Quinase Quinase Quinases , Camundongos Knockout , Miócitos Cardíacos , Fator 3 Associado a Receptor de TNF , Fator de Necrose Tumoral alfa , Animais , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Doxorrubicina/efeitos adversos , Camundongos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos , Apoptose/efeitos dos fármacos , Apoptose/genética
6.
Cell Commun Signal ; 22(1): 520, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468700

RESUMO

BACKGROUND: Lactiplantibacillus species are extensively studied for their ability to regulate host immune responses and functional therapeutic potentials. Nevertheless, there is a lack of understanding on the mechanisms of interactions with the hosts during immunoregulatory activities. METHODS: Two Lactiplantibacillus plantarum strains MKMB01 and MKMB02 were tested for probiotic potential following Indian Council of Medical Research (ICMR) guidelines. Human colorectal adenocarcinoma cells such as HT-29, caco-2, and human monocytic cell THP-1 were also used to study the potential of MKMB01 and MKMB02 in regulating the host immune response when challenged with enteric pathogen Salmonella enterica typhimurium. Cells were pre-treated with MKMB01 and MKMB02 for 4 h and then stimulated with Salmonella. qRT-PCR and ELISA were used to analyze the genes and protein expression. Confocal microscopy and field emission scanning electron microscopy (FESEM) were used to visualize the effects. An Agilent Seahorse XF analyzer was used to determine real-time mitochondrial functioning. RESULTS: Both probiotic strains could defend against Salmonella by maintaining gut integrity via expressing tight junction proteins (TJPs), MUC-2, and toll-like receptors (TLRs) negative regulators such as single Ig IL-1-related receptor (SIGIRR), toll-interacting protein (Tollip), interleukin-1 receptor-associated kinase (IRAK)-M, A20, and anti-inflammatory transforming growth factor-ß and interleukin-10. Both strains also downregulated the expression of pro-inflammatory cytokines/chemokines interleukin-1ß, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor-alpha (TNF-α), interleukin 6, and nitric oxide (NO). Moreover, TNF-α sheddase protein, a disintegrin and metalloproteinase domain 17 (ADAM17), and its regulator iRhom2 were downregulated by both strains. Moreover, the bacteria also ameliorated Salmonella-induced mitochondrial dysfunction by restoring bioenergetic profiles, such as non-mitochondrial respiration, spare respiratory capacity (SRC), basal respiration, adenosine triphosphate (ATP) production, and maximal respiration. CONCLUSIONS: MKMB01 and MKMB02 can reduce pathogen-induced gut-associated disorders and therefore should be further explored for their probiotic potential.


Assuntos
Proteína ADAM17 , Probióticos , Fator de Necrose Tumoral alfa , Humanos , Probióticos/farmacologia , Proteína ADAM17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Junções Íntimas/metabolismo , Salmonella typhimurium/fisiologia , Células CACO-2 , Células HT29 , Células THP-1 , Lactobacillus plantarum/metabolismo , Lactobacillaceae/metabolismo , Mitocôndrias/metabolismo
7.
Genes (Basel) ; 15(10)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39457420

RESUMO

Background: After myocardial infarction (MI), adverse left ventricular (LV) remodeling may occur. This is followed by LV hypertrophy and eventually heart failure. The remodeling process is complex and goes through multiple phases. The aim of this study was to investigate the expression of HMGB1, TGF-ß1, BIRC3, ADAM17, CDKN1A, and FTO, each involved in a specific step of LV remodeling, in association with the change in the echocardiographic parameters of LV structure and function used to assess the LV remodeling process in the peripheral blood mononuclear cells (PBMCs) of patients six months after the first MI. The expression of selected genes was also determined in PBMCs of controls. Methods: The study group consisted of 99 MI patients, who were prospectively followed-up for 6 months, and 25 controls. Cardiac parameters, measured via conventional 2D echocardiography, were evaluated at two time points: 3-5 days and 6 months after MI. The mRNA expression six-months-post-MI was detected using TaqMan® technology (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). Results:HMGB1 mRNA was significantly higher in patients with adverse LV remodeling six-months-post-MI than in patients without adverse LV remodeling (p = 0.04). HMGB1 mRNA was significantly upregulated in patients with dilated LV end-diastolic diameter (LVEDD) (p = 0.03); dilated LV end-diastolic volume index (LVEDVi) (p = 0.03); severely dilated LV end-systolic volume index (LVESVi) (p = 0.006); impaired LV ejection fraction (LVEF) (p = 0.01); and LV enlargement (p = 0.03). It was also significantly upregulated in PBMCs from patients compared to controls (p = 0.005). TGF-ß1 and BIRC3 mRNA were significantly lower in patients compared to controls (p = 0.02 and p = 0.05, respectively). Conclusions: Our results suggest that HMGB1 is involved in adverse LV remodeling six-months-post-MI, even on the mRNA level. Further research and validation are needed.


Assuntos
Proteína ADAM17 , Proteína 3 com Repetições IAP de Baculovírus , Inibidor de Quinase Dependente de Ciclina p21 , Proteína HMGB1 , Infarto do Miocárdio , Fator de Crescimento Transformador beta1 , Remodelação Ventricular , Humanos , Remodelação Ventricular/genética , Masculino , Feminino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteína HMGB1/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Estudos Prospectivos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Idoso , Ecocardiografia , Estudos de Casos e Controles
8.
Eur J Pharmacol ; 983: 176964, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218341

RESUMO

Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1ß, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Injúria Renal Aguda , Secretases da Proteína Precursora do Amiloide , Inflamação , Lipopolissacarídeos , Proteínas de Membrana , Estresse Oxidativo , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/antagonistas & inibidores , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteína ADAM10/metabolismo , Proteína ADAM10/antagonistas & inibidores , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quempferóis
9.
Exp Cell Res ; 442(2): 114253, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39271099

RESUMO

OBJECTIVE: Macrophage polarization and the resulting phenotype have versatile roles in atherosclerosis. The study aims to decipher the role of SIRT1 in regulating macrophage phenotypes and atherosclerosis development. METHODS: Two mouse lines of SIRT1△Mac/ApoE-/- and SIRT1fl/fl/ApoE-/- were fed with high-fat diet to generate atherosclerotic lesion. Mouse peritoneal macrophages were isolated and transfected with SIRT1-overexpressing vector or vector-null. RESULTS: The SIRT1△Mac/ApoE-/- mice exhibited greater atherosclerotic lesions, stronger immunofluorescence staining for M1-like macrophage marker, iNOS, and weaker immunofluorescence staining for M2-like macrophage marker, Arginase-1, than the SIRT1fl/fl/ApoE-/- littermates. The gene expressions of M1 markers (IL-1ß, IL-6, and iNOS) were increased and those of M2 markers (IL-10 and Arg-1) decreased in both aortic roots and peritoneal macrophages from SIRT1△Mac/ApoE-/- mice, whereas SIRT1 overexpression rectified the changes in M1/M2 expression. A declined expression of TIMP3 with an increased expression of ADAM17 was noted in SIRT1△Mac/ApoE-/- macrophages, whereas SIRT1 overexpression rescued TIMP3 expression and inhibited ADAM17 expression. CONCLUSION: Our data suggest that SIRT1 deficiency may promote macrophage M1 polarization and regulate the TIMP3/ADAM17 pathway thus favoring atherosclerosis development, indicating an anti-atherosclerotic role of macrophage SIRT1.


Assuntos
Proteína ADAM17 , Aterosclerose , Inflamação , Macrófagos , Sirtuína 1 , Inibidor Tecidual de Metaloproteinase-3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Camundongos , Macrófagos/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Dieta Hiperlipídica/efeitos adversos , Masculino
10.
BMC Infect Dis ; 24(1): 893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217296

RESUMO

The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Rehmannia , Sepse , Humanos , Sepse/tratamento farmacológico , Rehmannia/química , Masculino , Feminino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas , Idoso , Adulto , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
11.
FEBS J ; 291(17): 3924-3937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973142

RESUMO

Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.


Assuntos
Proteína ADAM17 , Anfirregulina , Implantação do Embrião , Histamina , Animais , Anfirregulina/metabolismo , Anfirregulina/genética , Feminino , Camundongos , Gravidez , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Histamina/metabolismo , Implantação do Embrião/efeitos dos fármacos , Decídua/metabolismo , Decídua/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Histidina Descarboxilase/metabolismo , Histidina Descarboxilase/genética , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos
12.
Sci Rep ; 14(1): 17703, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085289

RESUMO

Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-ß signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-ß signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.


Assuntos
Proteína ADAM17 , Vesículas Extracelulares , Fibrose , Rim , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/terapia , Nefropatias/patologia , Nefropatias/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos
13.
J Immunother Cancer ; 12(7)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053944

RESUMO

BACKGROUND: Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS: Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS: The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS: Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.


Assuntos
Proteína ADAM17 , Proliferação de Células , Interleucina-15 , Células Matadoras Naturais , Ativação Linfocitária , Receptores de IgG , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteína ADAM17/metabolismo , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Receptores de IgG/metabolismo , Proteínas Ligadas por GPI/metabolismo
14.
J Appl Physiol (1985) ; 137(3): 527-539, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867666

RESUMO

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.


Assuntos
Proteína ADAM17 , Angiotensina II , Aorta Abdominal , Aneurisma da Aorta Abdominal , Hipóxia , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Animais , Masculino , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos , Proteína ADAM17/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Miócitos de Músculo Liso/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/complicações
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230481, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853546

RESUMO

Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Secretases da Proteína Precursora do Amiloide , Hipocampo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Hipocampo/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM10/metabolismo , Ratos Sprague-Dawley , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Proteínas de Membrana/metabolismo
16.
Signal Transduct Target Ther ; 9(1): 152, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918390

RESUMO

CD8+ T cell immune responses are regulated by multi-layer networks, while the post-translational regulation remains largely unknown. Transmembrane ectodomain shedding is an important post-translational process orchestrating receptor expression and signal transduction through proteolytic cleavage of membrane proteins. Here, by targeting the sheddase A Disintegrin and Metalloprotease (ADAM)17, we defined a post-translational regulatory mechanism mediated by the ectodomain shedding in CD8+ T cells. Transcriptomic and proteomic analysis revealed the involvement of post-translational regulation in CD8+ T cells. T cell-specific deletion of ADAM17 led to a dramatic increase in effector CD8+ T cell differentiation and enhanced cytolytic effects to eliminate pathogens and tumors. Mechanistically, ADAM17 regulated CD8+ T cells through cleavage of membrane CD122. ADAM17 inhibition led to elevated CD122 expression and enhanced response to IL-2 and IL-15 stimulation in both mouse and human CD8+ T cells. Intriguingly, inhibition of ADAM17 in CD8+ T cells improved the efficacy of chimeric antigen receptor (CAR) T cells in solid tumors. Our findings reveal a critical post-translational regulation in CD8+ T cells, providing a potential therapeutic strategy of targeting ADAM17 for effective anti-tumor immunity.


Assuntos
Proteína ADAM17 , Linfócitos T CD8-Positivos , Diferenciação Celular , Proteína ADAM17/genética , Proteína ADAM17/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia
17.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892098

RESUMO

There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.


Assuntos
Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , COVID-19/patologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Biomarcadores/sangue
18.
Cell Commun Signal ; 22(1): 322, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863060

RESUMO

Bone resorption is driven through osteoclast differentiation by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-Β ligand (RANKL). We noted that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are downregulated at the expression level during osteoclast differentiation of the murine monocytic cell line RAW264.7 in response to RANKL. Both proteinases are well known to shed a variety of single-pass transmembrane molecules from the cell surface. We further showed that inhibitors of ADAM10 or ADAM17 promote osteoclastic differentiation and furthermore enhance the surface expression of receptors for RANKL and M-CSF on RAW264.7 cells. Using murine bone marrow-derived monocytic cells (BMDMCs), we demonstrated that a genetic deficiency of ADAM17 or its required regulator iRhom2 leads to increased osteoclast development in response to M-CSF and RANKL stimulation. Moreover, ADAM17-deficient osteoclast precursor cells express increased levels of the receptors for RANKL and M-CSF. Thus, ADAM17 negatively regulates osteoclast differentiation, most likely through shedding of these receptors. To assess the time-dependent contribution of ADAM10, we blocked this proteinase by adding a specific inhibitor on day 0 of BMDMC stimulation with M-CSF or on day 7 of subsequent stimulation with RANKL. Only ADAM10 inhibition beginning on day 7 increased the size of developing osteoclasts indicating that ADAM10 suppresses osteoclast differentiation at a later stage. Finally, we could confirm our findings in human peripheral blood mononuclear cells (PBMCs). Thus, downregulation of either ADAM10 or ADAM17 during osteoclast differentiation may represent a novel regulatory mechanism to enhance their differentiation process. Enhanced bone resorption is a critical issue in osteoporosis and is driven through osteoclast differentiation by specific osteogenic mediators. The present study demonstrated that the metalloproteinases ADAM17 and ADAM10 critically suppress osteoclast development. This was observed for a murine cell line, for isolated murine bone marrow cells and for human blood cells by either preferential inhibition of the proteinases or by gene knockout. As a possible mechanism, we studied the surface expression of critical receptors for osteogenic mediators on developing osteoclasts. Our findings revealed that the suppressive effects of ADAM17 and ADAM10 on osteoclastogenesis can be explained in part by the proteolytic cleavage of surface receptors by ADAM10 and ADAM17, which reduces the sensitivity of these cells to osteogenic mediators. We also observed that osteoclast differentiation was associated with the downregulation of ADAM10 and ADAM17, which reduced their suppressive effects. We therefore propose that this downregulation serves as a feedback loop for enhancing osteoclast development.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Diferenciação Celular , Regulação para Baixo , Proteínas de Membrana , Osteoclastos , Ligante RANK , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Diferenciação Celular/genética , Camundongos , Regulação para Baixo/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Ligante RANK/metabolismo , Células RAW 264.7 , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
19.
Elife ; 132024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860651

RESUMO

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Assuntos
Proteína ADAM17 , Células de Langerhans , Lúpus Eritematoso Sistêmico , Pele , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animais , Humanos , Células de Langerhans/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Lúpus Eritematoso Sistêmico/metabolismo , Raios Ultravioleta/efeitos adversos , Feminino , Modelos Animais de Doenças , Transtornos de Fotossensibilidade/metabolismo , Interferons/metabolismo , Camundongos Endogâmicos MRL lpr
20.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892263

RESUMO

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mucosa Olfatória/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA