Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
PLoS Genet ; 20(9): e1011392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236083

RESUMO

Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand both the direct and indirect roles of PABPC in more detail, we have employed mass spectrometry to assess the abundance of the components of the yeast proteome, as well as RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, in cells lacking the PAB1 gene. We find that pab1Δ cells manifest drastic changes in the proteome and transcriptome, as well as defects in translation initiation and termination. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination. Collectively, our results indicate that, unlike the loss of simpler regulatory proteins, elimination of cellular Pab1 is profoundly pleiotropic and disruptive to numerous aspects of post-transcriptional regulation.


Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Proteoma/genética , Transcriptoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética , Estabilidade de RNA/genética , Deleção de Genes , Pleiotropia Genética , Iniciação Traducional da Cadeia Peptídica
2.
Vet Res ; 55(1): 121, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334466

RESUMO

Influenza A viruses (IAVs) significantly impact animal and human health due to their zoonotic potential. A growing body of evidence indicates that the host's long noncoding RNAs (lncRNAs) play crucial roles in regulating host-virus interactions during IAV infection. However, numerous lncRNAs associated with IAV infection have not been well characterised. Here, in this study, we identify the LINC01197 as an antiviral host factor. LINC01197 was significantly upregulated after IAV infection, which is controlled by the NF-κB pathway. Functional analysis revealed that overexpression of LINC01197 inhibited IAV replication and virus production, while knockdown of LINC01197 facilitated IAV replication. Mechanistically, LINC01197 directly interacts with poly(A) binding protein cytoplasmic 1 (PABPC1), which in turn sequesters and restricts its functions. This work shows that LINC01197 acts as a protein decoy, suppressing IAV replication and playing a key role in controlling IAV replication.


Assuntos
Vírus da Influenza A , RNA Longo não Codificante , Replicação Viral , Animais , Humanos , Células A549 , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cães
3.
Nucleic Acids Res ; 52(16): 9886-9903, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38943343

RESUMO

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.


Assuntos
Mitose , Poli A , Proteína I de Ligação a Poli(A) , Poliadenilação , Estabilidade de RNA , RNA Mensageiro , Transcriptoma , Humanos , Mitose/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosforilação , Poli A/metabolismo , Estabilidade de RNA/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células HeLa
4.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838666

RESUMO

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina , Núcleo Celular , Neurogênese , Neurônios , Proteína I de Ligação a Poli(A) , RNA Circular , RNA , RNA Circular/metabolismo , RNA Circular/genética , Neurônios/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Animais , RNA/metabolismo , RNA/genética , Linhagem Celular , Diferenciação Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
5.
Adv Sci (Weinh) ; 11(30): e2309712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887155

RESUMO

Helicobacter pylori (H. pylori) infection is the primary risk factor for the pathogenesis of gastric cancer (GC). N6-methyladenosine (m6A) plays pivotal roles in mRNA metabolism and hnRNPA2B1 as an m6A reader is shown to exert m6A-dependent mRNA stabilization in cancer. This study aims to explore the role of hnRNPA2B1 in H. pylori-associated GC and its novel molecular mechanism. Multiple datasets and tissue microarray are utilized for assessing hnRNPA2B1 expression in response to H. pylori infection and its clinical prognosis in patients with GC. The roles of hnRNPA2B1 are investigated through a variety of techniques including glucose metabolism analysis, m6A-epitranscriptomic microarray, Ribo-seq, polysome profiling, RIP-seq. In addition, hnRNPA2B1 interaction with poly(A) binding protein cytoplasmic 1 (PABPC1) is validated using mass spectrometry and co-IP. These results show that hnRNPA2B1 is upregulated in GC and correlated with poor prognosis. H. pylori infection induces hnRNPA2B1 upregulation through recruiting NF-κB to its promoter. Intriguingly, cytoplasm-anchored hnRNPA2B1 coordinated PABPC1 to stabilize its relationship with cap-binding eIF4F complex, which facilitated the translation of CIP2A, DLAT and GPX1 independent of m6A modification. In summary, hnRNPA2B1 facilitates the non-m6A translation of epigenetic mRNAs in GC progression by interacting with PABPC1-eIF4F complex and predicts poor prognosis for patients with GC.


Assuntos
Progressão da Doença , Infecções por Helicobacter , Helicobacter pylori , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Proteína I de Ligação a Poli(A) , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Camundongos , Animais , Prognóstico , Modelos Animais de Doenças , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética
6.
Nucleic Acids Res ; 52(15): 9193-9209, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869059

RESUMO

Stress induces global stabilization of the mRNA poly(A) tail (PAT) and the assembly of untranslated poly(A)-tailed mRNA into mRNPs that accumulate in stress granules (SGs). While the mechanism behind stress-induced global PAT stabilization has recently emerged, the biological significance of PAT stabilization under stress remains elusive. Here, we demonstrate that stress-induced PAT stabilization is a prerequisite for SG formation. Perturbations in PAT length impact SG formation; PAT shortening, achieved by overexpressing mRNA deadenylases, inhibits SG formation, whereas PAT lengthening, achieved by overexpressing their dominant negative mutants or downregulating deadenylases, promotes it. PABPC1, which specifically binds to the PAT, is crucial for SG formation. Complementation analyses reveal that the PABC/MLLE domain of PABPC1, responsible for binding PAM2 motif-containing proteins, plays a key role. Among them, ataxin-2 is a known SG component. A dominant-negative approach reveals that the PAM2 motif of ataxin-2 is essential for SG formation. Notably, ataxin-2 increases stress sensitivity, lowering the threshold for SG formation, probably by promoting the aggregation of PABPC1-bound mRNA. The C-terminal region is responsible for the self-aggregation of ataxin-2. These findings underscore the critical roles of mRNA PAT, PABPC1 and ataxin-2 in SG formation and provide mechanistic insights into this process.


Assuntos
Ataxina-2 , Poli A , Proteína I de Ligação a Poli(A) , RNA Mensageiro , Grânulos de Estresse , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ataxina-2/metabolismo , Ataxina-2/genética , Humanos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Poli A/metabolismo , Ligação Proteica , Estabilidade de RNA , Células HeLa , Estresse Fisiológico/genética
7.
Sci China Life Sci ; 67(6): 1212-1225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811444

RESUMO

Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.


Assuntos
Regiões 3' não Traduzidas , Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Proteína I de Ligação a Poli(A) , Poliadenilação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Movimento Celular/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Separação de Fases
8.
Oncogene ; 43(14): 1019-1032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366145

RESUMO

Breast cancer is one of the major malignant tumors among women worldwide. Long noncoding RNAs (lncRNAs) have been documented as significant modulators in the development and progression of various cancers; however, the contribution of lncRNAs to breast cancer remains largely unknown. In this study, we found a novel lncRNA (NONHSAT137675) whose expression was significantly increased in the breast cancer tissues. We named the novel lncRNA as lncRNA PRBC (PABPC1-related lncRNA in breast cancer) and identified it as a key lncRNA associated with breast cancer progression and prognosis. Functional analysis displayed that lncRNA PRBC could promote autophagy and progression of breast cancer. Mechanistically, we verified that lncRNA PRBC physically interacted with PABPC1 through RIP assay, and PABPC1 overexpression could reverse the inhibiting effect of lncRNA PRBC knockdown on the malignant behaviors in breast cancer cells. Knockdown of lncRNA PRBC interfered the translocation of PABPC1 from nucleus to cytoplasm as indicated by western blot and IF assays. Significantly, the cytoplasmic location of PABPC1 was required for the interaction between PABPC1 and AGO2, which could be enhanced by lncRNA PRBC overexpression, leading to strengthened recruitment of mRNA to RNA-induced silencing complex (RISC) and thus reinforcing the inhibition efficiency of miRNAs. In general, lncRNA PRBC played a critical role in malignant progression of breast cancer by inducing the cytoplasmic translocation of PABPC1 to further regulate the function of downstream miRNAs. This study provides novel insight on the molecular mechanism of breast cancer progression, and lncRNA PRBC might be a promising therapeutic target and prognostic predictor for breast cancer.


Assuntos
Neoplasias da Mama , Proteína I de Ligação a Poli(A) , RNA Longo não Codificante , Feminino , Humanos , Autofagia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
9.
Cancer Lett ; 584: 216604, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244911

RESUMO

Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia , Neoplasias da Próstata/patologia , RNA Mensageiro , Proteína I de Ligação a Poli(A)/metabolismo
10.
J Biol Chem ; 299(12): 105453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956771

RESUMO

The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.


Assuntos
Proteína I de Ligação a Poli(A) , Próstata , Proteínas Proto-Oncogênicas c-ets , Proteína EWS de Ligação a RNA , Humanos , Masculino , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Ativação Transcricional , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
11.
Aging Cell ; 22(10): e13949, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559347

RESUMO

Autophagy is an intracellular degradative process with an important role in cellular homeostasis. Here, we show that the RNA binding protein (RBP), heterogeneous nuclear ribonucleoprotein Q (HNRNPQ)/SYNCRIP is required to stimulate early events in autophagosome biogenesis, in particular the induction of VPS34 kinase by ULK1-mediated beclin 1 phosphorylation. The RBPs HNRNPQ and poly(A) binding protein nuclear 1 (PABPN1) form a regulatory network that controls the turnover of distinct autophagy-related (ATG) proteins. We also show that oculopharyngeal muscular dystrophy (OPMD) mutations engender a switch from autophagosome stimulation to autophagosome inhibition by impairing PABPN1 and HNRNPQ control of the level of ULK1. The overexpression of HNRNPQ in OPMD patient-derived cells rescues the defective autophagy in these cells. Our data reveal a regulatory mechanism of autophagy induction that is compromised by PABPN1 disease mutations, and may thus further contribute to their deleterious effects.


Assuntos
Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Autofagossomos/metabolismo , Mutação/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
12.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
13.
Immun Inflamm Dis ; 11(7): e919, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506150

RESUMO

BACKGROUND: The expression of cytoplasmic poly (A) binding protein-1 (PABPC1) has been reported in multiple cancer types. This protein is known to modulate cancer progression. However, the effects of PABPC1 expression in pancreatic adenocarcinoma (PAAD) have not been investigated. Here, we investigate the regulatory targets and molecular mechanisms of PABPC1 in PAAD. METHODS: PABPC1 and collagen type XII α1 chain (COL12A1) expression in PAAD and their role in tumor prognosis and tumor stage were investigated using The Cancer Genome Atlas database analysis. After silencing PABPC1, messenger RNA sequencing and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression of differentially expressed genes (DEGs), cell viability, apoptosis, and cell migration and invasion were explored using reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8 assay, flow cytometry assay, and transwell assay, respectively. The relationship between PABPC1 and COL12A1 expression was assessed by Pearson's correlation analysis. The regulatory function of COL12A1 in PABPC1-affected BXPC3 cell behavior was studied after COL12A1 was overexpressed. RESULTS: PABPC1 and COL12A1 expression was upregulated in patients with PAAD and was linked to poor prognosis. Four hundred and seventy-four DEGs were observed in BXPC3 cells after PABPC1 silencing. GO and KEGG analyses revealed that the top 10 DEGs were enriched in cell adhesion pathways. Additionally, PABPC1 silencing inhibited cell viability, migration, and invasion and accelerated apoptosis in BXPC3 cells. PABPC1 silencing increased AZGP1 and ARHGAP30 expression and decreased CAV1 and COL12A1 expression in BXPC3 cells. PABPC1 positively mediated COL12A1 expression, whereas PABPC1 knockdown induced the inhibition of BXPC3 cell proliferation, migration, and invasion. CONCLUSION: The results of this study indicate that PABPC1 may function as a tumor promoter in PAAD, accelerating BXPC3 cell proliferation and metastasis by regulating COL12A1 expression.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Proliferação de Células/genética , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Proteínas Ativadoras de GTPase , Neoplasias Pancreáticas/genética , Prognóstico , Proteína I de Ligação a Poli(A)/metabolismo , Neoplasias Pancreáticas
14.
Cell Mol Gastroenterol Hepatol ; 16(5): 735-755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478905

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is a common pediatric malignant liver tumor that is characterized by a low level of genetic mutations. Alternative splicing (AS) has been shown to be closely associated with cancer progression, especially in tumors with a low mutational burden. However, the role of AS in HB remains unknown. METHODS: Transcriptome sequencing was performed on 5 pairs of HB tissues and matched non-tumor tissues to delineate the AS landscape in HB. AS events were validated in 92 samples from 46 patients. RNA pull-down and RNA immunoprecipitation assays were carried out to identify splicing factors that regulate the AS of small nucleolar RNA host genes (SNHG). Patient-derived organoids (PDOs) were established to investigate the role of the splicing factor polyadenylate-binding nuclear protein 1 (PABPN1). RESULTS: This study uncovered aberrant alternative splicing in HB, including lncRNAs from SNHG family that undergo intron retention in HB. Further investigations revealed that PABPN1, a significantly upregulated RNA binding protein, interacts with splicing machinery in HB, inducing the intron retention of these SNHG RNAs and the downregulation of intronic small nucleolar RNAs (snoRNAs). Functionally, PABPN1 acts as an oncofetal splicing regulator in HB by promoting cell proliferation and DNA damage repair via inducing the intron retention of SNHG19. Knock-down of PABPN1 increases the cisplatin sensitivity of HB PDOs. CONCLUSIONS: Our findings revealed the role of intron retention in regulating snoRNA expression in hepatoblastoma, explained detailed regulatory mechanism between PABPN1 and the intron retention of SNHG RNAs, and provided insight into the development of new HB treatment options.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , RNA Longo não Codificante , Criança , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Processamento Alternativo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
15.
J Biol Chem ; 299(8): 104959, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356722

RESUMO

Nuclear mRNA metabolism is regulated by multiple proteins, which either directly bind to RNA or form multiprotein complexes. The RNA-binding protein ZC3H11A is involved in nuclear mRNA export, NF-κB signaling, and is essential during mouse embryo development. Furthermore, previous studies have shown that ZC3H11A is important for nuclear-replicating viruses. However, detailed biochemical characterization of the ZC3H11A protein has been lacking. In this study, we established the ZC3H11A protein interactome in human and mouse cells. We demonstrate that the nuclear poly(A)-binding protein PABPN1 interacts specifically with the ZC3H11A protein and controls ZC3H11A localization into nuclear speckles. We report that ZC3H11A specifically interacts with the human adenovirus type 5 (HAdV-5) capsid mRNA in a PABPN1-dependent manner. Notably, ZC3H11A uses the same zinc finger motifs to interact with PABPN1 and viral mRNA. Further, we demonstrate that the lack of ZC3H11A alters the polyadenylation of HAdV-5 capsid mRNA. Taken together, our results suggest that the ZC3H11A protein may act as a novel regulator of polyadenylation of nuclear mRNA.


Assuntos
Proteína I de Ligação a Poli(A) , Poliadenilação , Animais , Humanos , Camundongos , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Nucleic Acids Res ; 51(9): e49, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36938886

RESUMO

Long noncoding RNAs (lncRNAs) are >200 nt RNA transcripts without protein-coding potential. LncRNAs can be categorized into intergenic, intronic, bidirectional, sense, and antisense lncRNAs based on the genomic localization to nearby protein-coding genes. The current CRISPR-based lncRNA knockout strategy works efficiently for lncRNAs distant from the protein-coding gene, whereas it causes genomic perturbance inevitably due to technical limitations. In this study, we introduce a novel lncRNA knockout strategy, BESST, by deleting the genomic DNA fragment from the branch point to the 3' splicing site in the last intron of the target lncRNA. The BESST knockout exhibited comparable or superior repressive efficiency to RNA silencing or conventional promoter-exon1 deletion. Significantly, the BESST knockout strategy minimized the intervention of adjacent/overlap protein-coding genes by removing an average of ∼130 bp from genomic DNA. Our data also found that the BESST knockout strategy causes lncRNA nuclear retention, resulting in decapping and deadenylation of the lncRNA poly(A) tail. Further study revealed that PABPN1 is essential for the BESST-mediated decay and subsequent poly(A) deadenylation and decapping. Together, the BESST knockout strategy provides a versatile tool for investigating gene function by generating knockout cells or animals with high specificity and efficiency.


Assuntos
Técnicas de Inativação de Genes , Genoma , Genômica , RNA Longo não Codificante , Animais , Éxons/genética , Técnicas de Inativação de Genes/métodos , Técnicas de Inativação de Genes/normas , Genoma/genética , Poli A/genética , Poli A/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética
17.
Brain ; 146(8): 3206-3220, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732296

RESUMO

Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Humanos , Camundongos , Animais , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , RNA/metabolismo , Doenças Neurodegenerativas/patologia , Detergentes/metabolismo , Polimerização , Tauopatias/patologia , Encéfalo/patologia , RNA Mensageiro/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo
18.
RNA ; 29(5): 644-662, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754576

RESUMO

Intron retention is a type of alternative splicing where one or more introns remain unspliced in a polyadenylated transcript. Although many viral systems are known to translate proteins from mRNAs with retained introns, restriction mechanisms generally prevent export and translation of incompletely spliced mRNAs. Here, we provide evidence that the human nuclear poly(A)-binding protein, PABPN1, functions in such restrictions. Using a reporter construct in which nuclear export of an incompletely spliced mRNA is enhanced by a viral constitutive transport element (CTE), we show that PABPN1 depletion results in a significant increase in export and translation from the unspliced CTE-containing transcript. Unexpectedly, we find that inactivation of poly(A)-tail exosome targeting by depletion of PAXT components had no effect on export and translation of the unspliced reporter mRNA, suggesting a mechanism largely independent of nuclear RNA decay. Interestingly, a PABPN1 mutant selectively defective in stimulating poly(A) polymerase elongation strongly enhanced the expression of the unspliced, but not of intronless, reporter transcripts. Analysis of RNA-seq data also revealed that PABPN1 controls the expression of many human genes via intron retention. Notably, PABPN1-dependent intron retention events mostly affected 3'-terminal introns and were insensitive to PAXT and NEXT deficiencies. Our findings thus disclose a role for PABPN1 in restricting nuclear export of intron-retained transcripts and reinforce the interdependence between terminal intron splicing, 3' end processing, and polyadenylation.


Assuntos
Núcleo Celular , Splicing de RNA , Humanos , Íntrons/genética , Transporte Ativo do Núcleo Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Viral/genética , Expressão Gênica , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
19.
Cancer Lett ; 554: 216023, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436682

RESUMO

Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Gencitabina , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , RNA Circular/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo
20.
Acta Neuropathol ; 144(6): 1157-1170, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197469

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.


Assuntos
Distrofia Muscular Oculofaríngea , Humanos , Camundongos , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Xenoenxertos , Modelos Animais de Doenças , Chaperonas Moleculares/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA