Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E482-E492, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324257

RESUMO

Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.


Assuntos
Deficiência de Vitamina D , Vitamina D , Animais , Peixe-Zebra , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Vitaminas , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Antibacterianos
2.
Fluids Barriers CNS ; 20(1): 47, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328777

RESUMO

BACKGROUND: Reduced folate carrier 1 (RFC1; SLC19a1) is the main responsible transporter for the B9 family of vitamins named folates, which are essential for normal tissue growth and development. While folate deficiency resulted in retinal vasculopathy, the expression and the role of RFC1 in blood-retinal barrier (BRB) are not well known. METHODS: We used whole mount retinas and trypsin digested microvessel samples of adult mice. To knockdown RFC1, we delivered RFC1-targeted short interfering RNA (RFC1-siRNA) intravitreally; while, to upregulate RFC1 we delivered lentiviral vector overexpressing RFC1. Retinal ischemia was induced 1-h by applying FeCl3 to central retinal artery. We used RT-qPCR and Western blotting to determine RFC1. Endothelium (CD31), pericytes (PDGFR-beta, CD13, NG2), tight-junctions (Occludin, Claudin-5 and ZO-1), main basal membrane protein (Collagen-4), endogenous IgG and RFC1 were determined immunohistochemically. RESULTS: Our analyses on whole mount retinas and trypsin digested microvessel samples of adult mice revealed the presence of RFC1 in the inner BRB and colocalization with endothelial cells and pericytes. Knocking down RFC1 expression via siRNA delivery resulted in the disintegration of tight junction proteins and collagen-4 in twenty-four hours, which was accompanied by significant endogenous IgG extravasation. This indicated the impairment of BRB integrity after an abrupt RFC1 decrease. Furthermore, lentiviral vector-mediated RFC1 overexpression resulted in increased tight junction proteins and collagen-4, confirming the structural role of RFC1 in the inner BRB. Acute retinal ischemia decreased collagen-4 and occludin levels and led to an increase in RFC1. Besides, the pre-ischemic overexpression of RFC1 partially rescued collagen-4 and occludin levels which would be decreased after ischemia. CONCLUSION: In conclusion, our study clarifies the presence of RFC1 protein in the inner BRB, which has recently been defined as hypoxia-immune-related gene in other tissues and offers a novel perspective of retinal RFC1. Hence, other than being a folate carrier, RFC1 is an acute regulator of the inner BRB in healthy and ischemic retinas.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Proteína Carregadora de Folato Reduzido , Animais , Camundongos , Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Ácido Fólico/metabolismo , Imunoglobulina G , Ocludina/metabolismo , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , RNA Interferente Pequeno/metabolismo , Tripsina/metabolismo
3.
Exp Gerontol ; 178: 112208, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201763

RESUMO

BACKGROUND: Plasma folate levels are closely related to antioxidant capacity and are regulated by folate pathway gene polymorphism. However, few studies have explored the gender-specific association of folate pathway gene polymorphism with oxidative stress biomarkers. The present study was designed to explore the gender-specific independent and combined impacts of solute carrier family 19 member 1 (SLC19A1) and methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms on oxidative stress biomarkers in older adults. METHODS: A total of 401 subjects were recruited, including 145 males and 256 females. Demographic characteristics of the participants were collected by using a self-administered questionnaire. Fasting venous blood samples were taken for folate pathway gene genotyping, circulating lipids parameters and erythrocyte oxidative stress biomarkers measurement. The difference of genotype distribution and the Hardy-Weinberg equilibrium was calculated by the Chi-square test. The general linear model was applied to compare the plasma folate levels and erythrocyte oxidative stress biomarkers. Multiple linear regression was used to explore the correlation between genetic risk scores and oxidative stress biomarkers. Logistic regression was used to explore the association of genetic risk scores of folate pathway gene with folate deficiency. RESULTS: The male subjects have lower plasma folate and HDL-C levels than the female ones, and the male carrying MTHFR rs1801133 (CC) or MTHFR rs2274976 (GA) genotypes have higher erythrocyte SOD activity. The plasma folate levels, erythrocyte SOD and GSH-PX activities were negatively correlated with genetic risk scores in the male subjects. A positive correlation between the genetic risk scores and folate deficiency was observed in the male subjects. CONCLUSIONS: There was association between folate pathway gene polymorphism of Solute Carrier Family 19 Member 1 (SLC19A1) and Methylenetetrahydrofolate Reductase (MTHFR) with erythrocyte SOD and GSH-PX activities, and folate levels in male but not in female aging subjects. Genetic variant of genes involved in folate metabolism has strong impact on plasma folate levels in the male aging subjects. Our data demonstrated that there was a potential interaction of gender and its genetic background in affecting the body's antioxidant capacity and the risk of folate deficiency in aging subjects.


Assuntos
Deficiência de Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2) , Idoso , Feminino , Humanos , Masculino , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Ácido Fólico , Deficiência de Ácido Fólico/genética , Genótipo , Homocisteína/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Estresse Oxidativo , Polimorfismo Genético , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Caracteres Sexuais
4.
Nature ; 612(7938): 170-176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265513

RESUMO

Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.


Assuntos
Microscopia Crioeletrônica , Fosfatos de Dinucleosídeos , Antagonistas do Ácido Fólico , Ácido Fólico , Nucleotídeos Cíclicos , Animais , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura
5.
Nature ; 609(7929): 1056-1062, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071163

RESUMO

Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico , Metotrexato , Proteína Carregadora de Folato Reduzido , Ânions/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura , Especificidade por Substrato
7.
Sci Rep ; 11(1): 6389, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737637

RESUMO

There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.


Assuntos
Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Neoplasias/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Proteína Carregadora de Folato Reduzido/genética , Transporte Biológico/genética , Proliferação de Células/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/genética , Antagonistas do Ácido Fólico/farmacologia , Células HeLa , Humanos , Metotrexato/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Ornitina/análogos & derivados , Ornitina/farmacologia , Pemetrexede/farmacologia , Transportador de Folato Acoplado a Próton/metabolismo , Pterinas/farmacologia , Proteína Carregadora de Folato Reduzido/metabolismo
8.
Cell Metab ; 33(1): 190-198.e6, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33326752

RESUMO

Folate metabolism supplies one-carbon (1C) units for biosynthesis and methylation and has long been a target for cancer chemotherapy. Mitochondrial serine catabolism is considered the sole contributor of folate-mediated 1C units in proliferating cancer cells. Here, we show that under physiological folate levels in the cell environment, cytosolic serine-hydroxymethyltransferase (SHMT1) is the predominant source of 1C units in a variety of cancers, while mitochondrial 1C flux is overly repressed. Tumor-specific reliance on cytosolic 1C flux is associated with poor capacity to retain intracellular folates, which is determined by the expression of SLC19A1, which encodes the reduced folate carrier (RFC). We show that silencing SHMT1 in cells with low RFC expression impairs pyrimidine biosynthesis and tumor growth in vivo. Overall, our findings reveal major diversity in cancer cell utilization of the cytosolic versus mitochondrial folate cycle across tumors and SLC19A1 expression as a marker for increased reliance on SHMT1.


Assuntos
Citosol/metabolismo , Ácido Fólico/metabolismo , Glicina Hidroximetiltransferase/genética , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Proteína Carregadora de Folato Reduzido/genética , Animais , Sistemas CRISPR-Cas/genética , Ciclo do Carbono/genética , Linhagem Celular , Ácido Fólico/genética , Glicina Hidroximetiltransferase/deficiência , Glicina Hidroximetiltransferase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/patologia , Proteína Carregadora de Folato Reduzido/metabolismo
9.
FASEB J ; 34(8): 10516-10530, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543769

RESUMO

Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders. Our group has reported that upregulation of RFC at the blood-brain barrier (BBB) through interactions with specific transcription factors, that is, vitamin D receptor (VDR) could increase brain folate delivery. This study investigates the role of nuclear respiratory factor 1 (NRF-1) in the regulation of RFC at the BBB. Activation of NRF-1/PGC-1α signaling through treatment with its specific ligand, pyrroloquinoline quinone (PQQ), significantly induced RFC expression and transport activity in hCMEC/D3 cells. In contrast, transfection with NRF-1 or PGC-1α targeting siRNA downregulated RFC functional expression in the same cell system. Applying chromatin immunoprecipitation (ChIP) assay, we further demonstrated that PQQ treatment increased NRF-1 binding to putative NRF-1 binding sites within the SLC19A1 promoter, which encodes for RFC. Additionally, in vivo treatment of wild type mice with PQQ-induced RFC expression in isolated mouse brain capillaries. Together, these findings demonstrate that NRF-1/PGC-1α activation by PQQ upregulates RFC functional expression at the BBB and could potentially enhance brain folate uptake.


Assuntos
Barreira Hematoencefálica/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Regulação para Cima/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Humanos , Masculino , Camundongos , Cofator PQQ/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
10.
J Trace Elem Med Biol ; 62: 126568, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32521439

RESUMO

The aim of this study was to determine how folate and iron deficiency, and the subsequent supplementation of rats' diet with these nutrients, affects Slc19a1and Tfr2 gene expression and the metabolism of folate and iron. After 28 days of iron-folate deficiency 150 female rats were randomized into five experimental groups receiving a diet deficient in folic acid (FA), an iron-supplemented diet (DFE), an iron-deficient diet supplemented with FA (DFOL), a diet supplemented with iron and FA (FEFOL), and a diet deficient in iron and FA (D); there was also a control group (C). Samples were collected on days 2, 10, and 21 of the experiment. After two days of supplementation, Tfr2 mRNA level were 78 % lower in the DFE group than in the C group (p < 0.05); after 10 days, TfR2 levels in the FEFOL group were 82 % lower than in the C and the DFE group (p < 0.01). However, we did not find any differences at the protein level at any time-point. Hepcidin concentrations were higher in the DFE and the DFEFOL groups than in the D group after 21 days of supplementation (p < 0.01). Transcript and protein abundance of Slc19a1 gene did not differ between the groups at any time-point. Iron metabolism was affected by iron and folate deficiency and subsequent supplementation with these micronutrients, but TFR2 protein was not involved in the regulatory mechanism. Hepcidin expression can be are upregulated after 21 days of supplementation with 150 mg of iron/ kg of diet.


Assuntos
Deficiência de Ácido Fólico/metabolismo , Deficiências de Ferro , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores da Transferrina/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Animais , Transporte Biológico , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Deficiência de Ácido Fólico/dietoterapia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepcidinas/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Antígenos de Histocompatibilidade Menor/genética , Ratos Wistar , Receptores da Transferrina/genética , Proteína Carregadora de Folato Reduzido/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32312153

RESUMO

Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 50 years ago, it remains unclear precisely how deficits in HGprt enzyme activity can lead to the neurological syndrome, especially the self-injury of LND. Several studies have proposed different hypotheses regarding the etiology of this disease, and several treatments have been tried in patients. However, up to now, there is no satisfactory explanation of the disease and for many LND patients, efficacious treatment for persistent self-injurious behavior remains unreachable. A role for epistasis between mutated hypoxanthine phosphoribosyltransferase 1 (HPRT1) and amyloid precursor protein (APP) genes has been recently suggested. This finding may provide new directions not only for investigating the role of APP in neuropathology associated with HGprt-deficiency in LND but also for the research in neurodevelopmental and neurodegenerative disorders in which the APP gene is involved in the pathogenesis of diseases and may pave the way for new strategies applicable to rational antisense drugs design. It is therefore necessary to study the HGprt enzyme and APP using expression vectors for exploring their impacts on LND as well as other human diseases, especially the ones related to APP such as Alzheimer's disease in which the physiologic function and the structure of the entire APP remain largely unclear until now. For such a purpose, we report here the construction of expression vectors as the first step (Part I) of our investigation.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Epigenômica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Mutação , Purinas/metabolismo , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Transfecção
12.
Trends Pharmacol Sci ; 41(5): 349-361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200980

RESUMO

Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.


Assuntos
Sistema Nervoso Central , Ácido Fólico , Animais , Transporte Biológico , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Ácido Fólico/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo
13.
J Nutr Biochem ; 77: 108305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926453

RESUMO

Obese women have an approximately twofold higher risk to deliver an infant with neural tube defects (NTDs) despite folate supplementation. Placental transfer of folate is mediated by folate receptor alpha (FR-α), proton coupled folate transporter (PCFT), and reduced folate carrier (RFC). Decreased placental transport may contribute to NTDs in obese women. Serum folate levels were measured and placental tissue was collected from 13 women with normal BMI (21.9±1.9) and 11 obese women (BMI 33.1±2.8) undergoing elective termination at 8-22 weeks of gestation. The syncytiotrophoblast microvillous plasma membranes (MVM) were isolated using homogenization, magnesium precipitation, and differential centrifugation. MVM expression of FR-α, PCFT and RFC was determined by western blot. Folate transport capacity was assessed using radiolabeled methyl-tetrahydrofolate and rapid filtration techniques. Differences in expression and transport capacity were adjusted for gestational age and maternal age in multivariable regression models. P<.05 was considered statistically significant. Serum folate levels were not significantly different between groups. Placental MVM folate transporter expression did not change with gestational age. MVM RFC (-19%) and FR-α (-17%) expression was significantly reduced in placentas from obese women (P<.05). MVM folate transporter activity was reduced by-52% (P<.05) in obese women. These differences remained after adjustment for gestational age. There was no difference in mTOR signaling between groups. In conclusion, RFC and FR alpha expression and transporter activity in the placental MVM are significantly reduced in obese women in early pregnancy. These results may explain the higher incidence of NTDs in infants of obese women with adequate serum folate.


Assuntos
Receptor 1 de Folato/metabolismo , Ácido Fólico/sangue , Obesidade/sangue , Placenta/metabolismo , Complicações na Gravidez , Transportador de Folato Acoplado a Próton/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Adulto , Índice de Massa Corporal , Membrana Celular/metabolismo , Feminino , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Humanos , Incidência , Microvilosidades/metabolismo , Análise Multivariada , Obesidade/complicações , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Serina-Treonina Quinases TOR/metabolismo , Trofoblastos/metabolismo , Adulto Jovem
14.
Nature ; 573(7774): 434-438, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511694

RESUMO

The accumulation of DNA in the cytosol serves as a key immunostimulatory signal associated with infections, cancer and genomic damage1,2. Cytosolic DNA triggers immune responses by activating the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway3. The binding of DNA to cGAS activates its enzymatic activity, leading to the synthesis of a second messenger, cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP)4-7. This cyclic dinucleotide (CDN) activates STING8, which in turn activates the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), promoting the transcription of genes encoding type I interferons and other cytokines and mediators that stimulate a broader immune response. Exogenous 2'3'-cGAMP produced by malignant cells9 and other CDNs, including those produced by bacteria10-12 and synthetic CDNs used in cancer immunotherapy13,14, must traverse the cell membrane to activate STING in target cells. How these charged CDNs pass through the lipid bilayer is unknown. Here we used a genome-wide CRISPR-interference screen to identify the reduced folate carrier SLC19A1, a folate-organic phosphate antiporter, as the major transporter of CDNs. Depleting SLC19A1 in human cells inhibits CDN uptake and functional responses, and overexpressing SLC19A1 increases both uptake and functional responses. In human cell lines and primary cells ex vivo, CDN uptake is inhibited by folates as well as two medications approved for treatment of inflammatory diseases, sulfasalazine and the antifolate methotrexate. The identification of SLC19A1 as the major transporter of CDNs into cells has implications for the immunotherapeutic treatment of cancer13, host responsiveness to CDN-producing pathogenic microorganisms11 and-potentially-for some inflammatory diseases.


Assuntos
DNA/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Animais , Citosol , DNA/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/metabolismo , Proteína Carregadora de Folato Reduzido/imunologia
15.
Proc Natl Acad Sci U S A ; 116(35): 17531-17540, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405972

RESUMO

Folates are critical for central nervous system function. Folate transport is mediated by 3 major pathways, reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptor alpha (FRα/Folr1), known to be regulated by ligand-activated nuclear receptors. Cerebral folate delivery primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems can result in very low folate levels in the cerebrospinal fluid causing childhood neurodegenerative disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. Our group has previously reported in vitro that functional expression of RFC at the blood-brain barrier (BBB) and its upregulation by the vitamin D nuclear receptor (VDR) could provide an alternative route for brain folate uptake. In this study, we further demonstrated in vivo, using Folr1 knockout (KO) mice, that loss of FRα led to a substantial decrease of folate delivery to the brain and that pretreatment of Folr1 KO mice with the VDR activating ligand, calcitriol (1,25-dihydroxyvitamin D3), resulted in over a 6-fold increase in [13C5]-5-formyltetrahydrofolate ([13C5]-5-formylTHF) concentration in brain tissues, with levels comparable to wild-type animals. Brain-to-plasma concentration ratio of [13C5]-5-formylTHF was also significantly higher in calcitriol-treated Folr1 KO mice (15-fold), indicating a remarkable enhancement in brain folate delivery. These findings demonstrate that augmenting RFC functional expression at the BBB could effectively compensate for the loss of Folr1-mediated folate uptake at the choroid plexus, providing a therapeutic approach for neurometabolic disorders caused by defective brain folate transport.


Assuntos
Encéfalo/metabolismo , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Vitamina D/metabolismo , Animais , Transporte Biológico , Biomarcadores , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida , Feminino , Receptor 1 de Folato/genética , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Espectrometria de Massas em Tandem
16.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370354

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) is a pivotal enzyme in the one-carbon metabolism, a metabolic pathway required for DNA synthesis and methylation reactions. MTHFR hypermethylation, resulting in reduced gene expression, can contribute to several human disorders, but little is still known about the factors that regulate MTHFR methylation levels. We performed the present study to investigate if common polymorphisms in one-carbon metabolism genes contribute to MTHFR methylation levels. MTHFR methylation was assessed in peripheral blood DNA samples from 206 healthy subjects with methylation-sensitive high-resolution melting (MS-HRM); genotyping was performed for MTHFR 677C>T (rs1801133) and 1298A>C (rs1801131), MTRR 66A>G (rs1801394), MTR 2756A>G (rs1805087), SLC19A1 (RFC1) 80G>A (rs1051266), TYMS 28-bp tandem repeats (rs34743033) and 1494 6-bp ins/del (rs34489327), DNMT3A -448A>G (rs1550117), and DNMT3B -149C>T (rs2424913) polymorphisms. We observed a statistically significant effect of the DNMT3B -149C>T polymorphism on mean MTHFR methylation levels, and particularly CT and TT carriers showed increased methylation levels than CC carriers. The present study revealed an association between a functional polymorphism of DNMT3B and MTHFR methylation levels that could be of relevance in those disorders, such as inborn defects, metabolic disorders and cancer, that have been linked to impaired DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epigênese Genética , Redes e Vias Metabólicas/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Idoso , Idoso de 80 Anos ou mais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Feminino , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Ácido Fólico/metabolismo , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Metionina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pessoa de Meia-Idade , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , DNA Metiltransferase 3B
17.
Drug Metab Dispos ; 47(8): 890-898, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167838

RESUMO

Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to dolutegravir at the time of conception. Folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of folate transport pathways: proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and folate receptor α (FRα)-mediated endocytosis. Inhibition of folate transport was extrapolated to the clinic by using established approaches for transporters in intestine, distribution tissues, and basolateral and apical membranes of renal proximal tubules (2017 FDA Guidance). The positive controls, methotrexate and pemetrexed, demonstrated clinically relevant inhibition of PCFT, RFC, and FRα in folate absorption, distribution, and renal sparing. Valproic acid was used as a negative control that elicits folate-independent NTDs; valproic acid did not inhibit PCFT, RFC, or FRα At clinical doses and exposures, the observed in vitro inhibition of FRα by dolutegravir and cabotegravir was not flagged as clinically relevant; PCFT and RFC inhibition was not observed in vitro. Bictegravir inhibited both PCFT and FRα, but the observed inhibition did not reach the criteria for clinical relevance. Elvitegravir and raltegravir inhibited PCFT, but only raltegravir inhibition of intestinal PCFT was flagged as potentially clinically relevant at the highest 1.2-g dose (not the 400-mg dose). These studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed. SIGNIFICANCE STATEMENT: Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to the HIV integrase inhibitor dolutegravir at the time of conception; folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of the major folate transport pathways: proton-coupled folate transporter, reduced folate carrier, and folate receptor α-mediated endocytosis. The present studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Furthermore, clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed.


Assuntos
Ácido Fólico/metabolismo , Inibidores de Integrase de HIV/efeitos adversos , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Animais , Cães , Endocitose/efeitos dos fármacos , Ensaios Enzimáticos , Feminino , Receptor 1 de Folato/metabolismo , Ácido Fólico/sangue , Deficiência de Ácido Fólico/induzido quimicamente , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/epidemiologia , Infecções por HIV/tratamento farmacológico , Humanos , Incidência , Recém-Nascido , Células Madin Darby de Rim Canino , Exposição Materna/efeitos adversos , Troca Materno-Fetal , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/etiologia , Oxazinas , Piperazinas , Gravidez , Transportador de Folato Acoplado a Próton/metabolismo , Piridonas , Proteína Carregadora de Folato Reduzido/metabolismo , Medição de Risco
18.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996094

RESUMO

Feline leukemia virus (FeLV) is horizontally transmitted among cats and causes a variety of hematopoietic disorders. Five subgroups of FeLV, A to D and T, each with distinct receptor usages, have been described. Recently, we identified a new FeLV Env (TG35-2) gene from a pseudotyped virus that does not belong to any known subgroup. FeLV-A is the primary virus from which other subgroups have emerged via mutation or recombination of the subgroup A env gene. Retrovirus entry into cells is mediated by the interaction of envelope protein (Env) with specific cell surface receptors. Here, phenotypic screening of a human/hamster radiation hybrid panel identified SLC19A1, a feline reduced folate carrier (RFC) and potential receptor for TG35-2-phenotypic virus. RFC is a multipass transmembrane protein. Feline and human RFC cDNAs conferred susceptibility to TG35-2-pseudotyped virus when introduced into nonpermissive cells but did not render these cells permissive to other FeLV subgroups or feline endogenous retrovirus. Moreover, human cells with genomic deletion of RFC were nonpermissive for TG35-2-pseudotyped virus infection, but the introduction of feline and human cDNAs rendered them permissive. Mutation analysis of FeLV Env demonstrated that amino acid substitutions within variable region A altered the specificity of the Env-receptor interaction. We isolated and reconstructed the full-length infectious TG35-2-phenotypic provirus from a naturally FeLV-infected cat, from which the FeLV Env (TG35-2) gene was previously isolated, and compared the replication of the virus in hematopoietic cell lines with that of FeLV-A 61E by measuring the viral RNA copy numbers. These results provide a tool for further investigation of FeLV infectious disease.IMPORTANCE Feline leukemia virus (FeLV) is a member of the genus Gammaretrovirus, which causes malignant diseases in cats. The most prevalent FeLV among cats is FeLV subgroup A (FeLV-A), and specific binding of FeLV-A Env to its viral receptor, thiamine transporter feTHTR1, is the first step of infection. In infected cats, novel variants of FeLV with altered receptor specificity for viral entry have emerged by mutation or recombination of the env gene. A novel FeLV variant arose from a subtle mutation of FeLV-A Env, which altered the specific interaction of the virus with its receptor. RFC, a folate transporter, is a potential receptor for the novel FeLV variant. The perturbation of specific retrovirus-receptor interactions under selective pressure by the host results in the emergence of novel viruses.


Assuntos
Genes env/genética , Vírus da Leucemia Felina/genética , Receptores Virais/genética , Proteína Carregadora de Folato Reduzido/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus , Sequência de Aminoácidos , Animais , Gatos , Linhagem Celular , Cricetinae , Retrovirus Endógenos/metabolismo , Produtos do Gene env/genética , Células HeLa , Humanos , Vírus da Leucemia Felina/metabolismo , Leucemia Felina/virologia , Filogenia , Provírus , RNA Viral/genética , Receptores Virais/metabolismo , Proteína Carregadora de Folato Reduzido/classificação , Proteína Carregadora de Folato Reduzido/metabolismo , Alinhamento de Sequência , Replicação Viral
19.
J Pharm Pharmacol ; 71(2): 167-175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30324648

RESUMO

OBJECTIVES: We had previously found that reduced folate carrier (RFC; SLC19A1) is mainly involved in an influx of transport of methotrexate (MTX), a folate analogue, using alveolar epithelial A549 cells. Therefore, we examined MTX uptake in NCl-H441 (H441) cells, another in vitro alveolar epithelial model, focusing on the localization of RFC in the present study. METHODS: Transport function of RFC in H441 cells was studied using [3 H]MTX. KEY FINDINGS: The uptake of MTX was increased remarkably after pretreatment of the cell monolayer with ethylenediaminetetraacetic acid (EDTA) in H441 cells but not in A549 cells, indicating the contribution of the basolaterally located transporter. In addition, folic acid and thiamine monophosphate, RFC inhibitors, inhibited the uptake of MTX from the basolateral side of the H441 cells. In order to compare the function of RFC on the apical and basolateral sides of the cells, the uptake of MTX from each side was examined using a Transwell chamber. Intracellular MTX amounts from the basolateral side were found to be significantly higher than those from the apical side. CONCLUSIONS: These findings suggest that the distribution of MTX in the lung alveolar epithelial cells may be mediated by basolaterally located RFC in alveolar epithelial cells.


Assuntos
Células Epiteliais Alveolares/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Metotrexato/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Células A549 , Transporte Biológico , Linhagem Celular Tumoral , Ácido Edético/farmacologia , Antagonistas do Ácido Fólico/metabolismo , Humanos
20.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541852

RESUMO

Approximately 10% of the mouse genome is composed of endogenous retroviruses belonging to different families. In contrast to the situation in the human genome, several of these families correspond to recent, still-infectious elements capable of encoding complete viral particles. The mouse GLN endogenous retrovirus is one of these active families. We previously identified one fully functional provirus from the sequenced genome of the C57BL/6 mouse strain. The GLN envelope protein gives the infectious viral particles an ecotropic host range, and we had demonstrated that the receptor was neither CAT1 nor SMIT1, the two previously identified receptors for mouse ecotropic retroviral envelope proteins. In this study, we have identified SLC19A1, the reduced folate carrier, as the cellular protein used as a receptor by the GLN retrovirus. The ecotropic tropism exhibited by this envelope is due to the presence or absence of an N-linked glycosylation site in the first extracellular loop as well as the specific amino acid sequence of the extracellular domains of the receptor. Like all the other retroviral envelope proteins from the gammaretrovirus genus whose receptors have been identified, the GLN envelope protein uses a member of the solute carrier superfamily as a receptor.IMPORTANCE Endogenous retroviruses are genomic traces of past infections present in all vertebrates. Most of these elements degenerate over time and become nonfunctional, but the mouse genome still contains several families with full infection abilities. The GLN retrovirus is one of them, and its members encode particles that are able to infect only mouse cells. Here, we identified the cellular protein used as a receptor by GLN for cell entry. It is SLC19A1, the reduced folate carrier. We show that GLN infection is limited to mouse cells due to both a mutation in the mouse gene preventing the glycosylation of SLC19A1 and also other residues conserved within the rat but not in the hamster and human proteins. Like all other gammaretroviruses whose receptors have been identified, GLN uses a member of the solute carrier superfamily for cell entry, highlighting the role of these proteins for retroviral infection in mammals.


Assuntos
Gammaretrovirus/metabolismo , Produtos do Gene env/genética , Receptores Virais/genética , Proteína Carregadora de Folato Reduzido/genética , Proteínas do Envelope Viral/genética , Ligação Viral , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Gammaretrovirus/genética , Genoma/genética , Glicosilação , Células HEK293 , Especificidade de Hospedeiro , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Proteína Carregadora de Folato Reduzido/metabolismo , Infecções por Retroviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA