Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 257-263, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430013

RESUMO

Granulosa cells are somatic cells located inside follicles that play a crucial role in the growth and development of follicles. Quercetin and tanshinone are two key monomers in traditional Chinese medicine that have antioxidant and anti-aging properties. The KGN cell apoptosis model caused by triptolide (TP) was employed in this work to investigate granulosa cell death and medication rescue. Quercetin and tanshinone therapy suppressed KGN cell death and oxidation while also regulating the expression of critical apoptosis and oxidation-related markers such as B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Further research revealed that the effects of Quercetin and Tanshinone were accomplished via deacetylation of FOXO3A in the cytoplasm and mitochondria via the SIRT1/SIRT3-FOXO3a axis. In summary, Quercetin and tanshinone protect KGN cells from apoptosis by reducing mitochondrial apoptosis and oxidation via the SIRT1/SIRT3-FOXO3a axis.


Assuntos
Abietanos , Sirtuína 3 , Feminino , Humanos , Apoptose , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Quercetina/farmacologia , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Proteína Forkhead Box O3/efeitos dos fármacos
2.
Nutrition ; 118: 112273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096603

RESUMO

BACKGROUND: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE: Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS: Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS: Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS: These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.


Assuntos
Glutamina , Hidrocortisona , Atrofia Muscular , Animais , Ratos , Caspase 3/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Glutamina/farmacologia , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Transdução de Sinais , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Neuroreport ; 33(13): 549-560, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36049159

RESUMO

OBJECTIVE: Bergenin (BGN) is a C-glycoside of 4-O-methylgallic acid with anti-inflammatory, antioxidant, and tissue-repairing abilities. Here, we probed the roles and mechanisms of BGN in ischemic stroke-mediated cerebral injury. METHODS: The middle cerebral artery occlusion (MCAO) model was established in mice, which were injected intraperitoneally with varying concentrations of BGN (10, 20, and 40 mg/kg). The modified neurological severity score (mNSS) and the water maze experiment were adopted to evaluate mice's neural functions (movement and memory). The brain edema was assessed by the dry and wet method. TdT-mediated dUTP nick end labeling (TUNEL)-labeled apoptotic neurons and Iba1-labeled microglia in the cortex were measured by immunohistochemistry (IHC). Quantitative reverse transcription-PCR and ELISA were implemented to determine the expression of inflammatory cytokines (TNFα, IL-1ß, and IL-6), neurotrophic factors (BDNF and VEGF), and oxidative stress factors (SOD and MDA) in brain tissues. The profiles of Sirt1, FOXO3a, Nrf2, NF-κB, and STAT6 in brain tissues were checked by western blot. RESULTS: BGN significantly improved MCAO mice's cognitive, learning, and motor functions, reduced brain edema, hampered the production of inflammatory factors and oxidative stress mediators, and suppressed neuronal apoptosis. Additionally, BGN dampened the expression of proinflammatory cytokines and upregulated neurotrophic factors and oxidative stress factors in ischemic brain tissues of MCAO mice. Meanwhile, BGN reduced the expression of inflammatory cytokines and oxidative stressors in oxygen-glucose deprivation/reoxygenation-induced BV2 microglia. Further mechanistic studies revealed that BGN concentration dependently elevated the profiles of Sirt1, FOXO3a, STAT6, and Nrf2, and abated the NF-κB phosphorylation. CONCLUSION: BGN protects against ischemic stroke in mice by boosting the Sirt1/FOXO3a pathway, suggesting its potential as a therapeutic agent for ischemic stroke.


Assuntos
Benzopiranos , Edema Encefálico , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Benzopiranos/farmacologia , Edema Encefálico/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo
4.
Oxid Med Cell Longev ; 2022: 9468040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910845

RESUMO

Osteoarthritis (OA) has been reported as a progressive disease in the elderly, primarily characterized by degenerated articular cartilage. There has been no satisfactory drug for the treatment of OA. DL-3-n-butylphthalide (NBP), a small molecule compound extracted from celery seeds, may have antiapoptotic, antioxidant, and anti-inflammatory activities in numerous studies. However, the effects of NBP on OA and its mechanisms have been rarely reported. In this study, the effect of NBP on OA in vitro and in vivo and its possible mechanism were investigated. The results showed that NBP injection into the knee joint inhibited osteoarthritis development in a rat model of osteoarthritis induced by DMM+ACLT. NBP could increase the expressions of extracellular matrix-related components (such as type II collagen, aggrecan, proteoglycan 4, and SRY-box 9) in human osteoarthritic chondrocytes and cartilage explants. Moreover, NBP promoted the expressions of SOD and CAT. NBP upregulated the expression of FoxO3a by inhibiting the PI3K/AKT pathway, which subsequently inhibited the apoptosis of human OA chondrocytes. In conclusion, NBP promotes cartilage extracellular matrix synthesis and inhibits osteoarthritis development and the underlying mechanism related to the activation of FoxO3a.


Assuntos
Benzofuranos , Cartilagem Articular , Proteína Forkhead Box O3 , Osteoartrite , Idoso , Animais , Benzofuranos/farmacologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
5.
Cells ; 10(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685502

RESUMO

Valproic acid (VPA) is an antiepileptic drug found to induce mitochondrial dysfunction and autophagy in cancer cell lines. We treated the SH-SY5Y cell line with various concentrations of VPA (1, 5, and 10 mM). The treatment decreased cell viability, ATP production, and mitochondrial membrane potential and increased reactive oxygen species production. In addition, the mitochondrial DNA copy number increased after VPA treatment in a dose-dependent manner. Western blotting showed that the levels of mitochondrial biogenesis-related proteins (PGC-1α, TFAM, and COX4) increased, though estrogen-related receptor expression decreased after VPA treatment. Further, VPA treatment increased the total and acetylated FOXO3a protein levels. Although SIRT1 expression was decreased, SIRT3 expression was increased, which regulated FOXO3 acetylation in the mitochondria. Furthermore, VPA treatment induced autophagy via increased LC3-II levels and decreased p62 expression and mTOR phosphorylation. We suggest that VPA treatment induces mitochondrial biogenesis and autophagy via changes in FOXO3a expression and posttranslational modification in the SH-SY5Y cell line.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ácido Valproico/farmacologia , Anticonvulsivantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas
6.
Mol Immunol ; 138: 150-160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428620

RESUMO

Studies showed that ellagic acid (EA) can significantly improve kidney function, but the renal-protective effects of EA and the potential mechanism require adequate elucidation. This study investigated the mechanisms of EA in chronic renal failure (CRF) injury. A rat model of CRF was established by 5/6 nephrectomy. The body weight, urine volume and urine protein content of the rat model of CRF with EA treatment (0/20/40 mg/kg/day) were recorded. Hematoxylin&eosin (H&E) staining, Masson staining and TUNEL were used for histopathological observation. Serum levels of creatinine value, blood urea nitrogen, superoxide dismutase, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-6 and intercellular cell adhesion molecule-1 were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of genes involved in CRF damage were detected by quantitative real-time PCR (qRT-PCR) and western blot. The relationships among EA, miR-182 and FOXO3a were verified by TargetScan 7.2, dual-luciferase assay and rescue experiments. In this study, EA treatment significantly increased the body weight, but reduced urination and urine protein content, renal tissue damage, collagen deposition, inflammation and the contents of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), and improved the antioxidant capacity of CRF rats. Moreover, EA treatment inhibited miR-182, TGF-ß1, fibronectin and Bax levels, and promoted those of FOXO3a and Bcl-2 in CRF rats. Additionally, miR-182 specifically targeted FOXO3a, and effectively reduced the renal-protective effect of EA. Further research found that overexpressed FOXO3a partially reversed the inhibitory effect of miR-182 on CRF rats. Our results suggest that EA might reduce CRF injury in rats via miR-182/FOXO3a.


Assuntos
Ácido Elágico/farmacologia , Proteína Forkhead Box O3/metabolismo , Falência Renal Crônica/patologia , MicroRNAs/metabolismo , Substâncias Protetoras/farmacologia , Animais , Proteína Forkhead Box O3/efeitos dos fármacos , Rim/efeitos dos fármacos , Falência Renal Crônica/metabolismo , Masculino , MicroRNAs/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
J Neurophysiol ; 125(4): 1202-1212, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625942

RESUMO

Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Unfortunately, patients are often troubled by serious side effects, especially hearing loss. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We explored the role of autophagy and the efficacy of metformin in cisplatin-induced ototoxicity in cells, zebrafish, and mice. Furthermore, the underlying molecular mechanism of how metformin affects cisplatin-induced ototoxicity was examined. In in vitro experiments, autophagy levels in HEI-OC1 cells were assessed using fluorescence and Western blot analyses. In in vivo experiments, whether metformin had a protective effect against cisplatin ototoxicity was validated in zebrafish and C57BL/6 mice. The results showed that cisplatin induced autophagy activation in HEI-OC1 cells. Metformin exerted antagonistic effects against cisplatin ototoxicity in HEI-OC1 cells, zebrafish, and mice. Notably, metformin activated autophagy and increased the expression levels of the adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Forkhead box protein O3 (FOXO3a), whereas cells with AMPK silencing displayed otherwise. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.NEW & NOTEWORTHY Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We investigated the protective effect of metformin on cisplatin ototoxicity in vitro and in vivo. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.


Assuntos
Antineoplásicos/toxicidade , Autofagia/efeitos dos fármacos , Cisplatino/toxicidade , Proteína Forkhead Box O3/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Metformina/farmacologia , Fármacos Neuroprotetores/farmacologia , Ototoxicidade/tratamento farmacológico , Ototoxicidade/etiologia , Proteínas Quinases/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Peixe-Zebra
8.
J Appl Toxicol ; 41(4): 618-631, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33029813

RESUMO

Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of di(2-ethylhexyl)phthalate (DEHP), is known to exert cardiotoxicity. The aim of the present study was to investigate the role of forkhead box O3a (FOXO3a) in MEHP-induced human AC16 cardiomyocyte injuries. MEHP reduced cell viability and mitochondrial membrane potential (ΔΨm), whereas it increased lactate dehydrogenase (LDH) leakage, production of reactive oxygen species (ROS), and apoptosis in cardiomyocytes. The expression of FOXO3a and its target genes, mitochondrial superoxide dismutase (Mn-SOD) and apoptosis repressor with caspase recruitment domain (ARC), increased after MEHP exposure, but the expression of p-FOXO3a protein was decreased. Overexpression of FOXO3a decreased the production of ROS and the apoptosis rate induced by MEHP, and the expression of Mn-SOD and ARC was further increased after MEHP exposure. In contrast, knockdown of FOXO3a resulted in increased ROS production and apoptosis and suppressed the expression of Mn-SOD and ARC in the presence of MEHP. However, overexpression or knockdown of FOXO3a did not affect MEHP-induced loss of ΔΨm. In conclusion, the loss of ΔΨm and apoptosis are involved in MEHP-induced cardiomyocyte toxicity. Activation of FOXO3a defends against MEHP-induced oxidative stress and apoptosis by upregulating the expression of Mn-SOD and ARC in AC16 cardiomyocytes.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dietilexilftalato/toxicidade , Proteína Forkhead Box O3/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Células Cultivadas/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Humanos
9.
Int Immunopharmacol ; 90: 107268, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316740

RESUMO

Inflammation plays an important role in the pathogenesis of cerebral ischemia. Syringin (SYR) is an active substance isolated from Acanthopanax senticosus plants, and possesses anti-inflammatory and neuroprotective properties. However, its effects on cerebral ischemic injury, as well as the underlying molecular events, are still unclear. The purpose of this study was to investigate the effect of SYR in a rat model of cerebral ischemia and address the related molecular mechanism. A middle cerebral artery occlusion/reperfusion model (MCAO) was used to simulate ischemic injury. SYR treatment clearly reduced the infarct volume, decreased cerebral water content, improved the neurological score, and attenuated neuronal death. Moreover, SYR decreased the expression of NF-κB, IL-1ß, IL-6, TNF-α, and MPO, promoted FOXO3a phosphorylation and cytoplasmic retention, and inhibited the nuclear translocation of NF-κB. FOXO3a knockdown by RNA interference significantly prevented SYR-induced inhibition of NF-κB-mediated inflammation. Confocal microscopy revealed that SYR reduced NF-κB translocation to the nucleus, and FOXO3a silencing reversed this effect. Finally, immunofluorescence and CO-IP experiments showed that SYR promoted the interaction between FOXO3a and NF-κB. In conclusion, SYR exerted a protective effect against brain I/R injury by reducing the inflammation accompanying cerebral ischemia. This effect was mediated by the FOXO3a /NF-κB pathway.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Proteína Forkhead Box O3/efeitos dos fármacos , Glucosídeos/farmacologia , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenilpropionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Água Corporal/metabolismo , Isquemia Encefálica/genética , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley
10.
Am J Physiol Endocrinol Metab ; 319(1): E217-E231, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516026

RESUMO

We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.


Assuntos
Quimiotaxia de Leucócito/imunologia , Vesículas Extracelulares/imunologia , Doenças das Valvas Cardíacas/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Rim/imunologia , Neutrófilos/imunologia , Insuficiência Renal/imunologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Animais , Estudos de Casos e Controles , Quimiocina CCL5/efeitos dos fármacos , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Dexmedetomidina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/imunologia , Proteína Forkhead Box O3/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Fosforilação , Fator Plaquetário 4/efeitos dos fármacos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal/metabolismo , Vasodilatação
11.
Med Sci Monit ; 26: e924372, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32592386

RESUMO

BACKGROUND Diabetic nephropathy (DN) is one of the chronic microvascular complications of diabetes. This study focused on the protective effects of pyrroloquinoline quinone (PQQ) on oxidative stress (OS) in DN. MATERIAL AND METHODS Thirty Sprague Dawley rats were randomly selected for this study; 10 rats were randomly selected as the control group. The other 20 rats were established for the DN model. After establishment of the successful model, the DN model rats were randomly divided into a DN group and a PQQ group. The PQQ group was fed with a PQQ diet. Blood urea nitrogen (BUN), serum creatinine (SCr), and blood glucose levels were measured in each group, and OS-related protein expression and AMPK pathway were detected by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). At the same time, we constructed a DN model by culturing NRK-52E cells with high glucose to detect the molecular mechanisms. RESULTS The kidney function of the DN group was significantly decreased, SCr and BUN levels were significantly increased, and the renal structure under the microscope was disordered, and interstitial edema was obvious. The expression of SOD1, SOD2, GPX1, and GPX3 were significantly decreased, and the level of reactive oxygen species (ROS) was significantly increased. PQQ treatment can effectively alleviate renal function, improve structural damage, and inhibit OS. In vivo, PQQ can effectively inhibit high glucose-induced OS damage and activate the AMPK/FOXO3a signaling pathway. CONCLUSIONS PQQ improves renal structural damage and functional damage, and protects kidney cells in DN by inhibiting OS, which may be related to activating the AMPK/FOXO3a pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Sequestradores de Radicais Livres/farmacologia , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cofator PQQ/farmacologia , Adenilato Quinase/efeitos dos fármacos , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/metabolismo , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/genética , Rim/metabolismo , Rim/patologia , Distribuição Aleatória , Ratos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase-1/efeitos dos fármacos , Superóxido Dismutase-1/genética , Glutationa Peroxidase GPX1
12.
Alcohol Clin Exp Res ; 44(6): 1204-1213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304578

RESUMO

BACKGROUND: During bone fracture repair, resident mesenchymal stem cells (MSCs) differentiate into chondrocytes, to form a cartilaginous fracture callus, and osteoblasts, to ossify the collagen matrix. Our laboratory previously reported that alcohol administration led to decreased cartilage formation within the fracture callus of rodents and this effect was mitigated by postfracture antioxidant treatment. Forkhead box protein O (FoxO) transcription factors are activated in response to intracellular reactive oxygen species (ROS), and alcohol has been shown to increase ROS. Activation of FoxOs has also been shown to inhibit canonical Wnt signaling, a necessary pathway for MSC differentiation. These findings have led to our hypothesis that alcohol exposure decreases osteochondrogenic differentiation of MSCs through the activation of FoxOs. METHODS: Primary rat MSCs were treated with ethanol (EtOH) and assayed for FoxO expression, FoxO activation, and downstream target expression. Next, MSCs were differentiated toward osteogenic or chondrogenic lineages in the presence of 50 mM EtOH and alterations in osteochondral lineage marker expression were determined. Lastly, osteochondral differentiation experiments were repeated with FoxO1/3 knockdown or with FoxO1/3 inhibitor AS1842856 and osteochondral lineage marker expression was determined. RESULTS: EtOH increased the expression of FoxO3a at mRNA and protein levels in primary cultured MSCs. This was accompanied by an increase in FoxO1 nuclear localization, FoxO1 activation, and downstream catalase expression. Moreover, EtOH exposure decreased expression of osteogenic and chondrogenic lineage markers. FoxO1/3 knockdown restored proosteogenic and prochondrogenic lineage marker expression in the presence of 50 mM EtOH. However, FoxO1/3 inhibitor only restored proosteogenic lineage marker expression. CONCLUSIONS: These data show that EtOH has the ability to inhibit MSC differentiation, and this ability may rely, at least partially, on the activation of FoxO transcription factors.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Proteína Forkhead Box O3/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Animais , Calo Ósseo/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamento de Genes , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Cultura Primária de Células , Ratos
13.
Cell Death Dis ; 11(3): 158, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123161

RESUMO

Nowadays, immune diseases are a large burden in healthcare. Mesenchymal stem cells (MSCs) have prominent ability in immunomodulation and have been applicated on treating many immune-related diseases. However, the clinical outcomes can be disparate and sometimes completely counterproductive beyond explanation of cell heterogeneity. The theory of immunomodulation plasticity in MSCs has then emerged to explain that MSCs can be induced into proinflammatory MSC1 or anti-inflammatory MSC2 responding to different immune environment. It would be safer and more efficient if we could induce MSCs into a certain immune phenotype, in most cases MSC2, prior to medical treatment. In this study, we screened and identified a classical FDA-approved drug, chlorzoxazone (CZ). Unlike traditional method induced by IFN-γ, CZ can induce MSC into MSC2 phenotype and enhance the immunosuppressive capacity without elevation of immunogenicity of MSCs. CZ-treated MSCs can better inhibit T cells activation and proliferation, promote expression of IDO and other immune mediators in vitro, and alleviate inflammatory infiltration and tissue damage in acute kidney injury rat model more effectively. Moreover, we discovered that CZ modulates phosphorylation of transcriptional factor forkhead box O3 (FOXO3) independent of classical AKT or ERK signaling pathways, to promote expression of downstream immune-related genes, therefore contributing to augmentation of MSCs immunosuppressive capacity. Our study established a novel and effective approach to induce MSC2, which is ready for clinical application.


Assuntos
Clorzoxazona/farmacologia , Proteína Forkhead Box O3/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Clorzoxazona/metabolismo , Humanos , Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos Wistar
14.
Eur Rev Med Pharmacol Sci ; 23(18): 7892-7898, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31599414

RESUMO

OBJECTIVE: FoxO3a is a well-defined tumor suppressor gene in the forkhead transcription factor O subfamily (FoxO), and its reduction is related to the occurrence of various tumors. It was found that miR-223 expression is abnormally elevated in pancreatic cancer tissues. Bioinformatics analysis revealed a targeted complementary binding relationship between miR-223 and FoxO3a. This study explored whether miR-155 regulates the expression of FoxO3a and affects the proliferation, apoptosis, and cisplatin (CDDP) resistance of oral cancer cells. MATERIALS AND METHODS: Dual-Luciferase reporter gene assay validated the targeted relationship between miR-223 and FoxO3a. The CDDP-resistant pancreatic cancer cell line BXPC3/CDDP was established, and the expressions of miR-223 and FoxO3a were compared. BXPC3/CDDP cells were divided into miR-NC group and miR-223 inhibitor group. QRT-PCR was adopted to test miR-223 and FoxO3a mRNA expressions. Western blot was performed to determine FoxO3a protein expression. Cell apoptosis was detected by flow cytometry and cell proliferation was detected by EdU staining. RESULTS: There was a targeted regulatory relationship between miR-223 and FoxO3a mRNA. The expression of miR-223 was significantly higher, while the expression of FoxO3a mRNA and protein was significantly lower in BXPC3/CDDP cells than that in BXPC3 cells. Cell Counting Kit-8 (CCK-8) experiments showed that the same concentration of CDDP exhibited significantly lower proliferation inhibition in BXPC3/CDDP cells than BXPC3 cells. Compared with miR-NC group, transfection of miR-223 inhibitor significantly increased the expression of FoxO3a in BXPC3/CDDP cells, which significantly attenuated cell proliferation and enhanced apoptosis in CDDP-treated cells. CONCLUSIONS: Increased expression of miR-233 was associated with CDDP resistance in pancreatic cancer cells. Inhibition of miR-223 expression upregulated FoxO3a expression, restrained pancreatic cancer cell proliferation, promoted cell apoptosis, and enhanced CDDP sensitivity in pancreatic cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Proteína Forkhead Box O3/efeitos dos fármacos , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Bucais/genética , Neoplasias Pancreáticas/mortalidade , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos
15.
Toxicol Lett ; 315: 1-8, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421153

RESUMO

Arsenic trioxide (As2O3) has been used clinically for the treatment of acute promyelocytic leukemia and some solid tumors. However, the mechanisms of its anti-tumor effects are still elusive. Angiogenesis is a key process for tumor initiation, and increasing evidence has supported the role of anti-angiogenesis caused by arsenic in tumor suppression, although the detailed mechanism is not well understood. In the present study, we found that As2O3 significantly inhibited the angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and this was mediated by the upregulation of FoxO3a. Knockdown of FoxO3a could restore the angiogenic ability of HUVECs. Moreover, vascular endothelial cell-specific knockout of FoxO3a in mice could disrupt the anti-angiogenesis effect of As2O3 and endow the tumors with resistance to As2O3 treatments. Our results revealed a new mechanism by which As2O3 suppresses angiogenesis and tumor growth.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Proteína Forkhead Box O3/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Veias Umbilicais/efeitos dos fármacos
16.
Acta Cir Bras ; 34(5): e201900502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166463

RESUMO

PURPOSE: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. METHODS: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. RESULTS: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of ß-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. CONCLUSION: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/ß-catenin pathway.


Assuntos
Astrágalo/química , Proteína Forkhead Box O3/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Polissacarídeos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Proteína Forkhead Box O3/análise , Expressão Gênica/efeitos dos fármacos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Osteoporose/metabolismo , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Reprodutibilidade dos Testes , Resultado do Tratamento , Via de Sinalização Wnt/fisiologia , Proteína Wnt2/análise , Proteína Wnt2/efeitos dos fármacos , beta Catenina/análise , beta Catenina/efeitos dos fármacos
17.
Muscle Nerve ; 60(2): 192-201, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31093982

RESUMO

INTRODUCTION: We recently demonstrated the beneficial effects of 4-aminopyridine (4-AP), a potassium channel blocker, in enhancing remyelination and recovery of nerve conduction velocity and motor function after sciatic nerve crush injury in mice. Although muscle atrophy occurs very rapidly after nerve injury, the effect of 4-AP on muscle atrophy and intrinsic muscle contractile function is largely unknown. METHODS: Mice were assigned to sciatic nerve crush injury and no-injury groups and were followed for 3, 7, and 14 days with/without 4-AP or saline treatment. Morphological, functional, and transcriptional properties of skeletal muscle were assessed. RESULTS: In addition to improving in vivo function, 4-AP significantly reduced muscle atrophy with increased muscle fiber diameter and contractile force. Reduced muscle atrophy was associated with attenuated expression of atrophy-related genes and increased expression of proliferating stem cells. DISCUSSION: These findings provide new insights into the potential therapeutic benefits of 4-AP against nerve injury-induced muscle atrophy and dysfunction. Muscle Nerve 60: 192-201, 2019.


Assuntos
4-Aminopiridina/farmacologia , Lesões por Esmagamento/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Remielinização/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Lesões por Esmagamento/metabolismo , Lesões por Esmagamento/patologia , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Camundongos , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/genética , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Regeneração/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Proteínas com Motivo Tripartido/efeitos dos fármacos , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
18.
Acta cir. bras ; 34(5): e201900502, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1010874

RESUMO

Abstract Purpose: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. Methods: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. Results: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of β-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. Conclusion: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/β-catenin pathway.


Assuntos
Animais , Feminino , Osteoporose/tratamento farmacológico , Polissacarídeos/farmacologia , Astrágalo/química , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Forkhead Box O3/efeitos dos fármacos , Osteoporose/metabolismo , Valores de Referência , Ovariectomia , Distribuição Aleatória , Densidade Óssea/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Reprodutibilidade dos Testes , Resultado do Tratamento , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteína Wnt2/análise , Proteína Wnt2/efeitos dos fármacos , beta Catenina/análise , beta Catenina/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Via de Sinalização Wnt/fisiologia , Proteína Forkhead Box O3/análise
19.
Muscle Nerve ; 57(4): 650-658, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28881481

RESUMO

INTRODUCTION: Muscle wasting is a frequent, debilitating complication of cancer. The impact of colorectal cancer chemotherapeutic oxaliplatin on the development of muscle loss and associated molecular changes is of clinical importance. METHODS: C57BL/6J male mice were treated with oxaliplatin. Total body weights were measured and behavioral studies performed. Hindlimb muscle weights (gastrocnemius and soleus) were recorded in conjunction with gene and protein expression analysis. RESULTS: Oxaliplatin-treated mice displayed reduced weight gain and behavioral deficits. Mice treated over a shorter course had significantly increased STAT3 phosphorylation in gastrocnemius muscles. Mice receiving extended oxaliplatin treatment demonstrated reduced hindlimb muscle mass with upregulation of myopathy-associated genes Foxo3, MAFbx, and Bnip3. DISCUSSION: The findings suggest that oxaliplatin treatment can directly disrupt skeletal muscle homeostasis and promote muscle loss, which may be clinically relevant in the context of targeting fatigue and weakness in cancer patients. Muscle Nerve 57: 650-658, 2018.


Assuntos
Antineoplásicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Oxaliplatina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Membro Posterior , Masculino , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/genética , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
20.
Med Sci Monit ; 23: 5793-5802, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211704

RESUMO

BACKGROUND Histone deacetylase (HDAC) inhibitors are emerging as a new class of anti-cancer drugs that promote cancer cell apoptosis, and include suberoylanilide hydroxamic acid (SAHA). The aim of this study was to investigate the mechanism of SAHA-induced apoptosis in human prostate cancer cell lines, DU145 and PC-3. MATERIAL AND METHODS Cell lines, DU145 and PC-3, were studied before and after treatment with SAHA. The effects of SAHA treatment on cell proliferation were studied using the MTT cell proliferation assay. Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining were used to study the effects of SAHA treatment on cell apoptosis. Western blotting, quantitative polymerase chain reaction (qPCR) and short interfering (si)RNA assays were performed to study the effects of SAHA treatment on apoptotic and cell cycle proteins and the Akt/FOXO3a signaling pathway. RESULTS Treatment with SAHA inhibited cell proliferation in human prostate cancer cell lines DU145 and PC-3 cells in a dose-dependent way. Cell cycle analysis and Annexin-V FITC/PI staining showed that treatment with SAHA resulted in G2/M cell cycle arrest and increased cell apoptosis in a dose-dependent way. Also, treatment with SAHA reduced the protein expression levels cyclin B and cyclin A2 and promoted the activation of FOXO3a by inhibiting Akt activation. Western blotting, the siRNA assay, and qPCR showed that FOXO3a, the Bcl-2 family of proteins, survivin, and FasL were involved in SAHA-induced apoptosis in prostate cancer cells grown in vitro. CONCLUSIONS Treatment with SAHA promoted apoptosis via the Akt/FOXO3a signaling pathway in prostate cancer cells in vitro.


Assuntos
Ácidos Hidroxâmicos/metabolismo , Anexina A5 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas Inibidoras de Apoptose , Masculino , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA