Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Neurosci ; 130(2): 144-152, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31554446

RESUMO

Purpose: Recent studies have shown that growth-associated protein-43 (GAP-43) may influence the mitotic-spindle orientation of Madin-Darby Canine Kidney (MDCK) cells through interacting with G proteins in vitro. However, whether GAP-43 interacts with the G proteins under the influence of mitotic spindle positioning related to the orientation of cell division during neurogenesis remains unclear. In order to explore the molecular mechanism in vivo, the GAP-43 transgenic mice were produced and the angles of cell division in the ventricular zone (VZ) during neurogenesis (embryonic period between 13.5 and 17.5 days) were measured in both transgenic mice and wild type mice by spindle angle analysis.Materials and methods: The interaction of GAP-43 and Gαi was detected by co-immunoprecipitation (co-IP), whereas the localization of GAP-43 was determined by immunofluorescence.Results: The results obtained using co-IP and immunofluorescence showed that GAP-43 is localized on the cell membrane and interacts with Gαi. This interaction dramatically induced a significant increase in the proportion of horizontally and intermediately dividing cells during the embryonic period of 13.5 days in the transgenic mouse brain, as observed by spindle angle analysis.Conclusions: It can be concluded that GAP-43 is involved in the orientation of cell division by interacting with Gαi, and that this may be an important mechanism for neurogenesis in the mammalian brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Divisão Celular/fisiologia , Proteína GAP-43/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Neurogênese/fisiologia , Animais , Encéfalo/metabolismo , Embrião de Mamíferos , Proteína GAP-43/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Brain Res ; 1701: 28-35, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025975

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has demonstrated antiepileptic efficacy, especially for mesial temporal lobe epilepsy (MTLE). Mossy fiber sprouting (MFS) is involved in the pathogenesis of MTLE, and Sema-3A and GAP-43 are pivotal regulators of MFS. This study investigated the effects of ANT-DBS on MFS and expression levels of Sema-3A and GAP-43 as a possible mechanism for seizure suppression. METHODS: Adult male Sprague-Dawley rats were randomly divided into four groups: (1) control (saline injection), (2) KA (kainic acid injection), (3) KA + Sham-DBS (electrode implantation without stimulation), and (4) KA + DBS (electrode implantation with stimulation). Video electroencephalography (EEG) was used to ensure model establishment and monitor seizure frequency, latency, and severity (Racine stage). Chronic ANT stimulation was conducted for 35 days in the KA + DBS group, and MFS compared to the other groups by quantitative Timm staining. Sema-3A and GAP-43 expression levels in the hippocampal formation were evaluated in all groups with western blot. RESULTS: The latency period was significantly prolonged and spontaneous seizure frequency reduced in the KA + DBS group compared to KA and KA + Sham-DBS groups. Staining scores for MFS in CA3 and dentate gyrus (DG) were significantly lower in the KA + DBS group. The KA + DBS group also exhibited decreased GAP-43 expression and increased Sema-3A expression compared to KA and KA + Sham-DBS groups. CONCLUSION: These results suggest that ANT-DBS extends the latent period following epileptogenic stimulation by impeding MFS through modulation of GAP-43 and Sema-3A expression.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Epilepsia/patologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Núcleo Celular/patologia , Estimulação Encefálica Profunda/métodos , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/patologia , Proteína GAP-43/metabolismo , Proteína GAP-43/fisiologia , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Masculino , Fibras Musgosas Hipocampais/patologia , Ratos , Ratos Sprague-Dawley , Convulsões/patologia , Semaforina-3A/metabolismo , Semaforina-3A/fisiologia
3.
Sci Rep ; 7(1): 17702, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255203

RESUMO

We previously showed increased growth associated protein 43 (GAP-43) expression in brain samples resected from patients with cortical dysplasia (CD), which was correlated with duration of epilepsy. Here, we used a rat model of CD to examine the regulation of GAP-43 in the brain and serum over the course of epileptogenesis. Baseline GAP-43 expression was higher in CD animals compared to control non-CD rats. An acute seizure increased GAP-43 expression in both CD and control rats. However, GAP-43 expression decreased by day 15 post-seizure in control rats, which did not develop spontaneous seizures. In contrast, GAP-43 remained up-regulated in CD rats, and over 50% developed chronic epilepsy with increased GAP-43 levels in their serum. GAP-43 protein was primarily located in excitatory neurons, suggesting its functional significance in epileptogenesis. Inhibition of GAP-43 expression by shRNA significantly reduced seizure duration and severity in CD rats after acute seizures with subsequent reduction in interictal spiking. Serum GAP-43 levels were significantly higher in CD rats that developed spontaneous seizures. Together, these results suggest GAP-43 as a key factor promoting epileptogenesis, a possible therapeutic target for treatment of progressive epilepsy and a potential biomarker for epilepsy progression in CD.


Assuntos
Epilepsia/fisiopatologia , Epilepsia/terapia , Proteína GAP-43/metabolismo , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia/prevenção & controle , Proteína GAP-43/fisiologia , Regulação da Expressão Gênica/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia
4.
J Neurochem ; 129(4): 649-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24350810

RESUMO

Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth-associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.


Assuntos
Acetilcolina/fisiologia , Região CA3 Hipocampal/citologia , Cones de Crescimento/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/embriologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Colina/farmacologia , Feminino , Proteína GAP-43/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Cones de Crescimento/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/farmacologia , Toxina Pertussis/farmacologia , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/efeitos dos fármacos , Venenos de Vespas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética , Proteína cdc42 de Ligação ao GTP/fisiologia
5.
Proc Natl Acad Sci U S A ; 110(26): 10824-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754371

RESUMO

Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.


Assuntos
Córtex Cerebelar/lesões , Córtex Cerebelar/fisiopatologia , Proteína GAP-43/fisiologia , Regeneração Nervosa/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Axotomia , Córtex Cerebelar/ultraestrutura , Proteína GAP-43/antagonistas & inibidores , Proteína GAP-43/genética , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fibras Nervosas/fisiologia , Fibras Nervosas/ultraestrutura , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Interferência de RNA
6.
Muscle Nerve ; 47(6): 909-15, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666783

RESUMO

INTRODUCTION: Both target skeletal muscle (SKM) cells and neurotrophins (NTs) are essential for the maintenance of neuronal function and nerve-muscle communication. The effects of different NTs and SKM cells on growth-associated protein-43 (GAP-43) expression in dorsal root ganglion (DRG) neurons have not been clarified. METHODS: The morphological relationship between DRG neurons and SKM cells in neuromuscular cocultures was observed by scanning electron microscopy. The levels of GAP-43 and its mRNA were determined after administration of different NTs. RESULTS: DRG neurons demonstrated dense neurite outgrowth in the presence of NTs. Distinct NTs promoted GAP-43 and its mRNA expression in neuromuscular cocultures of DRG neurons and SKM cells. CONCLUSIONS: These results offer new clues for a better understanding of the effects of distinct NTs on GAP-43 expression in DRG sensory neurons in the presence of target SKM cells and implicate NTs and target SKM cells in DRG neuronal regeneration.


Assuntos
Proteína GAP-43/metabolismo , Gânglios Espinais/citologia , Fibras Musculares Esqueléticas/fisiologia , Fatores de Crescimento Neural/farmacologia , Células Receptoras Sensoriais/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Técnicas de Cocultura , Proteína GAP-43/efeitos dos fármacos , Proteína GAP-43/fisiologia , Microscopia Eletrônica de Varredura , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Neurotrofina 3/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/ultraestrutura
7.
Artigo em Inglês | MEDLINE | ID: mdl-23441024

RESUMO

Structural plasticity occurs physiologically or after brain damage to adapt or re-establish proper synaptic connections. This capacity depends on several intrinsic and extrinsic determinants that differ between neuron types. We reviewed the significant endogenous regenerative potential of the neurons of the inferior olive (IO) in the adult rodent brain and the structural remodeling of the terminal arbor of their axons, the climbing fiber (CF), under various experimental conditions, focusing on the growth-associated protein GAP-43. CFs undergo remarkable collateral sprouting in the presence of denervated Purkinje cells (PCs) that are available for new innervation. In addition, severed olivo-cerebellar axons regenerate across the white matter through a graft of embryonic Schwann cells. In contrast, CFs undergo a regressive modification when their target is deleted. In vivo knockdown of GAP-43 in olivary neurons, leads to the atrophy of their CFs and a reduction in the ability to sprout toward surrounding denervated PCs. These findings demonstrate that GAP-43 is essential for promoting denervation-induced sprouting and maintaining normal CF architecture.


Assuntos
Proteína GAP-43/fisiologia , Fibras Nervosas/fisiologia , Plasticidade Neuronal , Núcleo Olivar/fisiologia , Animais , Atrofia , Denervação , Proteína GAP-43/antagonistas & inibidores , Proteína GAP-43/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fibras Nervosas/patologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Núcleo Olivar/patologia , Células de Purkinje/patologia , Células de Purkinje/fisiologia
8.
J Neurosci ; 33(8): 3311-22, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426659

RESUMO

Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing ß-actin mRNA 3'UTR competes with endogenous ß-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localization in adult sensory neurons (Donnelly et al., 2011). Here, we show that the 3'UTR of GAP-43 mRNA can deplete axons of endogenous ß-actin mRNA. We took advantage of this 3'UTR competition to address the functions of axonally synthesized ß-actin and GAP-43 proteins. In cultured rat neurons, increasing axonal synthesis of ß-actin protein while decreasing axonal synthesis of GAP-43 protein resulted in short highly branched axons. Decreasing axonal synthesis of ß-actin protein while increasing axonal synthesis of GAP-43 protein resulted in long axons with few branches. siRNA-mediated depletion of overall GAP-43 mRNA from dorsal root ganglia (DRGs) decreased the length of axons, while overall depletion of ß-actin mRNA from DRGs decreased the number of axon branches. These deficits in axon growth could be rescued by transfecting with siRNA-resistant constructs encoding ß-actin or GAP-43 proteins, but only if the mRNAs were targeted for axonal transport. Finally, in ovo electroporation of axonally targeted GAP-43 mRNA increased length and axonally targeted ß-actin mRNA increased branching of sensory axons growing into the chick spinal cord. These studies indicate that axonal translation of ß-actin mRNA supports axon branching and axonal translation of GAP-43 mRNA supports elongating growth.


Assuntos
Actinas/biossíntese , Axônios/metabolismo , Proteína GAP-43/fisiologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Actinas/fisiologia , Animais , Axônios/fisiologia , Células Cultivadas , Embrião de Galinha , Proteína GAP-43/biossíntese , Masculino , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Integr Biol (Camb) ; 4(6): 587-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22532065

RESUMO

In order to successfully utilize stem cells for therapeutic applications in regenerative medicine, efficient differentiation into a specific cell lineage and guidance of axons in a desired direction is crucial. Here, we used aligned multi-walled carbon nanotube (MWCNT) sheets to differentiate human mesenchymal stem cells (hMSCs) into neural cells. Human MSCs present a preferential adhesion to aligned CNT sheets with longitudinal stretch parallel to the CNT orientation direction. Cell elongation was 2-fold higher than the control and most of the cells were aligned on CNT sheets within 5° from the CNT orientation direction. Furthermore, a significant, synergistic enhancement of neural differentiation was observed in hMSCs cultured on the CNT sheets. Axon outgrowth was also controlled using nanoscale patterning of CNTs. This CNT sheet provides a new cellular scaffold platform that can regulate morphogenesis and differentiation of stem cells, which could open up a new approach for tissue and stem cell regeneration.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono/química , Neurônios/citologia , Proteína GAP-43/genética , Proteína GAP-43/fisiologia , Humanos , Integrinas/genética , Integrinas/fisiologia , Microscopia Eletrônica de Varredura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/fisiologia , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/fisiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiologia
10.
Neurosci Lett ; 500(3): 187-91, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21723373

RESUMO

It is known that contralateral seventh cervical nerve (C7) root transfer after brachial plexus avulsion injuries (BPAI) causes interhemispheric cortical functional reorganization. However, the potential mechanisms and the role of neurotrophic factors and/or growth-associated protein expression in the process of cerebral reorganization are not well understood. The present study identified the expression of brain-derived neurotrophic factor (BDNF) and growth-associated protein 43 (GAP43) mRNA in primary motor cortex after contralateral C7 root transfer following BPAI. BDNF and GAP43 mRNA levels were significantly increased in brain samples at both 6 and 9 months after contralateral C7 root transfer following BPAI, in comparison with the samples from the rats with BPAI only. These findings indicate that BDNF and GAP43 may play an important role during the dynamic transhemispheric functional reorganization.


Assuntos
Plexo Braquial/cirurgia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encéfalo/fisiopatologia , Proteína GAP-43/fisiologia , Transferência de Nervo , Raízes Nervosas Espinhais/cirurgia , Animais , Plexo Braquial/lesões , Plexo Braquial/fisiopatologia , Lateralidade Funcional , Córtex Motor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Nervo Ulnar/transplante
11.
Hippocampus ; 18(8): 814-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18493953

RESUMO

HuD is a neuronal RNA-binding protein associated with the stabilization of mRNAs for GAP-43 and other neuronal proteins that are important for nervous system development and learning and memory mechanisms. To better understand the function of this protein, we generated transgenic mice expressing human HuD (HuD-Tg) in adult forebrain neurons. We have previously shown that expression of HuD in adult dentate granule cells results in an abnormal accumulation of GAP-43 mRNA via posttranscriptional mechanisms. Here we show that this mRNA accumulation leads to the ectopic expression of GAP-43 protein in mossy fibers. Electrophysiological analyses of the mossy fiber to CA3 synapse of HuD-Tg mice revealed increases in paired-pulse facilitation (PPF) at short interpulse intervals and no change in long-term potentiation (LTP). Presynaptic calcium transients at the same synapses exhibited faster time constants of decay, suggesting a decrease in the endogenous Ca(2+) buffer capacity of mossy fiber terminals of HuD-Tg mice. Under resting conditions, GAP-43 binds very tightly to calmodulin sequestering it and then releasing it upon PKC-dependent phosphorylation. Therefore, subsequent studies examined the extent of GAP-43 phosphorylation and its association to calmodulin. We found that despite the increased GAP-43 expression in HuD-Tg mice, the levels of PKC-phosphorylated GAP-43 were decreased in these animals. Furthermore, in agreement with the increased proportion of nonphosphorylated GAP-43, HuD-Tg mice showed increased binding of calmodulin to this protein. These results suggest that a significant amount of calmodulin may be trapped in an inactive state, unable to bind free calcium, and activate downstream signaling pathways. In conclusion, we propose that an unregulated expression of HuD disrupts mossy fiber physiology in adult mice in part by altering the expression and phosphorylation of GAP-43 and the amount of free calmodulin available at the synaptic terminal.


Assuntos
Proteínas ELAV/genética , Proteínas ELAV/fisiologia , Proteína GAP-43/genética , Proteína GAP-43/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteína Semelhante a ELAV 4 , Eletrofisiologia , Proteína GAP-43/química , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Somatosens Mot Res ; 25(1): 33-47, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18344146

RESUMO

Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.


Assuntos
Axônios/diagnóstico por imagem , Proteína GAP-43/fisiologia , Mecanorreceptores/anatomia & histologia , Transdução de Sinais/fisiologia , Córtex Somatossensorial/anatomia & histologia , Núcleos do Trigêmeo/anatomia & histologia , Núcleos Ventrais do Tálamo/anatomia & histologia , Vibrissas/inervação , Vias Aferentes/anatomia & histologia , Animais , Dominância Cerebral/fisiologia , Feminino , Proteína GAP-43/genética , Idade Gestacional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/diagnóstico por imagem , Gravidez , Terminações Pré-Sinápticas/diagnóstico por imagem , Ultrassonografia
13.
Cell Cycle ; 7(3): 348-57, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18235238

RESUMO

In neurons, the position of the centrosome during final mitosis marks the point of emergence of the future axon. However, the molecular underpinnings linking centrosome position to axon emergence are unknown. GAP-43 is a calmodulin-binding IQ motif protein that regulates neuronal cytoskeletal architecture by interacting with F-actin in a phosphorylation dependent manner. Here we show that GAP-43 is associated with the centrosome and plays a critical role in mitosis and acquisition of neuronal polarity in cerebellar granule neurons. In the absence of GAP-43, the centrosome position is delinked from process outgrowth and is only capable of mediating morphological polarization, however molecular specification of the axonal compartment does not take place. These results show that GAP-43 is required to link centrosome position to process outgrowth in order to generate neuronal polarity in cerebellar granule cells.


Assuntos
Polaridade Celular/fisiologia , Centrossomo/fisiologia , Proteína GAP-43/fisiologia , Neurônios/fisiologia , Fuso Acromático/fisiologia , Animais , Polaridade Celular/genética , Células Cultivadas , Cerebelo/citologia , Cerebelo/patologia , Cerebelo/fisiologia , Proteína GAP-43/deficiência , Proteína GAP-43/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/citologia , Neurônios/metabolismo
14.
J Neurochem ; 101(6): 1539-51, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17326767

RESUMO

Neuronal protein GAP-43 performs multiple functions in axon guidance, synaptic plasticity and regulation of neuronal death and survival. However, the molecular mechanisms of its action in these processes are poorly understood. We have shown that in axon terminals GAP-43 is a substrate for calcium-activated cysteine protease m-calpain, which participates in repulsion of axonal growth cones and induction of neuronal death. In pre-synaptic terminals in vivo, in synaptosomes, and in vitro, m-calpain cleaved GAP-43 in a small region near Ser41, on either side of this residue. In contrast, micro-calpain cleaved GAP-43 in vitro at several other sites, besides Ser41. Phosphorylation of Ser41 by protein kinase C or GAP-43 binding to calmodulin strongly suppressed GAP-43 proteolysis by m-calpain. A GAP-43 fragment, lacking about forty N-terminal residues (named GAP-43-3), was produced by m-calpain-mediated cleavage of GAP-43 and inhibited m-calpain, but not micro-calpain. This fragment prevented complete cleavage of intact GAP-43 by m-calpain as a negative feedback. GAP-43-3 also blocked m-calpain activity against casein, a model calpain substrate. This implies that GAP-43-3, which is present in axon terminals in high amount, can play important role in regulation of m-calpain activity in neurons. We suggest that GAP-43-3 and another (N-terminal) GAP-43 fragment produced by m-calpain participate in modulation of neuronal response to repulsive and apoptotic signals.


Assuntos
Calmodulina/fisiologia , Calpaína/metabolismo , Proteína GAP-43/metabolismo , Proteína Quinase C/fisiologia , Sequência de Aminoácidos , Animais , Bovinos , Proteína GAP-43/fisiologia , Modelos Biológicos , Fragmentos de Peptídeos/fisiologia , Ratos , Serina/metabolismo , Sinaptossomos/metabolismo
15.
J Neurochem ; 100(6): 1599-612, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17212696

RESUMO

The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.


Assuntos
Proteína GAP-43/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Animais , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Fibroblastos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Camundongos , Modelos Biológicos , Mutagênese/fisiologia , Moléculas de Adesão de Célula Nervosa/genética , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Ratos , Sinaptossomos/metabolismo , Transfecção/métodos
16.
Brain ; 129(Pt 6): 1517-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16613894

RESUMO

When associated with the Nogo receptor (NgR), the transmembrane receptor p75NTR signals growth cone collapse. Arrest of CNS axon growth in vivo is mediated by CNS myelin-derived inhibitory ligands through either an unknown pathway after NgR- and Ca2+-dependent activation of the epidermal growth factor receptor (EGFR), and/or sequential Rho-A/ROCK/LIM-kinase/cofilin phosphorylation leading to actin depolymerization. Paradoxically, rat retinal ganglion cell (RGC) axons regenerate through the CNS myelin-rich transected optic nerve after intravitreal sciatic nerve grafting without inhibitory ligand neutralization. Here, we show that optic nerve regeneration in vivo correlates with Schwann cell-derived factor-induced cleavage of NgR and Nogo-A, and inactivation of p75NTR signalling by the induction of regulated intramembranous proteolysis (RIP) and the release of both extracellular (p75ECD) and intracellular (p75ICD) domains. Hence, Schwann cell-derived factors compromise inhibitory signalling by (i) antagonizing ligand/NgR binding with metalloproteinase-cleaved Nogo-A peptides; (ii) RIP of p75NTR; (iii) competitively blocking NgR/p75NTR clustering with soluble p75ECD; and (iv) consequent reduced downstream EGFR phosphorylation and suppression of Rho-A activation. Moreover, in RGC cultures, exogenous tumour necrosis- converting enzyme (TACE) initiates RIP of p75NTR, reduces EGFR phosphorylation, suppresses activation of Rho-A, cleaves the ECD from both NgR and TROY, and disinhibits neurotrophic factor (NTF) stimulated RGC neurite outgrowth in the presence of CNS myelin. Soluble NgRECD binds all CNS myelin-derived ligands and thus has the potential to act as an inhibitory signalling antagonist, but the role of TROY and its shed ectodomain in growth cone mobility is unknown. siRNA knockdown of p75NTR also inactivates Rho-A and disinhibits NTF-stimulated RGC neurite outgrowth in cultures with added CNS myelin. In all the above experimental paradigms, Schwann cell-derived factor/NTF-induced attenuation of NgR/p75NTR signalling suppresses EGFR activation, thereby potentiating axon growth disinhibition.


Assuntos
Axônios/fisiologia , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Proteínas ADAM/metabolismo , Proteínas ADAM/farmacologia , Proteína ADAM17 , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Células Cultivadas , Receptores ErbB/fisiologia , Feminino , Proteína GAP-43/fisiologia , Proteínas Ligadas por GPI , Proteínas da Mielina , Fatores de Crescimento Neural/farmacologia , Receptor Nogo 1 , Nervo Óptico/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Endogâmicos F344 , Receptores de Superfície Celular , Receptores de Peptídeos/fisiologia , Células Ganglionares da Retina/fisiologia , Regulação para Cima
17.
Anat Rec A Discov Mol Cell Evol Biol ; 288(2): 143-57, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16435363

RESUMO

GAP-43 heterozygous (HZ) mice exhibit abnormal thalamocortical pathfinding, fasciculation, and terminal arborization at postnatal day 7 (P7). Here we tested whether these defects are correlated with delayed development of HZ cortical patterns. We assessed the rate of barrel segregation and radial glia differentiation in wild-type (WT) and HZ cortices. Since GAP-43 is involved in some forms of neural plasticity, we also compared the duration of the critical period for lesion-induced plasticity in both genotypes. Cytochrome oxidase histochemistry revealed a delay of approximately 1 day in barrel pattern formation in GAP-43 HZ mice. GAP-43 WT barrels showed complete segregation between P2-P3, while HZ barrels did not reach the same level of segregation until P3-P4. We found a similar delay in the transformation of radial glia from monopolar to multipolar phenotypes, from P5 in WT to P7 in HZ cortex. Radial glial cells represent many of the neuronal progenitors in developing cortex and aid in cell migration. Thus, the delay in radial glial differentiation may contribute to the delay in HZ barrel segregation. Interestingly, we found no change in the extent of the critical period for HZ cortical responsiveness to early peripheral damage or in the time course of the cortical response. As expected, GAP-43 expression in HZ cortex is significantly reduced early in development. However, HZ GAP-43 expression remains at maximum levels after P9, when it is normally downregulated. As a result, HZ GAP-43 expression is near-normal by P26, by which time near-normal barrel dimensions have been restored. Our findings indicate that GAP-43 deficiency leads to early delays in barrel development and suggest that these failures are followed by homeostatic responses, including prolonged GAP-43 expression. These compensatory mechanisms may rescue normal cortical reorganization in neonates and near-normal barrel morphology and GAP-43 expression in adulthood.


Assuntos
Padronização Corporal/fisiologia , Diferenciação Celular , Proteína GAP-43/fisiologia , Neuroglia/citologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Regulação para Baixo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genótipo , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/crescimento & desenvolvimento , Neuroglia/metabolismo , Nervo Trigêmeo/anormalidades , Nervo Trigêmeo/patologia
18.
J Neurosci ; 26(2): 585-96, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16407557

RESUMO

The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a single-pass transmembrane glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. However, its role in signal transduction after IGF-II binding remains unclear. In the present study, we report that IGF-II/M6P receptor in the rat brain is coupled to a G-protein and that its activation by Leu27IGF-II, an analog that binds rather selectively to the IGF-II/M6P receptor, potentiates endogenous acetylcholine release from the rat hippocampal formation. This effect is mediated by a pertussis toxin (PTX)-sensitive GTP-binding protein and is dependent on protein kinase Calpha (PKCalpha)-induced phosphorylation of downstream substrates, myristoylated alanine-rich C kinase substrate, and growth associated protein-43. Additionally, treatment with Leu27IGF-II causes a reduction in whole-cell currents and depolarization of cholinergic basal forebrain neurons. This effect, which is blocked by an antibody against the IGF-II/M6P receptor, is also sensitive to PTX and is mediated via activation of a PKC-dependent pathway. These results together revealed for the first time that the single transmembrane domain IGF-II/M6P receptor expressed in the brain is G-protein coupled and is involved in the regulation of central cholinergic function via the activation of specific intracellular signaling cascades.


Assuntos
Acetilcolina/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteína Quinase C-alfa/fisiologia , Receptor IGF Tipo 2/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Animais , Ligação Competitiva , Toxina da Cólera/farmacologia , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/fisiologia , Proteína GAP-43/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanilil Imidodifosfato/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like II/análogos & derivados , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Isoproterenol/farmacologia , Masculino , Proteínas de Membrana/fisiologia , Substrato Quinase C Rico em Alanina Miristoilada , Proteínas do Tecido Nervoso/imunologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Toxina Pertussis/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 2/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Signal ; 18(3): 276-84, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16109477

RESUMO

Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Citoesqueleto/fisiologia , Proteína Quinase C/fisiologia , Animais , Proteínas de Ligação a Calmodulina/fisiologia , Proteínas de Transporte/fisiologia , Movimento Celular/fisiologia , Citoesqueleto/química , Proteínas de Ligação a DNA/fisiologia , Proteína GAP-43/fisiologia , Humanos , Integrinas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Isoenzimas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Substrato Quinase C Rico em Alanina Miristoilada , Neuritos/fisiologia , Fibras de Estresse/fisiologia , Fatores de Transcrição/fisiologia
20.
J Cell Biol ; 171(5): 857-69, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16330713

RESUMO

Neurite branching is essential for the establishment of appropriate neuronal connections during development and regeneration. We identify the small GTPase Ral as a mediator of neurite branching. Active Ral promotes neurite branching in cortical and sympathetic neurons, whereas Ral inhibition decreases laminin-induced branching. In addition, depletion of endogenous Ral by RNA interference decreases branching in cortical neurons. The two Ral isoforms, RalA and -B, promote branching through distinct pathways, involving the exocyst complex and phospholipase D, respectively. Finally, Ral-dependent branching is mediated by protein kinase C-dependent phosphorylation of 43-kD growth-associated protein, a crucial molecule involved in pathfinding, plasticity, and regeneration. These findings highlight an important role for Ral in the regulation of neuronal morphology.


Assuntos
Proteína GAP-43/fisiologia , Proteínas de Membrana/metabolismo , Neuritos/fisiologia , Fosfolipase D/metabolismo , Proteínas ral de Ligação ao GTP/fisiologia , Actinas/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Laminina/metabolismo , Neurônios/fisiologia , Fosforilação , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Gânglio Cervical Superior/citologia , Proteínas ral de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA