Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 14: 76, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609087

RESUMO

BACKGROUND: Casitas B-lineage lymphoma (Cbl or c-Cbl) is a RING ubiquitin ligase that negatively regulates protein tyrosine kinase (PTK) signalling. Phosphorylation of a conserved residue (Tyr371) on the linker helix region (LHR) between the substrate-binding and RING domains is required to ubiquitinate PTKs, thereby flagging them for degradation. This conserved Tyr is a mutational hotspot in myeloproliferative neoplasms. Previous studies have revealed that select point mutations in Tyr371 can potentiate transformation in cells and mice but not all possible mutations do so. To trigger oncogenic potential, Cbl Tyr371 mutants must perturb the LHR-substrate-binding domain interaction and eliminate PTK ubiquitination. Although structures of native and pTyr371-Cbl are available, they do not reveal how Tyr371 mutations affect Cbl's conformation. Here, we investigate how Tyr371 mutations affect Cbl's conformation in solution and how this relates to Cbl's ability to potentiate transformation in cells. RESULTS: To explore how Tyr371 mutations affect Cbl's properties, we used surface plasmon resonance to measure Cbl mutant binding affinities for E2 conjugated with ubiquitin (E2-Ub), small angle X-ray scattering studies to investigate Cbl mutant conformation in solution and focus formation assays to assay Cbl mutant transformation potential in cells. Cbl Tyr371 mutants enhance E2-Ub binding and cause Cbl to adopt extended conformations in solution. LHR flexibility, RING domain accessibility and transformation potential are associated with the extent of LHR-substrate-binding domain perturbation affected by the chemical nature of the mutation. More disruptive mutants like Cbl Y371D or Y371S are more extended and the RING domain is more accessible, whereas Cbl Y371F mimics native Cbl in solution. Correspondingly, the only Tyr371 mutants that potentiate transformation in cells are those that perturb the LHR-substrate-binding domain interaction. CONCLUSIONS: c-Cbl's LHR mutations are only oncogenic when they disrupt the native state and fail to ubiquitinate PTKs. These findings provide new insights into how LHR mutations deregulate c-Cbl.


Assuntos
Proliferação de Células , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Proteína Oncogênica v-cbl/genética , Mutação Puntual , Conformação Proteica , Células 3T3 , Animais , Camundongos , Proteína Oncogênica v-cbl/química , Fosforilação
2.
J Med Chem ; 55(7): 3583-7, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22394513

RESUMO

We describe truncation and SAR studies to identify a pentapeptide that binds Cbl tyrosine kinase binding domain with a higher affinity than the parental peptide. The pentapeptide has an alternative binding mode that allows occupancy of a previously uncharacterized groove. A peptide library was used to map the binding site and define the interface landscape. Our results suggest that the pentapeptide is an ideal starting point for the development of inhibitors against Cbl driven diseases.


Assuntos
Modelos Moleculares , Oligopeptídeos/química , Proteína Oncogênica v-cbl/química , Proteínas Tirosina Quinases/química , Sítios de Ligação , Proteína Oncogênica v-cbl/metabolismo , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 104(44): 17311-6, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17954916

RESUMO

The structure of intrinsic factor (IF) in complex with cobalamin (Cbl) was determined at 2.6-A resolution. The overall fold of the molecule is that of an alpha(6)/alpha(6) barrel. It is a two-domain protein, and the Cbl is bound at the interface of the domains in a base-on conformation. Surprisingly, two full-length molecules, each comprising an alpha- and a beta-domain and one Cbl, and two truncated molecules with only an alpha- domain are present in the same asymmetric unit. The environment around Cbl is dominated by uncharged residues, and the sixth coordinate position of Co(2+) is empty. A detailed comparison between the IF-B12 complex and another Cbl transport protein complex, trans-Cbl-B12, has been made. The pH effect on the binding of Cbl analogues in transport proteins is analyzed. A possible basis for the lack of interchangeability of human and rat IF receptors is presented.


Assuntos
Fator Intrínseco/química , Fator Intrínseco/metabolismo , Vitamina B 12/química , Vitamina B 12/metabolismo , Cristalografia por Raios X , Humanos , Fator Intrínseco/genética , Modelos Moleculares , Proteína Oncogênica v-cbl/química , Proteína Oncogênica v-cbl/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA