Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054890

RESUMO

Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.


Assuntos
Apoptose , AVC Isquêmico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Barreira Hematoencefálica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação , AVC Isquêmico/genética , AVC Isquêmico/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Neurônios/fisiologia , Proteômica
2.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681809

RESUMO

The developmental potential of porcine oocytes cultured in vitro was remarkably enhanced in a medium containing FGF2, LIF and IGF1 (FLI) when compared to a medium supplemented with gonadotropins and EGF (control). We analyzed the molecular background of the enhanced oocyte quality by comparing the time course of MAPK3/1 and AKT activation, and the expression of genes controlled by these kinases in cumulus-oocyte complexes (COCs) cultured in FLI and the control medium. The pattern of MAPK3/1 activation in COCs was very similar in both media, except for a robust increase in MAPK3/1 phosphorylation during the first hour of culture in the FLI medium. The COCs cultured in the FLI medium exhibited significantly higher activity of AKT than in the control medium from the beginning up to 16 h of culture; afterwards a deregulation of AKT activity occurred in the FLI medium, which was not observed in the control medium. The expression of cumulus cell genes controlled by both kinases was also modulated in the FLI medium, and in particular the genes related to cumulus-expansion, signaling, apoptosis, antioxidants, cell-to-cell communication, proliferation, and translation were significantly overexpressed. Collectively, these data indicate that both MAPK3/1 and AKT are implicated in the enhanced quality of oocytes cultured in FLI medium.


Assuntos
Meios de Cultura/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Oócitos/fisiologia , Animais , Células Cultivadas , Meios de Cultura/química , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Meiose/efeitos dos fármacos , Meiose/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Suínos
3.
Leukemia ; 35(10): 2875-2884, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480104

RESUMO

Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Proliferação de Células , Feminino , Humanos , Janus Quinase 2/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia
4.
Diabetes ; 70(7): 1498-1507, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33883215

RESUMO

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH in energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure, or glucose homeostasis in animals on regular chow. However, with high-fat diet (HFD) challenge, loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake, and energy efficiency that was more remarkable in females, which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role in protection against DIO in a sex-specific pattern.


Assuntos
Dieta Hiperlipídica , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Obesidade/prevenção & controle , Fator de Transcrição STAT3/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Processamento de RNA/fisiologia , Caracteres Sexuais , Fator Esteroidogênico 1/fisiologia
5.
Shock ; 55(3): 349-356, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826812

RESUMO

ABSTRACT: Endothelial cells play a major role in inflammatory responses to infection and sterile injury. Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express inflammatory cytokines/chemokines, and to undergo functional changes, including increased permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in LPS-induced inflammatory activation and permeability of primary human lung microvascular endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced cytokine/chemokine production by primary human monocytes. Our study identifies a complex role for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary response gene (MyD88) and TIR domain-containing adaptor inducing IFN-ß (TRIF) signaling pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 production by human monocytes. Our results suggest that ERK1/2 may play an important role in the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and injury.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Citocinas/biossíntese , Células Endoteliais/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Humanos , Lipopolissacarídeos/administração & dosagem , Masculino
6.
J Nutr ; 150(5): 1167-1177, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32047914

RESUMO

BACKGROUND: Normalization of arterial inflammation inhibits atherosclerosis. The preventive role for protocatechuic acid (PCA) in early-stage atherosclerosis is well recognized; however, its therapeutic role in late-stage atherosclerosis remains unexplored. OBJECTIVE: We investigated whether PCA inhibits vulnerable atherosclerosis progression by normalizing arterial inflammation. METHODS: Thirty-wk-old male apolipoprotein E-deficient (Apoe-/-) mice with vulnerable atherosclerotic lesions in the brachiocephalic artery were fed the AIN-93G diet alone (control) or supplemented with 0.003% PCA (wt:wt) for 20 wk. Lesion size and composition, IL-1ß, and NF-κB in the brachiocephalic arteries, and serum lipid profiles, oxidative status, and proinflammatory cytokines (e.g., IL-1ß, monocyte chemoattractant protein-1, and serum amyloid A) were measured. Moreover, the effect of PCA on the inflammation response was evaluated in efferocytic macrophages from C57BL/6J mice. RESULTS: Compared with the control treatment, dietary PCA supplementation significantly reduced lesion size (27.5%; P < 0.05) and also improved lesion stability (P < 0.05) as evidenced by increased thin fibrous cap thickness (31.7%) and collagen accumulation (58.3%), reduced necrotic core size (37.6%) and cellular apoptosis (73.9%), reduced macrophage accumulation (45.1%), and increased vascular smooth muscle cell accumulation (51.5%). Moreover, PCA supplementation inhibited IL-1ß expression (53.7%) and NF-κB activation (64.4%) in lesions. However, PCA supplementation did not change serum lipid profiles, total antioxidant capacity, and inflammatory cytokines. In efferocytic macrophages, PCA at 0.5 and 1 µmol/L inhibited Il1b/IL-1ß mRNA (27.2-46.5%) and protein (29.2-49.6%) expression and NF-κB activation (67.0-80.3%) by upregulation of MER proto-oncogene tyrosine kinase (MERTK) and inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). Strikingly, the similar pattern of the MERTK and MAPK3/1 changes in lesional macrophages of mice after PCA intervention in vivo was recapitulated. CONCLUSION: PCA inhibits vulnerable lesion progression in mice, which might partially be caused by normalization of arterial inflammation by upregulation of MERTK and inhibition of MAPK3/1 in lesional macrophages.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Hidroxibenzoatos/administração & dosagem , Animais , Anti-Inflamatórios , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Células Cultivadas , Suplementos Nutricionais , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , NF-kappa B/metabolismo , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/fisiologia
7.
Neurosci Lett ; 715: 134671, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31805372

RESUMO

The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.


Assuntos
Comunicação Celular/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/fisiologia , Animais , Fenótipo
8.
Cell Signal ; 63: 109381, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374291

RESUMO

Multidrug resistance is a major treatment obstacle for recurrent and metastatic bladder cancer, which often leads to disease progression and poor clinical outcome. Although overexpression of interleukin-6 (IL-6) appears to play a critical role in the development of chemotherapy resistance, inhibitors for IL-6 alone have not improved clinical outcomes. Since the IL-6/IL-6R/GP130 complex is involved in multidrug resistance, another strategy would be to focus on glycoprotein-130 (GP130) since it dimerizes with IL-6R/CD26 as a membrane-bound signaling transducer receptor and initiates subsequent signaling activation and may be a potential therapeutic target. Currently, the role of GP130 in chemoresistant bladder cancer is unknown. In the present study, we demonstrate that GP130 is over-expressed in cisplatin and gemcitabine-resistant bladder cancer cells, and that the inhibition of GP130 expression significantly reduces cell viability, survival and migration. Downstream of GP130 is PI3K/AKT/mTOR signaling, which is inactivated by SC144, a GP130 inhibitor. However, Raf/MEK/ERK signaling, which also is downstream of GP130 is activated by SC144. This activation is likely based on a mTOR/S6K1/PI3K/ERK negative feedback loop, which is presumed to counteract the inhibitory effect of SC144 on tumor aggressiveness. Blocking both GP130 and pERK resulted in synergistic inhibition of cytotoxicity, clonal survival rates and cell migration in our chemotherapy resistant bladder cancer cells. This vertical inhibition offers a novel therapeutic strategy for targeting human chemoresistant bladder cancer.


Assuntos
Carcinoma de Células de Transição/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicoproteínas/antagonistas & inibidores , Hidrazinas/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Quinoxalinas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Butadienos/farmacologia , Butadienos/uso terapêutico , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Neoplasias da Bexiga Urinária/patologia
9.
Sci Rep ; 9(1): 9641, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270345

RESUMO

Extracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 signaling in cells expressing a Cre allele regulated by the endogenous GnRHR promoter (GRIC-ERKdko). Adult female GRIC-ERKdko mice were hypogonadotropic and anovulatory. Gonadotropin administration and mating led to pregnancy in one-third of the ERKdko females. Litters from ERKdko females and pup weights were reduced coincident with delayed parturition and 100% neonatal mortality. Based on this, we examined Cre expression in implantation sites as a potential mechanism. GnRHR mRNA levels at e10.5 and e12.5 were comparable to pituitary levels from adult female mice at proestrus and GnRHR mRNA in decidua was enriched compared to whole implantation site. In vivo studies confirmed recombination in decidua, and GRIC-ERKdko placentas showed reduced ERK2 expression. Histopathology revealed abnormalities in placental architecture in the GRIC-ERKdko animals. Regions of apoptosis at the decidual/uterine interface at e18.5 were observed in control animals but apoptotic tone in these regions was reduced in ERKdko animals. These studies support a potential model of ERK-dependent signaling within the implantation site leading to loss of placental architecture and mis-regulation of apoptotic events at parturition occurring coincident with prolonged gestation and neonatal mortality.


Assuntos
Retardo do Crescimento Fetal/patologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Parto , Placenta/patologia , Placentação , Animais , Feminino , Retardo do Crescimento Fetal/etiologia , Camundongos , Camundongos Knockout , Gravidez
10.
Med Sci Monit ; 24: 8984-8992, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538214

RESUMO

BACKGROUND We investigated the role of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway in finasteride-induced hypospadias rats and explored the mechanisms involved. MATERIAL AND METHODS The hypospadias model was established by intragastric administration of finasteride and confirmed by hematoxylin and eosin (HE) staining. The urethral plate fibroblasts (UPF) were obtained from normal and modeled rats and identified based upon vimentin expression. Thereafter, UPF were divided into a normal control group, a model group, a model + MAPK inhibitor group, and a model + ERK inhibitor group. Cell proliferation, apoptosis, and cell cycling of UPF were assessed. Quantitative real-time PCR and Western blot analysis were used to evaluate expression of the MAPK signaling pathway and apoptosis-related genes. RESULTS HE staining confirmed that 10 mg/kg finasteride caused severe hypospadias in rats. UPFs obtained from the 10 mg/kg finasteride group showed higher proliferation and cell cycling and lower apoptosis compared with those obtained from the normal control group (P<0.05). Interestingly, a MAPK inhibitor or an ERK inhibitor could attenuate the abnormalities of cell proliferation, cycling, and apoptosis of UPF induced by finasteride. Compared with controls, the relative expression of p-MEK1/MEK1, caspase 3, and P53 in the UPF of the model group were reduced, while the relative expression of p-MAPK14/MAPK14 was increased in the cells of the model group. By contrast, a MAPK inhibitor or an ERK inhibitor could alleviate the abnormalities of MAPK/ERK signaling pathway and apoptosis-related gene expression induced by finasteride. CONCLUSIONS Our study reveals that the MAPK/ERK signaling pathway is involved in the regulation of proliferation, apoptosis, and cell cycling of UPFs in finasteride-induced hypospadias.


Assuntos
Hipospadia/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Animais , Apoptose , Proliferação de Células/fisiologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Finasterida/farmacologia , Hipospadia/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Ratos , Transdução de Sinais/fisiologia , Uretra/fisiologia
11.
J Immunol Res ; 2018: 6249085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977930

RESUMO

Toll/IL-1R-domain-containing adaptor-inducing IFN-ß (TRIF) is an important adaptor for TLR3- and TLR4-mediated inflammatory signaling pathways. Recent studies have shown that TRIF plays a key role in vessel inflammation and atherosclerosis; however, the precise mechanisms are unclear. We investigated the mechanisms of the TRIF-regulated inflammatory response in RAW264.7 macrophages under oxidized low-density lipoprotein (ox-LDL) stimulation. Our data show that ox-LDL induces TRIF, miR-155, and BIC expression, activates the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways, and elevates the levels of IL-6 and TNF-α in RAW264.7 cells. Knockdown of TRIF using TRIF siRNA suppressed BIC, miR-155, IL-6, and TNF-α expression and inhibited the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways. Inhibition of ERK1/2 signaling also suppressed BIC and miR-155 expression. These findings suggest that TRIF plays an important role in regulating the ox-LDL-induced macrophage inflammatory response and that TRIF modulates the expression of BIC/miR-155 and the downstream SOCS1-STAT3-NF-κB signaling pathway via ERK1/2. Therefore, TRIF might be a novel therapeutic target for atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lipoproteínas LDL/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Inativação Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/fisiologia , Camundongos , MicroRNAs/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , NF-kappa B/metabolismo , Células RAW 264.7 , Precursores de RNA/metabolismo , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
12.
J Cell Biochem ; 119(1): 123-129, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28574608

RESUMO

The oocyte quality remains as one of the major problems associated with poor in vitro fertilization (IVF) rate and assisted reproductive technology (ART) failure worldwide. The oocyte quality is dependent on its meiotic maturation that begins inside the follicular microenvironment and gets completed at the time of ovulation in most of the mammalian species. Follicular oocytes are arrested at diplotene stage of first meiotic prophase. The resumption of meiosis from diplotene arrest, progression through metaphase-I (M-I) and further arrest at metaphase-II (M-II) are important physiological requirements for the achievement of meiotic competency in mammalian oocytes. The achievement of meiotic competency is dependent upon cyclic stabilization/destabilization of maturation promoting factor (MPF). The mitogen-activated protein kinase3/1 (MAPK3/1) modulates stabilization/destabilization of MPF in oocyte by interacting either with signal molecules, transcription and post-transcription factors in cumulus cells or cytostatic factors (CSFs) in oocyte. MPF regulates meiotic cell cycle progression from diplotene arrest to M-II arrest and directly impacts oocyte quality. The MAPK3/1 activity is not reported during spontaneous meiotic resumption but its activity in cumulus cells is required for gonadotropin-induced oocyte meiotic resumption. Although high MAPK3/1 activity is required for the maintenance of M-II arrest in several mammalian species, its cross-talk with MPF remains to be elucidated. Further studies are required to find out the MAPK3/1 activity and its impact on MPF destabilization/stabilization during achievement of meiotic competency, an important period that decides oocyte quality and directly impacts ARTs outcome in several mammalian species including human. J. Cell. Biochem. 119: 123-129, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Fator Promotor de Maturação/metabolismo , Meiose , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Humanos , Mamíferos , Fator Promotor de Maturação/fisiologia , Prófase Meiótica I , Metáfase , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Oócitos/enzimologia
13.
J Dermatol Sci ; 89(3): 241-247, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29198699

RESUMO

BACKGROUND: Mechanical stress is an ubiquitous challenge of human cells with fundamental impact on cell physiology. Previous studies have shown that stretching promotes signalling cascades involved in proliferation and tissue enlargement. OBJECTIVE: The present study is dedicated to learn more about cellular structures contributing to perception and signal transmission of cell stretch. In particular, we hypothesized that desmosmal contacts and the adjacent keratin filament build an intercellular matrix providing information about the mechanical load. METHODS: Epidermal cells with different keratin equipment were seeded on flexible silicon dishes and stretched. As read out parameter the activation of PKB/Akt and p44/42 was monitored by Western blotting. Likewise desomosomal contacts were manipulated by depletion or addition of calcium. Moreover, desmoglein 3 and desmocollin 3 were blocked by either specific antibodies or siRNA. RESULTS: It was found that the omission of calcium from the medium, a necessary cofactor for desmosomal cadherins, inhibited stretch mediated activation of PKB/Akt and p44/42. The relevance of desmosomes in this context was further substantiated by experiments using a desmoglein 3 blocking antibody (AK23) and siRNA against desmocollin 3. Moreover, disruption of the keratin filament by sodium orthovanadate also abrogates PKB/Akt and p44/42 activation in response to stretch. Likewise, KEB-7 keratinocytes harbouring a mutation in the keratin 14 gene and genetically modified keratinocytes devoid of any keratin show an altered signalling after stretch indicating the relevance of the keratin filament in this context. CONCLUSION: Besides their important role in cell architecture our results identify desmosomes and keratins as mechanosensing structures.


Assuntos
Desmossomos/fisiologia , Queratinas/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Cálcio/fisiologia , Células Cultivadas , Desmogleína 3/fisiologia , Ativação Enzimática , Humanos , Estresse Mecânico
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 42(4): 380-388, 2017 Apr 28.
Artigo em Chinês | MEDLINE | ID: mdl-28490694

RESUMO

OBJECTIVE: To observe effect of acupuncture combined with hypothermia therapy on MAPK/ERK pathway and apoptosis related factorsin rats suffered cerebral ischemia reperfusion and to explore underlying mechanisms.
 Methods: Middle cerebral artery ischemia model were established.Ninety SD rats were randomly assigned into a blank group, a control group, a model group, an acupuncture group, a mild hypothermia group, and an acupuncture with hypothermia group. After 72 h treatment, nerve function defect scores were observed, and infarction area percent was detected by 2, 3, 5-triphenyl-2H-tetrazolium chloride (TTC) staining; expressions of Bcl-2 and Bax were examined by immunohistochemistry; apoptotic cells were detected by TUNEL assay; and expression levels of phospho-mitogen-activated protein kinase(p-MEK2) and phospho-extracellular signal regulated kinase 1/2 (p-ERK1/2) in the rats' hippocampus ischemic side were determined by Western blot.
 Results: In the rats of the model group, the neural function defect scores, the infarction area percent, the expression level of Bax, and apoptotic cells increased, while the level of Bcl-2 decreased significantly. The level of p-MEK2 and p-ERK1/2 increased obviously compared with the blank and control groups (P<0.05 or P<0.01). After treatment with acupuncture and hypothermia, the neural function defect scores, infarction area percent, and the level of Bax, apoptotic cells and the levels of p-MEK2 and p-ERK1/2 were significantly decreased, while the level of Bcl-2 in the treatment group was significantly elevated (P<0.05 or P<0.01) compared with the model group. Compared with the acupuncture group or the hypothermia group, the neural function defect scores and the levels of p-MEK2 and p-ERK1/2 in the acupuncture combined with hypothermia group were significantly reduced (P<0.05 or P<0.01).
 Conclusion: Acupuncture and hypothermia therapy can improve cerebral function, and reduce the cerebral injury through down-regulation of Bax level, and up-regulation of Bcl-2 level, which is related to reducing the levels of p-MEK2 and p-ERK1/2. The therapeutic effects on cerebral ischemia reperfusion injury for combination of acupuncture with hypothermia are better than those with single application of acupuncture or hypothermia.


Assuntos
Terapia por Acupuntura , Hipotermia Induzida , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Apoptose/fisiologia , Infarto Encefálico/terapia , Lesões Encefálicas/terapia , Isquemia Encefálica/terapia , Regulação para Baixo , MAP Quinase Quinase 2/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/terapia , Regulação para Cima
15.
Gastroenterology ; 153(2): 521-535.e20, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28438610

RESUMO

BACKGROUND & AIMS: Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS: Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS: In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS: Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Esvaziamento Gástrico/fisiologia , Hiperglicemia/fisiopatologia , Células Intersticiais de Cajal/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Humanos , Células Intersticiais de Cajal/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Receptores para Leptina/genética , Regulação para Cima
16.
Oncotarget ; 7(34): 54339-54359, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27486885

RESUMO

Activation Induced Cell Death of T helper cells is central to maintaining immune homeostasis and a perturbation often manifests in aberrant T helper cells that is associated with immunopathologies. Significant presence of T cells positive for IL-17A (Th17) and dual positive for IFN-γ/IL-17A (Th1/Th17) in both effector (CD45RA+RO+) and memory (CD45RA-RO+) compartments with differential FasL protein in RA peripheral blood suggested their differential TCR AICD sensitivity. Lowered active caspase-3 in Th17 and Th1/Th17 over Th1 cells confirmed their capability to resist AICD and pointed to early upstream events. Differential MAPK activities, FasL protein and downstream caspase-3 activities in murine Th1 and Th17 cells established distinct TCR mediated signaling pathways and suggested low Erk and p38 activity as pivotal for AICD sensitivity. We extrapolated our mouse and human data and report that Fas-FasL is the preferred death pathway for both Th1 and Th17 and that inherently low Erk2 activity protected Th17 cells from TCR AICD. The presence of significantly higher numbers of aberrant T helper cells in RA also suggest an inflammatory cytokine milieu and AICD insensitive T cell link to sustained inflammation. Re sensitization to apoptosis by targeting MAPK activity especially Erk2 in RA might be of therapeutic value.


Assuntos
Apoptose , Degranulação Celular , Proteína Ligante Fas/análise , Ativação Linfocitária , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Células Th17/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Artrite Reumatoide/imunologia , Ativação Enzimática , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th17/imunologia
17.
Oncogene ; 35(31): 4080-90, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-26686085

RESUMO

Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.


Assuntos
MicroRNAs/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Subunidade p52 de NF-kappa B/fisiologia , PTEN Fosfo-Hidrolase/genética , Estabilidade de RNA , Proteínas Supressoras de Tumor/fisiologia , Transporte Ativo do Núcleo Celular , Células HCT116 , Humanos , MicroRNAs/fisiologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-jun/fisiologia , Transdução de Sinais
18.
Food Funct ; 7(1): 84-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26645329

RESUMO

This paper investigated if marginal zinc nutrition during gestation could affect fetal exposure to glucocorticoids as a consequence of a deregulation of placental 11ßHSD2 expression. Placenta 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) plays a central role as a barrier protecting the fetus from the deleterious effects of excess maternal glucocorticoids. Rats were fed control (25 µg zinc per g diet) or marginal (10 µg zinc per g diet, MZD) zinc diets from day 0 through day 19 (GD19) of gestation. At GD19, corticosterone concentration in plasma, placenta, and amniotic fluid was similar in both groups. However, protein and mRNA levels of placenta 11ßHSD2 were significantly higher (25% and 58%, respectively) in MZD dams than in controls. The main signaling cascades modulating 11ßHSD2 expression were assessed. In MZD placentas the activation of ERK1/2 and of the downstream transcription factor Egr-1 was low, while p38 phosphorylation and SP-1-DNA binding were low compared to the controls. These results point to a central role of ERK1/Egr-1 in the regulation of 11ßHSD2 expression under the conditions of limited zinc availability. In summary, results show that an increase in placenta 11ßHSD2 expression occurs as a consequence of gestational marginal zinc nutrition. This seems to be due to a low tissue zinc-associated deregulation of ERK1/2 rather than to exposure to high maternal glucocorticoid exposure. The deleterious effects on brain development caused by diet-induced marginal zinc deficiency in rats do not seem to be due to fetal exposure to excess glucocorticoids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Placenta/enzimologia , Zinco/deficiência , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/análise , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Animais , Dieta , Feminino , Expressão Gênica/fisiologia , Idade Gestacional , Glucocorticoides/análise , Masculino , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Placenta/química , Gravidez , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Zinco/administração & dosagem , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
19.
J Neuroinflammation ; 12: 229, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637332

RESUMO

BACKGROUND: The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. METHODS: Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measures included calcium imaging, PARP-1 activation status, NF-κB transcriptional activity, DNA damage assesment and cytokine relesease profiling. RESULTS: TNFα induces PARP-1 activation in the absence of detectable DNA strand breaks, as measured by the PANT assay. TNFα-induced transcriptional activation of NF-κB requires PARP-1 enzymatic activity. Enzymatic activation of PARP-1 by TNFα was blocked in Ca(2+)-free medium, by Ca(2+) chelation with BAPTA-AM, and by D609, an inhibitor of phoshatidyl choline-specific phospholipase C (PC-PLC), but not by thapsigargin or by U73112, an inhibitor of phosphatidyl inisitol-specific PLC (PI -PLC). A TNFR1 blocking antibody reduced Ca(2+) influx and PARP-1 activation. TNFα-induced PARP-1 activation was also blocked by siRNA downregulation of ERK2 and by PD98059, an inhibitor of the MEK / ERK protein kinase cascade. Moreover, TNFα-induced NF-κB (p65) transcriptional activation was absent in cells expressing PARP-1 that lacked ERK2 phosphorylation sites, while basal NF-κB transcriptional activation increased in cells expressing PARP-1 with a phosphomimetic substitution at an ERK2 phophorylation site. CONCLUSIONS: These results suggest that TNFα induces PARP-1 activation through a signaling pathway involving TNFR1, Ca(2+) influx, activation of PC-PLC, and activation of the MEK1 / ERK2 protein kinase cascade. TNFα-induced PARP-1 activation is not associated with DNA damage, but ERK2 mediated phosphorylation of PARP-1.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/fisiologia , NF-kappa B/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/fisiologia , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Fosfolipases Tipo C/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Quelantes/farmacologia , Dano ao DNA , Ativação Enzimática/efeitos dos fármacos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Poli(ADP-Ribose) Polimerase-1 , RNA Interferente Pequeno/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores
20.
Adv Exp Med Biol ; 860: 269-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303491

RESUMO

The carotid body is the main mammalian oxygen-sensing organ regulating ventilation. Despite the carotid body is subjected of extensive anatomical and functional studies, little is yet known about the molecular pathways signaling the neurotransmission and neuromodulation of the chemoreflex activity. As kinases are molecules widely involved in motioning a broad number of neural processes, here we hypothesized that pathways of protein kinase B (AKT) and extracellular signal-regulated kinases ½ (ERK1/2) are implicated in the carotid body response to hypoxia. This hypothesis was tested using the in-vitro carotid body/carotid sinus nerve preparation ("en bloc") from Sprague Dawley adult rats. Preparations were incubated for 60 min in tyrode perfusion solution (control) or containing 1 µM of LY294002 (AKT inhibitor), or 1 µM of UO-126 (ERK1/2 inhibitor). The carotid sinus nerve chemoreceptor discharge rate was recorded under baseline (perfusion solution bubbled with 5 % CO(2) balanced in O(2)) and hypoxic (perfusion solution bubbled with 5 % CO(2) balanced in N(2)) conditions. Compared to control, both inhibitors significantly decreased the normoxic and hypoxic carotid body chemoreceptor activity. LY294002- reduced carotid sinus nerve discharge rate in hypoxia by about 20 %, while UO-126 reduces the hypoxic response by 45 %. We concluded that both AKT and ERK1/2 pathways are crucial for the carotid body intracellular signaling process in response to hypoxia.


Assuntos
Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Butadienos/farmacologia , Cromonas/farmacologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA