Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.528
Filtrar
1.
Toxins (Basel) ; 16(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39330845

RESUMO

This study aimed to assess the effects of the timing of administering botulinum neurotoxin A (BoNT/A) on nerve regeneration in rats. Sixty 6-week-old rats with a sciatic nerve injury were randomly divided into four groups: the immediately treated (IT) group (BoNT/A injection administered immediately post-injury), the delay-treated (DT) group (BoNT/A injection administered one week post-injury), the control group (saline administered one week post-injury), and the sham group (only skin and muscle incisions made). Nerve regeneration was assessed 3, 6, and 9 weeks post-injury using various techniques. The levels of glial fibrillary acid protein (GFAP), astroglial calcium-binding protein S100ß (S100ß), growth-associated protein 43 (GAP43), neurofilament 200 (NF200), and brain-derived neurotrophic factor (BDNF) in the IT and DT groups were higher. ELISA revealed the highest levels of these proteins in the IT group, followed by the DT and control groups. Toluidine blue staining revealed that the average area and myelin thickness were higher in the IT group. Electrophysiological studies revealed that the CMAP in the IT group was significantly higher than that in the control group, with the DT group exhibiting significant differences starting from week 8. The findings of the sciatic functional index analysis mirrored these results. Thus, administering BoNT/A injections immediately after a nerve injury is most effective for neural recovery. However, injections administered one week post-injury also significantly enhanced recovery. BoNT/A should be administered promptly after nerve damage; however, its administration during the non-acute phase is also beneficial.


Assuntos
Toxinas Botulínicas Tipo A , Regeneração Nervosa , Nervo Isquiático , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/farmacologia , Nervo Isquiático/lesões , Nervo Isquiático/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Recuperação de Função Fisiológica , Ratos Sprague-Dawley , Proteína GAP-43/metabolismo , Neuropatia Ciática/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Fatores de Tempo
2.
Neuroscience ; 557: 100-115, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39142624

RESUMO

Spinal cord injury (SCI) above the lumbosacral spinal cord induces loss of voluntary control over micturition. Spinal cord transection (SCT) was the gold standard method to reproduce SCI in rodents, but its translational value is arguable and other experimental SCI methods need to be better investigated, including spinal cord contusion (SCC). At present, it is not fully investigated if urinary impairments arising after transection and contusion are comparable. To explore this, we studied bladder-reflex activity and lower urinary tract (LUT) and spinal cord innervation after SCT and different severities of SCC. Severe-contusion animals presented a longer spinal shock period and the tendency for higher residual volumes, followed by SCT and mild-contusion animals. Urodynamics showed that SCT animals presented higher basal and peak bladder pressures. Immunostaining against growth-associated protein-43 (GAP43) and calcitonin gene-related peptide (CGRP) at the lumbosacral spinal cord demonstrated that afferent sprouting is dependent on the injury model, reflecting the severity of the lesion, with a higher expression in SCT animals. In LUT organs, the expression of GAP43, CGRP cholinergic (vesicular acetylcholine transporter (VAChT)) and noradrenergic (tyrosine hydroxylase (TH)) markers was reduced after SCI in the LUT and lumbosacral cord, but only the lumbosacral expression of VAChT was dependent on the injury model. Overall, our findings demonstrate that changes in LUT innervation and function after contusion and transection are similar but result from distinct neuroplastic processes at the lumbosacral spinal cord. This may impact the development of new therapeutic options for urinary impairment arising after spinal cord insult.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Modelos Animais de Doenças , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/fisiopatologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Proteína GAP-43/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Medula Espinal/metabolismo , Vértebras Torácicas , Ratos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária/inervação , Urodinâmica/fisiologia , Ratos Sprague-Dawley , Contusões
3.
Mol Brain ; 17(1): 60, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215335

RESUMO

Mild Cognitive Impairment (MCI) is a neurological condition characterized by a noticeable decline in cognitive abilities that falls between normal aging and dementia. Along with some biomarkers like GAP-43, Aß, tau, and P-tau, brain activity and connectivity are ascribed to MCI; however, the link between brain connectivity changes and such biomarkers in MCI is still being investigated. This study explores the relationship between biomarkers like GAP-43, Aß, tau, and P-tau, and brain connectivity. We enrolled 25 Participants with normal cognitive function and 23 patients with MCI. Levels of GAP-43, Aß1-42, t-tau, and p-tau181p in the CSF were measured, and functional connectivity measures including ROI-to-voxel (RV) correlations and the DMN RV-ratio were extracted from the resting-state fMRI data. P-values below 0.05 were considered significant. The results showed that in CN individuals, higher connectivity within the both anterior default mode network (aDMN) and posterior DMN (pDMN) was associated with higher levels of the biomarker GAP-43. In contrast, MCI individuals showed significant negative correlations between DMN connectivity and levels of tau and P-tau. Notably, no significant correlations were found between Aß levels and connectivity measures in either group. These findings suggest that elevated levels of GAP-43 indicate increased functional connectivity in aDMN and pDMN. Conversely, elevated levels of tau and p-tau can disrupt connectivity through various mechanisms. Thus, the accumulation of tau and p-tau can lead to impaired neuronal connectivity, contributing to cognitive decline.


Assuntos
Peptídeos beta-Amiloides , Encéfalo , Disfunção Cognitiva , Proteína GAP-43 , Imageamento por Ressonância Magnética , Descanso , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Masculino , Feminino , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Idoso , Imageamento por Ressonância Magnética/métodos , Fosforilação , Descanso/fisiologia , Proteína GAP-43/metabolismo , Pessoa de Meia-Idade , Biomarcadores/metabolismo
4.
Arch Gerontol Geriatr ; 127: 105576, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-39096557

RESUMO

BACKGROUND: Growth associated protein-43 (GAP-43) and neurofilaments light (NFL) are biomarkers of synaptic and axonal injury, and are associated with cognitive decline in Alzheimer's disease (AD) contiuum. We investigated whether Polygenic Hazard Score (PHS) is associated with specific biomarkers and cognitive measures, and if it can predict the relationship between GAP-43, NFL, and cognitive decline in AD. METHOD: We enrolled 646 subjects: 93 with AD, 350 with mild cognitive impairment (MCI), and 203 cognitively normal controls. Variables included GAP-43, plasma NFL, and PHS. A PHS of 0.21 or higher was considered high risk while a PHS below this threshold was considered low risk. A subsample of 190 patients with MCI with four years of follow-up cognitive assessments were selected for longitudinal analysis . We assessed the association of the PHS with AD biomarkers and cognitive measures, as well as the predictive power of PHS on cognitive decline and the conversion of MCI to AD. RESULTS: PHS showed high diagnostic accuracy in distinguishing AD, MCI, and controls. At each follow-up point, high risk MCI patients showed higher level of cognitive impairment compared to the low risk group. GAP-43 correlated with all follow-up cognitive tests in high risk MCI patients which was not detected in low risk MCI patients. Moreover, high risk MCI patients progressed to dementia more rapidly compared to low risk patients. CONCLUSION: PHS can predict cognitive decline and impacts the relationship between neurodegenerative biomarkers and cognitive impairment in AD contiuum. Categorizing patients based on PHS can improve the prediction of cognitive outcomes and disease progression.


Assuntos
Doença de Alzheimer , Biomarcadores , Disfunção Cognitiva , Progressão da Doença , Proteína GAP-43 , Proteínas de Neurofilamentos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Masculino , Feminino , Idoso , Disfunção Cognitiva/sangue , Disfunção Cognitiva/genética , Biomarcadores/sangue , Proteínas de Neurofilamentos/sangue , Axônios/patologia , Sinapses/patologia , Idoso de 80 Anos ou mais , Herança Multifatorial , Estudos de Casos e Controles
5.
J Neurosci ; 44(39)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39168654

RESUMO

Growth-associated protein of 43 kDa (GAP43) is a key cytoskeleton-associated component of the presynaptic terminal that facilitates neuroplasticity. Downregulation of GAP43 expression has been associated to various psychiatric conditions in humans and evokes hippocampus-dependent memory impairments in mice. Despite the extensive studies conducted on hippocampal GAP43 in past decades, however, very little is known about its roles in modulating the excitatory versus inhibitory balance in other brain regions. We recently generated conditional knock-out mice in which the Gap43 gene was selectively inactivated in either telencephalic glutamatergic neurons (Gap43fl/fl ;Nex1Cre mice, hereafter Glu-GAP43-/- mice) or forebrain GABAergic neurons (Gap43fl/fl ;Dlx5/6Cre mice, hereafter GABA-GAP43-/- mice). Here, we show that Glu-GAP43-/- but not GABA-GAP43-/- mice of either sex show a striking hyperactive phenotype when exposed to a novel environment. This behavioral alteration of Glu-GAP43-/- mice was linked to a selective activation of dorsal-striatum neurons, as well as to an enhanced corticostriatal glutamatergic transmission and an abrogation of corticostriatal endocannabinoid-mediated long-term depression. In line with these observations, GAP43 was abundantly expressed in corticostriatal glutamatergic terminals of wild-type mice. The novelty-induced hyperactive phenotype of Glu-GAP43-/- mice was abrogated by chemogenetically inhibiting corticostriatal afferences with a Gi-coupled "designer receptor exclusively activated by designer drugs" (DREADDs), thus further supporting that novelty-induced activity is controlled by GAP43 at corticostriatal excitatory projections. Taken together, these findings show an unprecedented regulatory role of GAP43 in the corticostriatal circuitry and provide a new mouse model with a delimited neuronal-circuit alteration for studying novelty-induced hyperactivity, a phenotypic shortfall that occurs in diverse psychiatric diseases.


Assuntos
Corpo Estriado , Proteína GAP-43 , Camundongos Knockout , Animais , Camundongos , Masculino , Corpo Estriado/metabolismo , Feminino , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Hipercinese/metabolismo , Hipercinese/genética , Terminações Pré-Sinápticas/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
6.
Turk Neurosurg ; 34(5): 888-897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087298

RESUMO

AIM: To assess the effect of intravenously injected superparamagnetic iron oxide nanoparticle (SPION)-labeled adipose-derived stem cells (ADSCs) under an external magnetic field on the efficacy of ADSC transplantation in rats with spinal cord injury (SCI). MATERIAL AND METHODS: ADSCs were isolated from rats, labeled with SPIONs, and divided into magnetic and non-magnetic groups. A rat model of SCI was established, and SCI rats were randomly divided into magnetic, non-magnetic, and control groups, with ten rats in each group. Rats in the magnetic and non-magnetic groups were injected with SPION-labeled ADSCs via the tail vein. A 300-mT neodymium iron boron magnet was placed externally at the SCI site of the rats in the magnetic group. One and two weeks after successful modeling, SCI rats were scored for the degree of SCI followed by histopathology of the spinal cord, number of ADSCs at the SCI site, and growth-associated protein-43 (GAP-43) expression were determined in the spinal cord tissues. RESULTS: One and two weeks after modeling, the Basso-beattie bresnahan (BBB) scores were the highest in the magnetic group, followed by the non-magnetic group, and the lowest in the control group. HE staining showed that the histopathological manifestations of the spinal cord in the magnetic group were somewhat improved compared to those in the non-magnetic and control groups. Two weeks after modeling, Prussian blue staining revealed that the number of ADSCs was significantly higher in the spinal cord tissue of the magnetic group than in that of the non-magnetic group. One and two weeks after modeling, western blotting revealed that the magnetic group exhibited the highest GAP-43 expression. CONCLUSION: An external magnetic field applied at the SCI site in rats exerted a directional effect on SPION-labeled ADSCs, directing their migration and improving the efficacy of stem cell-targeted therapies for SCI.


Assuntos
Campos Magnéticos , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Ratos , Ratos Sprague-Dawley , Nanopartículas Magnéticas de Óxido de Ferro , Transplante de Células-Tronco/métodos , Masculino , Modelos Animais de Doenças , Tecido Adiposo/citologia , Medula Espinal , Células-Tronco , Proteína GAP-43/metabolismo , Nanopartículas de Magnetita
7.
J Cardiovasc Med (Hagerstown) ; 25(9): 664-673, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949125

RESUMO

BACKGROUND AND AIMS: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling. METHODS: Male nondiabetic Sprague-Dawley rats were divided into Sham ( n  = 10), MI ( n  = 13), low-EMPA (10 mg/kg/day; n  = 13), and high-EMPA (30 mg/kg/day; n  = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed. RESULTS: Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups. CONCLUSION: EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.


Assuntos
Compostos Benzidrílicos , Modelos Animais de Doenças , Glucosídeos , Infarto do Miocárdio , Fator de Crescimento Neural , Ratos Sprague-Dawley , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose , Sistema Nervoso Simpático , Remodelação Ventricular , Animais , Masculino , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Fator de Crescimento Neural/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inibidores , Proteína GAP-43/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/tratamento farmacológico , Ratos , Antiarrítmicos/farmacologia , Conexina 43
8.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918041

RESUMO

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.


Assuntos
Axônios , Corpo Caloso , Neuregulina-1 , Transdução de Sinais , Animais , Neuregulina-1/metabolismo , Neuregulina-1/genética , Corpo Caloso/metabolismo , Axônios/metabolismo , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/etiologia , Esquizofrenia/patologia , Camundongos Knockout , Neurônios/metabolismo , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Camundongos Endogâmicos C57BL
9.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
10.
Life Sci ; 345: 122606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574884

RESUMO

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína GAP-43 , Longevidade , Neuroblastoma , Crescimento Neuronal , Linhagem Celular Tumoral
11.
Neuroinformatics ; 22(3): 239-250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38630411

RESUMO

Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer's disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.


Assuntos
Biomarcadores , Disfunção Cognitiva , Proteína GAP-43 , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Progressão da Doença , Seguimentos , Proteína GAP-43/líquido cefalorraquidiano
12.
Biomed Pharmacother ; 174: 116460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520864

RESUMO

Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study. SHPL-49 activated the brain-derived neurotrophic factor (BDNF) pathway, decreased the number of degenerated neurons, and accelerated neurogenesis in rats with cerebral ischemia. In addition, SHPL-49 promoted the polarization of microglia toward the M2 phenotype to alleviate neuroinflammation. In BV2 cells, SHPL-49 upregulated CD206 mRNA and protein levels and inhibited CD86 mRNA and protein levels. SHPL-49 also increased neurotrophic factor secretion in BV2 cells, which indirectly promoted the survival of primary neurons after oxygen-glucose deprivation (OGD). Proteomics analysis revealed that SHPL-49 promoted growth-associated protein 43 (Gap43) expression. SHPL-49 enhanced synaptic plasticity and increased Gap43 protein levels via activation of the BDNF pathway in the OGD primary neuron model. These results indicate that SHPL-49 prevents cerebral ischemic injury by activating neurotrophic factor pathways and altering microglial polarization. Thus, SHPL-49 is a potential neuroprotective agent.


Assuntos
Isquemia Encefálica , Fator Neurotrófico Derivado do Encéfalo , Proteína GAP-43 , Glucosídeos , Microglia , Neurônios , Fármacos Neuroprotetores , Fenóis , Ratos Sprague-Dawley , Receptor trkB , Transdução de Sinais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Glucosídeos/farmacologia , Fenóis/farmacologia , Masculino , Ratos , Proteína GAP-43/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Receptor trkB/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Neurogênese/efeitos dos fármacos , Camundongos
13.
J Dermatol Sci ; 113(3): 138-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429137

RESUMO

BACKGROUND: Postherpetic pain (PHP) is difficult to control. Although Neurotropin® (NTP) and methylcobalamin (MCB) are often prescribed to treat the pain, the efficacy of combined treatment for PHP remains imcompletely understood. OBJECTIVE: In this study, we investigate the combined effects of NTP and MCB on PHP in mice. METHODS: NTP and MCB were administered from day 10-29 after herpes simplex virus type-1 (HSV-1) infection. The pain-related responses were evaluated using a paint brush. The expression of neuropathy-related factor (ATF3) and nerve repair factors (GAP-43 and SPRR1A) in the dorsal root ganglion (DRG) and neurons in the skin were evaluated by immunohistochemical staining. Nerve growth factor (NGF) and neurotrophin-3 (NT3) mRNA expression levels were evaluated using real-time PCR. RESULTS: Repeated treatment with NTP and MCB after the acute phase inhibited PHP. Combined treatment with these drugs inhibited PHP at an earlier stage than either treatment alone. In the DRG of HSV-1-infected mice, MCB, but not NTP, decreased the number of cells expressing ATF3 and increased the number of cells expressing GAP-43- and SPRR1A. In addition, MCB, but not NTP, also increased and recovered non-myelinated neurons decreased in the lesional skin. NTP increased the mRNA levels of NTF3 in keratinocytes, while MCB increased that of NGF in Schwann cells. CONCLUSION: These results suggest that combined treatment with NTP and MCB is useful for the treatment of PHP. The combined effect may be attributed to the different analgesic mechanisms of these drugs.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Neuralgia Pós-Herpética , Polissacarídeos , Vitamina B 12/análogos & derivados , Camundongos , Animais , Neuralgia Pós-Herpética/tratamento farmacológico , Fator de Crescimento Neural/metabolismo , Proteína GAP-43/farmacologia , Herpes Simples/complicações , Herpes Simples/tratamento farmacológico , RNA Mensageiro
14.
IUBMB Life ; 76(8): 548-562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38390757

RESUMO

Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.


Assuntos
Restrição Calórica , Plasticidade Neuronal , Animais , Masculino , Ratos , Fatores Etários , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Caderinas/genética , Caderinas/metabolismo , Dieta , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
15.
J Alzheimers Dis ; 97(4): 1913-1922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38339928

RESUMO

Background: Cerebral microbleeds (CMB) play an important role in neurodegenerative pathology. Objective: The present study aims to test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) level is linked to CMBs in elderly people. Methods: A total of 750 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had measurements of GAP-43 and CMBs were included in the study. According to the presence and extent of CMBs, participants were stratified into different groups. Regression analyses were used to assess cross-sectional and longitudinal associations between GAP-43 and CMBs. Results: Participants with CMB were slightly older and had higher concentrations of CSF GAP43. In multivariable adjusted analyses for age, gender, APOEɛ4 status, and cognitive diagnoses, higher CSF GAP-43 concentrations were modestly associated with CMB presence (OR = 1.169, 95% CI = 1.001-1.365) and number (ß= 0.020, SE = 0.009, p = 0.027). Similarly, higher CSF GAP43 concentrations were accrual of CMB lesions, associated with higher CMB progression (OR = 1.231, 95% CI = 1.044-1.448) and number (ß= 0.017, SE = 0.005, p = 0.001) in the follow up scan. In stratified analyses, slightly stronger associations were noted in male participants, those 65 years and older, carriers of APOEɛ4 alleles, and with more advanced cognitive disorders. Conclusions: CSF GAP-43 was cross-sectionally associated with the presence and extent of CMBs. GAP-43 might be used as a biomarker to track the dynamic changes of CMBs in elderly persons.


Assuntos
Hemorragia Cerebral , Imageamento por Ressonância Magnética , Humanos , Masculino , Idoso , Proteína GAP-43 , Hemorragia Cerebral/líquido cefalorraquidiano , Estudos Longitudinais , Estudos Transversais , Imageamento por Ressonância Magnética/métodos
16.
Protein Pept Lett ; 31(3): 229-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288820

RESUMO

OBJECTIVES: In this study, we employed an in vitro culturing technique to investigate the impact of p53 on the modulation of growth-associated protein-43 (GAP-43) within the primary cortical neurons of rat specimens. METHODS: (1) Within the first 24 hours after birth, the bilateral cortex was extracted from newborn Wistar rats and primary cortical neurons were cultured and identified. (2) The changes in the mRNA and protein expressions of GAP-43 induced by p53 in rat primary cortical neurons cultured in vitro were identified utilizing real-time polymerase chain reaction and western blot techniques. RESULTS: (1) Lentiviral transfection of p53 within primary cortical neurons of rats elicited elevated levels of both mRNA and protein expressions of GAP-43, consequently culminating in a noteworthy augmentation of p53 expression. (2) The introduction of a p53 inhibitor in rat primary cortical neurons resulted in a reduction in both mRNA and protein expressions of GAP-43. CONCLUSION: Within primary rat cortical neurons, p53 has the potential to prompt an augmentation in both the transcriptional and protein expression levels of the GAP-43 protein.


Assuntos
Córtex Cerebral , Proteína GAP-43 , Neurônios , Ratos Wistar , Proteína Supressora de Tumor p53 , Regulação para Cima , Animais , Ratos , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Neurônios/metabolismo , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
17.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38168094

RESUMO

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Assuntos
MicroRNAs , RNA Longo não Codificante , Traumatismos da Medula Espinal , Animais , Ratos , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Proteína GAP-43/genética , Proteína GAP-43/metabolismo
18.
Nat Commun ; 15(1): 202, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172114

RESUMO

In Alzheimer's disease, amyloid-beta (Aß) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aß induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aß-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aß-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aß and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aß-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Biomarcadores/metabolismo
19.
Chem Biol Drug Des ; 103(1): e14439, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230778

RESUMO

A novel curcumin formulation increases relative absorption by 46 times (CurcuWIN®) of the total curcuminoids over the unformulated standard curcumin form. However, the exact mechanisms by which curcumin demonstrates its neuroprotective effects are not fully understood. This study aimed to investigate the impact of a novel formulation of curcumin on the expression of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), a main component of the glial scar and growth-associated protein-43 (GAP-43), a signaling molecule in traumatic brain injury (TBI). Mice (adult, male, C57BL/6j) were randomly divided into three groups as follows: TBI group (TBI-induced mice); TBI + CUR group (TBI mice were injected i.p. curcumin just after TBI); TBI+ CurcuWIN® group (TBI mice were injected i.p. CurcuWIN® just after TBI). Brain injury was induced using a cold injury model. Injured brain tissue was stained with Cresyl violet to evaluate infarct volume and brain swelling, analyzed, and measured using ImageJ by Bethesda (MD, USA). Western blot analysis was performed to determine the protein levels related to injury. While standard curcumin significantly reduced brain injury, CurcuWIN® showed an even greater reduction associated with reductions in glial activation, NF-κB, and the inflammatory cytokines IL-1ß and IL-6. Additionally, both standard curcumin and CurcuWIN® led to increased BDNF, GAP-43, ICAM-1, and Nrf2 expression. Notably, CurcuWIN® enhanced their expression more than standard curcumin. This data suggests that highly bioavailable curcumin formulation has a beneficial effect on the traumatic brain in mice.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Curcumina , Camundongos , Masculino , Animais , Citocinas/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Proteína GAP-43 , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/complicações , Inflamação , Modelos Animais de Doenças
20.
FASEB J ; 38(1): e23340, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031959

RESUMO

Facial nerve regeneration still lacks a well-defined and practical clinical intervention. The survival of central facial motoneuron is a critical component in the successful peripheral facial nerve regeneration. Endogenous GDNF is vital for facial nerve regeneration according to earlier investigations. Nevertheless, the low endogenous GDNF level makes it challenging to achieve therapeutic benefits. Thus, we crushed the main trunk of facial nerve in SD rats to provide a model of peripheral facial paralysis, and we administered exogenous GDNF and Rapa treatments. We observed changes in the animal behavior scores, the morphology of facial nerve and buccinator muscle, the electrophysiological of facial nerve, and the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the facial motoneurons. We discovered that GDNF could boost axon regeneration, hasten the recovery of facial paralysis symptoms and nerve conduction function, and increase the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the central facial motoneurons. Therefore, exogenous GDNF injection into the buccinator muscle can enhance facial nerve regeneration following crushing injury and protect facial neurons via the PI3K/AKT/mTOR signaling pathway. This will offer a fresh perspective and theoretical foundation for the management of clinical facial nerve regeneration.


Assuntos
Axônios , Nervo Facial , Ratos , Animais , Ratos Sprague-Dawley , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína GAP-43 , Regeneração Nervosa/fisiologia , Neurônios Motores/fisiologia , Serina-Treonina Quinases TOR , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA