Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6653): 92-100, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410825

RESUMO

Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.


Assuntos
Cromatina , Microscopia de Fluorescência , Transcrição Gênica , Zigoto , Cromatina/química , Nucleossomos/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Microscopia de Fluorescência/métodos , Animais , Peixe-Zebra , Embrião não Mamífero , Zigoto/metabolismo , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/metabolismo
2.
FEBS Lett ; 595(1): 14-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107035

RESUMO

The self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues. Phosphomimetic substitutions at phosphorylation sites within the homeodomain (S130 and S131) have site-specific functional effects. Phosphomimetic substitution of S130 abolishes DNA binding by NANOG and eliminates LIF-independent self-renewal. In contrast, phosphomimetic substitution of S131 enhances LIF-independent self-renewal, without influencing DNA binding. Modelling the DNA-homeodomain complex explains the disparate effects of these phosphomimetic substitutions. These results indicate how phosphorylation may influence NANOG homeodomain interactions that underpin ESC self-renewal.


Assuntos
Caseína Quinase I/metabolismo , Autorrenovação Celular , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/metabolismo , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Camundongos , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Fosforilação
3.
In Vitro Cell Dev Biol Anim ; 56(10): 888-895, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33140329

RESUMO

Noonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient's dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.


Assuntos
Células Alimentadoras/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Síndrome de Noonan/patologia , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Reprogramação Celular/genética , Meios de Cultura Livres de Soro , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Mutação de Sentido Incorreto/genética , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
4.
PLoS Biol ; 18(7): e3000561, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702011

RESUMO

Maternal ß-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal ß-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal ß-catenin signaling to safeguard the embryo against hyperactivation of maternal ß-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/ß-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal ß-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from ß-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of ß-catenin to TCF, thereby attenuating the transcriptional activity of ß-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal ß-catenin activity and demonstrates a transcriptional switch between ß-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal ß-catenin activity.


Assuntos
Desenvolvimento Embrionário/genética , Proteína Homeobox Nanog/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo , Animais , Padronização Corporal/genética , Núcleo Celular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , Mutação/genética , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Transcrição Gênica , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
5.
FASEB J ; 32(5): 2563-2573, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295863

RESUMO

NANOG plays a pivotal role in pluripotency acquisition and lineage specification in higher vertebrates, and its expression is restricted to primordial germ cells (PGCs) during early embryonic development. Mammalian NANOG self-associates via conserved tryptophan-repeat motifs in the C-terminal domain (CTD) to maintain pluripotency. Avian NANOG, however, lacks the conserved motifs, and the molecular mechanism underlying the biologic function is not clearly understood. Here, using spectroscopic and biochemical methods as well as cell-based assays, we report that chicken NANOG (cNANOG) oligomerizes through its CTD via a novel folding-upon-binding mechanism. The CTD of cNANOG is disordered as a monomer and associates into an α-helical multimer driven by intermolecular hydrophobic interactions. Mutation of key aromatic residues in the CTD abrogates the self-association, leading to a loss of the proliferation of chicken PGCs and blastoderm cells. Our results demonstrate that the CTD of cNANOG belongs to a novel IDP that switches into a helical oligomer via self-association, enabling the maintenance of PGCs and blastoderm cells.-Choi, H. J., Kim, I., Lee, H. J., Park, Y. H., Suh, J.-Y., Han, J. Y. Chicken NANOG self-associates via a novel folding-upon-binding mechanism.


Assuntos
Proteínas Aviárias , Blastoderma/metabolismo , Galinhas/metabolismo , Células Germinativas/metabolismo , Proteína Homeobox Nanog , Dobramento de Proteína , Multimerização Proteica , Motivos de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Blastoderma/citologia , Embrião de Galinha , Galinhas/genética , Células Germinativas/citologia , Interações Hidrofóbicas e Hidrofílicas , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Domínios Proteicos
6.
Stem Cell Reports ; 8(5): 1115-1123, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28457890

RESUMO

The core pluripotency transcription factor NANOG is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Although NANOG is phosphorylated at multiple residues, the role of NANOG phosphorylation in ESC self-renewal is incompletely understood, and no information exists regarding its functions during reprogramming. Here we report our findings that NANOG phosphorylation is beneficial, although nonessential, for ESC self-renewal, and that loss of phosphorylation enhances NANOG activity in reprogramming. Mutation of serine 65 in NANOG to alanine (S65A) alone has the most significant impact on increasing NANOG reprogramming capacity. Mechanistically, we find that pluripotency regulators (ESRRB, OCT4, SALL4, DAX1, and TET1) are transcriptionally primed and preferentially associated with NANOG S65A at the protein level due to presumed structural alterations in the N-terminal domain of NANOG. These results demonstrate that a single phosphorylation site serves as a critical interface for controlling context-dependent NANOG functions in pluripotency and reprogramming.


Assuntos
Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mutação de Sentido Incorreto , Proteína Homeobox Nanog/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Células Cultivadas , Receptor Nuclear Órfão DAX-1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo
7.
Biosens Bioelectron ; 86: 933-938, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27498317

RESUMO

Nanog is among the most important indicators of cell pluripotency and self-renew, so detection of Nanog is critical for tumor assessment and monitoring of clinical prognosis. In this work, a novel method for Nanog detection is proposed by using electrochemical technique based on target-induced conformational change of an electrode-bound DNA pseudoknot. In the absence of Nanog, the rigid structure of the pseudoknot will minimize the connection between the redox tag and the electrode, thus reducing the obtained faradaic current. Nevertheless, the Nanog binding may liberate the flexible single-stranded element that transforms the DNA pesudokont into DNA hairpin structure due to steric hindrance effect, thus making the electrochemical tag close to the electrode surface. Consequently, electron transfer can be enhanced and very well electrochemical response can be observed. By using the proposed method, Nanog can be determined in a linear range from 2nM to 25nM with a detection limit of 163 pM. Furthermore, the proposed method can be directly used to assay Nanog not only in purified samples but also in complex media (cell extracts), which shows potential applications in Nanog functional studies as well as clinical diagnosis in the future.


Assuntos
Condutometria/instrumentação , Sondas de DNA/química , Eletrodos , Técnicas de Sonda Molecular/instrumentação , Proteína Homeobox Nanog/análise , Proteína Homeobox Nanog/química , Adsorção , Sondas de DNA/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA