Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621908

RESUMO

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Assuntos
Proteína HMGB1 , Ligusticum , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Condrócitos , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Dinoprostona , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Apoptose , RNA Mensageiro/metabolismo
2.
J Appl Oral Sci ; 32: e20230304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359267

RESUMO

OBJECTIVE: We aimed to investigate the regulatory effects of HMGB1/TLR4 signaling pathway on the expression of IL-10 and VEGF in human bone marrow mesenchymal stem cells. METHODOLOGY: Human JBMSCs were isolated and cultured. Then, HMGB1 was added into the JBMSCs culture medium, and the protein and mRNA expression levels of IL-10 and VEGF were assessed. Moreover, cells were pretreated with a specific TLR4 inhibitor (TAK-242), and the expression changes of IL-10 and VEGF were compared. RESULTS: Compared with the control group, exposure to HMGB1 in human JBMSCs up-regulated TLR4, IL-10, and VEGF secretion at both protein and mRNA levels (P<0. 05). In addition, the increased expression of IL-10 and VEGF could be restrained in TAK-242 group compared with the HMGB1 group (P<0.05). CONCLUSIONS: The results indicated that HMGB1 activate TLR4 signaling pathway in Human JBMSCs, which plays a regulatory role in cytokines expression.


Assuntos
Proteína HMGB1 , Células-Tronco Mesenquimais , Sulfonamidas , Humanos , Interleucina-10 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular , Proteína HMGB1/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro
3.
J Physiol Sci ; 74(1): 7, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326739

RESUMO

Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Masculino , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Ratos Wistar , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Caspase 3 , Ácido Fólico/farmacologia , Inflamação/prevenção & controle , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Suplementos Nutricionais , Reperfusão , Isquemia
4.
Fitoterapia ; 173: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278423

RESUMO

Osteoporosis is an aging disease characterized by an imbalance between bone formation and resorption. However, drugs that inhibit bone resorption have various adverse effects. Ginseng (Panax ginseng), a prominent herbal medicine in East Asia for >2000 years, is renowned for its manifold beneficial properties, including antioxidant, anti-cancer, anti-diabetic, and anti-adipogenic activities. Despite its long history of use, the pharmacological functions of ginseng leaves are not yet fully comprehended. In this study, we evaluated the potential effects of ginseng leaf extract (GLE) on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in RAW264.7 macrophage cells. Tartrate-resistant acid phosphatase (TRAP) staining revealed that GLE had significant anti-osteoclastogenic activity. GLE significantly reduced mRNA levels of osteoclast differentiation markers including TRAP, nuclear factor of activated T cell cytoplasmic 1, and cathepsin K. It also suppressed the production of reactive oxygen species (ROS) and secretion of high mobility group box-1 (HMGB1) in RANKL-treated RAW264.7 cells. In addition, GLE upregulated dose- and time-dependently the expression of heme oxygenase-1 (HO-1), eventually suppressing ROS production and HMGB1 secretion. This effects of GLE were significantly reversed by Tin Protoporphyrin IX dichloride, an inhibitor of HO-1, and HO-1 shRNA, indicating that HO-1 potently inhibits RANKL-induced osteoclast differentiation by inhibiting ROS production and HMGB1 secretion. Taken together, these observations suggest that GLE could have therapeutic potential as a natural product-derived medicine for the treatment of bone disorders.


Assuntos
Reabsorção Óssea , Proteína HMGB1 , Panax , Osteoclastos , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Diferenciação Celular , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Ligante RANK
5.
Altern Ther Health Med ; 30(1): 270-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793329

RESUMO

Objective: Bronchial asthma is a prevalent respiratory disorder characterized by airway inflammation. This study aimed to investigate the protective effect of Pingchuanning decoction (PCN) on airway inflammation in bronchial asthma, focusing on the role of autophagy and its underlying molecular mechanism. Methods: Using an in vitro lipopolysaccharide (LPS)-induced inflammatory damage model of human airway epithelial cells (16HBE), we assessed the effect of PCN. Various experiments were performed to evaluate the expression of autophagy-related genes, autophagosome and vesicle counts, and reactive oxygen species (ROS) levels. Results: First, PCN reduced LPS-induced cellular inflammation. Second, PCN decreased the number of autophagosomes and autophagic vesicles. And third, PCN significantly reduced reactive oxygen species (ROS) levels. Most importantly, PCN also down-regulated LPS-induced expression of HMGB1, Beclin-1, and autophagy-related gene 5 (ATG5) while enhancing the expression of B-cell lymphoma 2 (Bcl-2), which further reduced the LC3II/I ratio. Conclusion: PCN reduces the 16HBE inflammatory response by inhibiting the overexpression of ROS/HMGB1/Beclin-1 mediated cell autophagy. Therefore, it may serve as a potential drug for treating bronchial asthma.


Assuntos
Asma , Proteína HMGB1 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Espécies Reativas de Oxigênio/uso terapêutico , Proteína Beclina-1/genética , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Proteína HMGB1/uso terapêutico , Lipopolissacarídeos , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Autofagia/genética , Inflamação/tratamento farmacológico
6.
J Nat Med ; 78(1): 123-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821666

RESUMO

Hepatocellular carcinoma (HCC) treatment is a major challenge. Although andrographolide (Andro) has an anti-proliferation effect on HCC, its underlying mechanism is not yet elucidated, and whether Andro can inhibit HCC metastasis has not been reported. The present study aimed to clarify whether Andro inhibits SK-Hep-1 cell proliferation and HCC metastasis, and the mechanisms. The results showed that Andro significantly reduced the survival of HCC cells and tumor weight and volume in tumor-bearing nude mice. Andro also triggered apoptosis of HCC cells and upregulated MIR22HG, Cleaved Caspase 9/7/3 expression levels, and downregulated BCL-2 mRNA, BCL-2 expression levels. Knockdown of MIR22HG or overexpression of HuR attenuated the effects of Andro on the signal transduction of mitochondrial apoptotic pathway and proliferation ability in HCC cells. Moreover, Andro significantly reduced the invasive ability of the cells and the level of HCC cell lung metastasis, upregulated miR-22-3p expression level and downregulated HMGB1 and MMP-9 expression levels. MIR22HG or miR-22-3p knockdown attenuated the effects of Andro on the signaling of HMGB1/MMP-9 pathway and invasive ability in HCC cells, while the overexpression of HMGB1 attenuated the inhibitory effects of Andro on the MMP-9 expression level and invasive ability in HCC cells. Thus, the regulation of MIR22HG-HuR/BCL-2 and MIR22HG/HMGB1 signaling pathways is involved in the anti-HCC proliferation and metastasis effects of Andro. This study provided a new pharmacological basis for Andro in HCC treatment and, for the first time, identified a natural product molecule capable of positively regulating MIR22HG, which has a robust biological function.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Proteína HMGB1/farmacologia , Proteína HMGB1/uso terapêutico , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Movimento Celular
7.
Virus Res ; 338: 199240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832655

RESUMO

PURPOSE: EV71 (Enterovirus 71) is a major causative agent of the outbreaks of HFMD (hand, foot, and mouth disease), which is associated with neurological damage caused by permeability disruption of BBB (blood-brain barrier). HMGB1 (high-mobility group box 1) is a widely expressed nuclear protein that triggers host inflammatory responses. Our work aimed to explore the function of HMGB1 in EV71 infection and its contributions to EV71-related BBB damage. METHODS: HeLa cells, HT-29 cells and AG6 mice were used to explore the translocation of HMGB1 in EV71 infection in vitro and in vivo. The roles of released HMGB1 on EV71 replication and associated inflammatory cytokines were investigated using recombinant HMGB1 in HeLa cells. The mechanisms of released HMGB1 in EV71-induced BBB injury were explored using recombinant HMGB1 and anti-HMGB1 neutralizing antibodies in monolayer HCMECs (immortalized human brain microvascular endothelial cells) and AG6 mice brain. RESULTS: EV71 induced HMGB1 nucleocytoplasmic translocation and extracellular release in vitro and in vivo. Released HMGB1 acted as an inflammatory mediator in EV71 infection rather than affecting viral replication in vitro. Released HMGB1 disrupted BBB integrity by enhancing VE-cadherin phosphorylation at tyrosine 685 in HCMECs, and reducing total VE-cadherin levels in HCMECs and AG6 mice in EV71 infection. And released HMGB1 induced an increase in activated astrocytes. Neutralization of HMGB1 reversed the increased endothelial hyperpermeability and phosphorylation of VE-cadherin in HCMECs. CONCLUSION: The inflammatory mediator HMGB1 released by EV71 exacerbated BBB disruption by enhancing VE-cadherin phosphorylation, which in turn aggravated EV71-induced neuroinflammation.


Assuntos
Barreira Hematoencefálica , Proteína HMGB1 , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Fosforilação , Células HeLa , Mediadores da Inflamação/metabolismo
8.
J Physiol Pharmacol ; 74(4)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37865955

RESUMO

Melatonin confers protection against myocardial injury by reducing inflammation and inhibiting apoptosis. In the present study, we investigated whether melatonin regulates cardiomyocyte proliferation and improves cardiac function in rats with myocardial infarction (MI). Two MI models were established in vitro (H9c2 cells were cultured under hypoxia) and in vivo (the left anterior descending coronary artery of rats was surgically ligated). miR-200b-3p and high mobility group box 1 (HMGB1) levels were detected. Cell proliferation and apoptosis were analyzed in vitro, and cardiac function, inflammatory cytokines, and myocardial injury markers in vivo were tested. The experimental results reported that melatonin promoted proliferation and impaired apoptosis of H9c2 cells cultured in hypoxia. In vivo, melatonin improved cardiac function and inhibited the inflammation and myocardial injury of rats with MI. miR-200b-3p was downregulated and HMGB1 was upregulated in MI, while melatonin could upregulate miR-200b-3p and downregulate HMGB1. The HMGB1 was targeted by miR-200b-3p. Upregulating miR-200b-3p or downregulating HMGB1 could further promote the therapeutic effect of melatonin, and downregulating miR-200b-3p or upregulating HMGB1 could abolish the therapeutic effect of melatonin. In conclusion, melatonin alleviates inflammation and cardiac dysfunction after MI by regulating the miR-200b-3p/HMGB1 axis, offering a new therapeutic strategy for MI.


Assuntos
Proteína HMGB1 , Melatonina , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Transdução de Sinais/fisiologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apoptose , Hipóxia , Miócitos Cardíacos/metabolismo
9.
Mol Nutr Food Res ; 67(23): e2200663, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776050

RESUMO

SCOPE: Puerarin has possessed a wide range of pharmacological activities. However, little is known about the protective effects of puerarin on the oxidized oil-induced injury. Here, the antioxidant and anti-inflammatory effects of puerarin are described using a chicken model. METHODS AND RESULTS: A total of 360 broilers are arranged in four treatments. Diets include two types of soybean oil (fresh or oxidized) and two levels of puerarin (0 or 750 mg kg-1 ). Results show that puerarin alleviates oxidized soybean oil-induced hepatic and thymic oxidative injury. This effect is observed by increasing the SOD activity and the expressions of Nrf2 signaling pathway-related genes and reducing the MDA content in the liver and thymus. Moreover, puerarin supplementation decreases the concentrations and mRNA levels of pro-inflammatory factors in the liver and thymus. The potential mechanism responsible for this is the decrease in the mRNA or protein levels of HMGB1, TLR4, MyD88, and p65 in the liver or thymus. Western blotting results indicate that puerarin also decreases the phosphorylation of JNK1/2, ERK1/2, and p38 in the liver and thymus. CONCLUSION: This study demonstrates puerarin may be a potential nutrient supplement in the treatment of oxidized oil-induced damage, and the Nrf2/Keap1 and HMGB1/TLR4/MAPK signaling pathways might be its important target.


Assuntos
Galinhas , Proteína HMGB1 , Animais , Galinhas/metabolismo , Sistema de Sinalização das MAP Quinases , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Óleo de Soja/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , RNA Mensageiro/metabolismo
10.
Cell Biochem Funct ; 41(8): 1209-1219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771193

RESUMO

Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteína HMGB1 , Ratos , Masculino , Animais , Ácido Valproico/farmacologia , Liraglutida/farmacologia , Liraglutida/metabolismo , Necroptose , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Solução Salina/metabolismo , Solução Salina/farmacologia , Fígado/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo , Água/farmacologia , Proteínas Quinases
11.
Oncology ; 101(12): 786-798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37666221

RESUMO

INTRODUCTION: The molecular mechanism of high-mobility group box 1 (HMGB1) promoting the epithelial-mesenchymal transition (EMT) of gastric cancer (GC) has not been known well. This study aimed to explore the clinical effects of HMGB1 expression levels on the clinicopathological characteristics of patients with GC and to uncover the potential molecular mechanism which promotes tumor progression. METHODS: The expression levels of HMGB1 in 125 patients with GC were detected by immunohistochemistry and Western blotting. Univariate and multivariate analyses were performed to evaluate the relationship between HMGB1 expression and clinical characteristics of patients with GC. Stable overexpression (over-HMGB1) and knockdown (sh-HMGB1) GC cell lines (AGS and MKN-45) were used to determine the effects of HMGB1 on the activation of TLR4/NF-κB signaling. Differences were considered statistically significant at p < 0.05 in two sides. RESULTS: HMGB1 is highly expressed in GC tissues and cell lines. High HMGB1 expression (HR = 1.89, 95% CI: 1.44-2.39, p = 0.001) was an independent risk factor for overall survival in patients with GC. Downregulation of HMGB1 resulted in downregulation of TLR4 and NF-κB subunit (p-p65 and p-IκBα) expression, whereas the upregulated expression of HMGB1 led to increased expression of TLR4 and NF-κB subunits. Overexpression of HMGB1 promotes the upregulation of EMT-TF expression, which enhances the proliferation and migration abilities of GC cell lines. CONCLUSION: HMGB1 is highly expressed in GC tissues and is associated with a poorer prognosis in patients with GC. HMGB1 activates the TLR4/NF-κB signaling pathway to promote EMT progression in GC cell lines. HMGB1 may be a critical molecule in prognosis prediction and a therapeutic target for patients with GC.


Assuntos
Proteína HMGB1 , Neoplasias Gástricas , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Receptor 4 Toll-Like/metabolismo , Neoplasias Gástricas/patologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Transdução de Sinais , Prognóstico , Transição Epitelial-Mesenquimal
12.
Chem Biol Drug Des ; 102(6): 1387-1398, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604776

RESUMO

Ischemia/reperfusion (I/R) of skeletal muscle in the lower limbs is an important factor affecting the outcome of lower limbs ischemia patients, with no effective preventive or therapeutic approaches available. The study was to investigate the effect of syringic acid (SA) on I/R skeletal muscle in the lower limbs injury. Mice femoral artery I/R models and C2C12 cell hypoxia/reoxygenation (H/R) models was establish, tissue damage, inflammatory status, and high mobility group box 1 (HMGB1) pathway were evaluated using histological analysis, enzyme-linked immunosorbent assay, and western blotting. Further, the study detected the effect of SA on cell apoptosis, lipid peroxidation, Fe2+ level, and ferroptosis-related proteins expression. Finally, the effect of HMGB1 expression on SA in H/R stimulation was studied. SA alleviated pathological damage and reduced levels of IL-1ß, IL-6, and TNF-α in muscle tissues from femoral artery I/R mouse models. SA upregulated Bcl-2 and SOD as well as downregulated Bax, MDA, TBARS content, and Fe2+ level in H/R-induced cells. SA inhibited HMGB1 expression and promoted Nrf2, HO-1, GPX4, and SLC7A11 expressions in the injured tissues and cells. Such effects of SA on H/R-induced cells were rescued by HMGB1 overexpression. SA suppressed ferroptosis of skeletal muscle cells to alleviate lower limb I/R injury in mice by blocking the HMGB1 pathway, providing new insights for the treatment of lower limb ischemia-reperfusion injury.


Assuntos
Ferroptose , Proteína HMGB1 , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Proteína HMGB1/uso terapêutico , Transdução de Sinais , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Extremidade Inferior/patologia , Músculo Esquelético/metabolismo
13.
Chin J Physiol ; 66(4): 239-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635483

RESUMO

Ischemia-reperfusion injury is an important cause of liver injury occurring during liver transplantation. It is usually caused by inflammatory response and oxidative stress-induced oxidative damage. Pachymic acid (PA) has various biological activities such as anti-inflammatory, antioxidant and anti-cancer. However, the action mechanism of PA in hepatic ischemia-reperfusion injury is currently unknown. In this study, liver cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate a hepatic ischemia-reperfusion injury model. The binding relationship between PA and sirtuin 1 (SIRT1) was analyzed by molecular docking. Cell viability was detected by Cell Counting Kit-8. Expression levels of SIRT1 and high mobility group box 1 (HMGB1) were detected by western blot. Subsequent levels of inflammatory factors were detected by related kits and western blot. Meanwhile, related kits were used to examine levels of oxidative stress markers including reactive oxygen species, malondialdehyde, superoxide dismutase and cytotoxicity-associated lactate dehydrogenase. Finally, cell apoptosis was detected by flow cytometry and western blot. The results showed that PA significantly ameliorated OGD/R-induced decrease in SIRT1 expression, increase in HMGB1 acetylation and HMGB1 translocation. Moreover, the elevated levels of inflammatory factors, oxidative stress indexes and cell apoptosis upon exposure to OGD/R were reversed by PA treatment. Moreover, the addition of SIRT1 agonist and inhibitor further demonstrated that PA exerted the aforementioned effects in OGD/R-exposed cells by targeting SIRT1. Thus, the present study revealed the mechanism by which PA ameliorated OGD/R-induced hepatic injury via SIRT1. These results might provide a clearer theoretical basis for the targeted treatment of OGD/R-induced hepatic injury with PA.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Animais , Humanos , Oxigênio/metabolismo , Oxigênio/farmacologia , Glucose/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ratos Sprague-Dawley , Acetilação , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo , Hepatócitos/metabolismo , Apoptose
14.
ACS Biomater Sci Eng ; 9(8): 4709-4719, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37418317

RESUMO

High Mobility Group Box 1 (HMGB1) is a redox-sensitive molecule that plays dual roles in tissue healing and inflammation. We previously demonstrated that HMGB1 is stable when anchored by a well-characterized imidazolium-based ionic liquid (IonL), which serves as a delivery vehicle for exogenous HMGB1 to the site of injury and prevents denaturation from surface adherence. However, HMGB1 exists in different isoforms [fully reduced HMGB1 (FR), a recombinant version of FR resistant to oxidation (3S), disulfide HMGB1 (DS), and inactive sulfonyl HMGB1(SO)] that have distinct biological functions in health and disease. Thus, the goal of this study was to evaluate the effects of different recombinant HMGB1 isoforms on the host response using a rat subcutaneous implantation model. A total of 12 male Lewis rats (12-15 weeks) were implanted with titanium discs containing different treatments (n = 3/time point; Ti, Ti-IonL, Ti-IonL-DS, Ti-IonL-FR, and Ti-IonL-3S) and assessed at 2 and 14 days. Histological (H&E and Goldner trichrome staining), immunohistochemistry, and molecular analyses (qPCR) of surrounding implant tissues were employed for analysis of inflammatory cells, HMGB1 receptors, and healing markers. Ti-IonL-DS samples resulted in the thickest capsule formation, increased pro-inflammatory, and decreased anti-inflammatory cells, while Ti-IonL-3S samples demonstrated suitable tissue healing similar to uncoated Ti discs, as well as an upregulation of anti-inflammatory cells at 14 days compared to all other treatments. Thus, results from this study demonstrated that Ti-IonL-3S are safe alternatives for Ti biomaterials. Future studies are necessary to investigate the healing potential of Ti-IonL-3S in osseointegration scenarios.


Assuntos
Proteína HMGB1 , Líquidos Iônicos , Ratos , Masculino , Animais , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Titânio/farmacologia , Titânio/química , Líquidos Iônicos/farmacologia , Ratos Endogâmicos Lew , Anti-Inflamatórios
15.
J Headache Pain ; 24(1): 96, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495957

RESUMO

BACKGROUND: Cortical spreading depolarization (CSD), the neurophysiological correlate of the migraine aura, can activate trigeminal pain pathways, but the neurobiological mechanisms and behavioural consequences remain unclear. Here we investigated effects of optogenetically-induced CSDs on headache-related behaviour and neuroinflammatory responses in transgenic mice carrying a familial hemiplegic migraine type 1 (FHM1) mutation. METHODS: CSD events (3 in total) were evoked in a minimally invasive manner by optogenetic stimulation through the intact skull in freely behaving wildtype (WT) and FHM1 mutant mice. Related behaviours were analysed using mouse grimace scale (MGS) scoring, head grooming, and nest building behaviour. Neuroinflammatory changes were investigated by assessing HMGB1 release with immunohistochemistry and by pre-treating mice with a selective Pannexin-1 channel inhibitor. RESULTS: In both WT and FHM1 mutant mice, CSDs induced headache-related behaviour, as evidenced by increased MGS scores and the occurrence of oculotemporal strokes, at 30 min. Mice of both genotypes also showed decreased nest building behaviour after CSD. Whereas in WT mice MGS scores had normalized at 24 h after CSD, in FHM1 mutant mice scores were normalized only at 48 h. Of note, oculotemporal stroke behaviour already normalized 5 h after CSD, whereas nest building behaviour remained impaired at 72 h; no genotype differences were observed for either readout. Nuclear HMGB1 release in the cortex of FHM1 mutant mice, at 30 min after CSD, was increased bilaterally in both WT and FHM1 mutant mice, albeit that contralateral release was more pronounced in the mutant mice. Only in FHM1 mutant mice, contralateral release remained higher at 24 h after CSD, but at 48 h had returned to abnormal, elevated, baseline values, when compared to WT mice. Blocking Panx1 channels by TAT-Panx308 inhibited CSD-induced headache related behaviour and HMGB1 release. CONCLUSIONS: CSDs, induced in a minimally invasive manner by optogenetics, investigated in freely behaving mice, cause various migraine relevant behavioural and neuroinflammatory phenotypes that are more pronounced and longer-lasting in FHM1 mutant compared to WT mice. Prevention of CSD-related neuroinflammatory changes may have therapeutic potential in the treatment of migraine.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Proteína HMGB1 , Transtornos de Enxaqueca , Enxaqueca com Aura , Camundongos , Animais , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Optogenética , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Modelos Animais de Doenças , Transtornos de Enxaqueca/genética , Camundongos Transgênicos , Cefaleia , Inflamação , Proteínas do Tecido Nervoso/genética , Conexinas/genética , Conexinas/farmacologia
16.
Mol Nutr Food Res ; 67(21): e2300156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439457

RESUMO

SCOPE: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. METHODS AND RESULTS: The study finds that treatment with BDPP significantly decreases depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. The study also finds that BDPP treatment reverses microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. CONCLUSION: The findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway may provide a new avenue for preventing the manifestation of psychiatric impairments including stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.


Assuntos
Depressão , Proteína HMGB1 , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Microglia , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Ansiedade/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/metabolismo
17.
J Periodontal Res ; 58(5): 919-931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334934

RESUMO

OBJECTIVE: To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND: RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS: An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS: RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION: RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.


Assuntos
Proteína HMGB1 , Periodontite , Camundongos , Animais , Proteína HMGB1/farmacologia , Necroptose/fisiologia , Periodontite/metabolismo , Citocinas , Apoptose
18.
Expert Opin Drug Deliv ; 20(12): 1859-1873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357778

RESUMO

OBJECTIVES: Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS: Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS: Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION: Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Quitosana , Proteína HMGB1 , Nanopartículas , Humanos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Oxaliplatina/metabolismo , Oxaliplatina/farmacologia , Receptor 2 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Administração Intranasal
19.
Vet Pathol ; 60(4): 461-472, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199489

RESUMO

Lipopolysaccharide (LPS) has dose-dependent biphasic functions (cell protective versus cell toxic). To clarify the different effects of LPS on liver homeostasis or liver diseases, comparisons were made between low and high doses of LPS, in terms of the mutual relation of hepatic macrophages, autophagy, and damage-associated molecular patterns (DAMPs) in male F344/DuCrlCrlj rats. Rats injected with low dose (0.1 mg/kg) or high dose (2.0 mg/kg) of LPS were examined at 6, 10, and 24 hours following single injections. Histologically, focal hepatocellular necrosis was occasionally present in high-dose animals, whereas there were no significant changes in low-dose animals. In low-dose animals, Kupffer cells reacting to CD163 and CD204 were hypertrophic and regarded as M2 macrophages, which promote resolution of inflammation and tissue repair, whereas in high-dose animals, infiltration of M1 macrophages expressing CD68 and major histocompatibility complex class II, which enhance cell injury, was seen. Hepatocytes with high-mobility-group box-1 (HMGB1) (one of DAMPs)-positive cytoplasmic granules appeared more frequently in high-dose animals than in low-dose animals, indicating the translocation of nuclear HMGB1 into the cytoplasm. However, although light-chain 3 beta-positive autophagosomes in hepatocytes increased in both doses, abnormally vacuolated autophagosomes were only seen in injured hepatocytes in the high-dose group, indicating possible extracellular release of HMGB1, which might result in cell injury and inflammation. These findings suggested that low-dose LPS induced a favorable mutual relationship among hepatic macrophages, autophagy, and DAMPs leading to cytoprotection of hepatocytes, whereas failures of the relationship in high-dose LPS caused hepatocyte injury.


Assuntos
Proteína HMGB1 , Hepatopatias , Masculino , Ratos , Animais , Lipopolissacarídeos/toxicidade , Proteína HMGB1/farmacologia , Ratos Endogâmicos F344 , Fígado/patologia , Macrófagos/patologia , Hepatopatias/patologia , Hepatopatias/veterinária , Inflamação/patologia , Inflamação/veterinária , Autofagia
20.
Biotechnol J ; 18(9): e2200633, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37204010

RESUMO

As mediators of pyroptosis, gasdermins (GSDMs) are closely associated with systemic cytotoxicity or so-called side effects and are also involved in the inflammatory response during chemotherapy. Using in situ proximity ligation assay followed by sequencing (isPLA-seq), which we recently developed, we screened a single-domain antibody (sdAb) library and identified several sdAbs against Gasdermin E (GSDME) that specifically recognize the N-terminal domain (1-270 aa) of GSDME (GSDME-NT). One of them mitigated the release of inflammatory damage-associated molecular patterns (DAMPs) and cytokines, including high mobility group protein b1 (Hmgb1) and interleukin-1ß (Il-1ß), in isolated mouse alveolar epithelial cells (AECs) upon chemotherapeutic agent cis-diaminodichloroplatinum (CDDP) treatment. Further investigation showed that this anti-GSDME sdAb also alleviated CDDP-induced pyroptotic cell death and lung tissue injury and decreased systemic Hmgb1 release in C57/BL6 mice, due to GSDME inactivation. Collectively, our data define an inhibitory role of the specific sdAb against GSDME, providing a potential strategy for systemically alleviating chemotherapeutic toxicities in vivo.


Assuntos
Proteína HMGB1 , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos de Domínio Único/farmacologia , Gasderminas , Proteína HMGB1/farmacologia , Piroptose/fisiologia , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA