RESUMO
Previous studies have demonstrated that mitogen-activated protein kinase 11 (MAPK11) functions as an important point of integration in signalling transduction pathways and controlling endocellular processes, including viability of cells, differentiation, proliferation and apoptosis, through the sequence phosphorylation of the substrate protein Ser/Thr kinase protein cascade. Though MAPK 11 plays an important role in various tumours, especially in the invasive and metastatic processes, its expression and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Runt-associated transcription factor 2 (RUNX2), a main transcription factor for osteoblast differentiation and chondrocyte maturation, has high expression in a number of tumours. In this study, the mRNA and protein levels of targeted genes in ccRCC tissues and adjacent tissues are analysed using the Cancer Genome Atlas (TCGA) database and western blotting. The ccRCC cell proliferation was measured with colony formation and EdU assay, and cell migration was examined through transwell assay. The interactive behaviour between proteins was detected with immunoprecipitation. Half-life period of RUNX2 protein was measured with cycloheximide chase assay. The results of the study indicated overexpression of MAPK11 and RUNX2 in ccRCC tissues and cell lines. MAPK11 and RUNX2 promoted the ccRCC cell proliferation and migration. Additionally, physical interaction took place between RUNX2 and P-MAPK11, which functioned to sustain the stability of RUNX2 protein. The high expression of RUNX2 could neutralize the functional degradation in MAPK11. And the outcomes of the study suggest that the P-MAPK11/RUNX2 axis may be used as a potential therapeutic target of ccRCC.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão GênicaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38ß is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38ß substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38ß and supports exploring p38ß inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Replicação Viral , Proteína Quinase 11 Ativada por Mitógeno/metabolismoRESUMO
Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogenactivated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38ß (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.
Assuntos
Neoplasias Gastrointestinais , Proteína Quinase 11 Ativada por Mitógeno , Humanos , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Neoplasias Gastrointestinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Microambiente TumoralRESUMO
High temperatures (HT) cause pollen abortion and poor floret fertility in rice, which is closely associated with excessive accumulation of reactive oxygen species (ROS) in the developing anthers. However, the relationships between accumulation of abscisic acid (ABA) and ROS, and their effects on tapetum-specific programmed cell death (PCD) in HT-stressed anthers are poorly characterised. Here, we determined the spatiotemporal changes in ABA and ROS levels, and their relationships with tapetal PCD under HT exposure. Mutants lacking ABA-activated protein kinase 2 (SAPK2) functions and exogenous ABA treatments were used to explore the effects of ABA signalling on the induction of PCD and ROS accumulation during pollen development. HT-induced pollen abortion was tightly associated with ABA accumulation and oxidative stress. The higher ABA level in HT-stressed anthers resulted in the earlier initiation of PCD induction and subsequently abnormal tapetum degeneration by activating ROS accumulation in developing anthers. Interactions between SAPK2 and DEAD-box ATP-dependent RNA helicase elF4A-1 (RH4) were required for ABA-induced ROS generation in developing anthers. The OsSAPK2 knockout mutants showed the impaired PCD responses in the absence of HT. However, the deficiency of SAPK2 functions did not suppress the ABA-mediated ROS generation in HT-stressed anthers.
Assuntos
Oryza , Espécies Reativas de Oxigênio/metabolismo , Oryza/fisiologia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Pólen/fisiologia , Apoptose/genética , Resposta ao Choque Térmico , Regulação da Expressão Gênica de PlantasRESUMO
Stomatal movements allow the uptake of CO2 for photosynthesis and water loss through transpiration, therefore play a crucial role in determining water use efficiency. Both red and blue lights induce stomatal opening, and the stomatal apertures under light are finetuned by both positive and negative regulators in guard cells. However, the molecular mechanisms for precisely adjusting stomatal apertures under light have not been completely understood. Here, we provided evidence supporting that Arabidopsis thaliana mitogen-activated protein kinase 11 (MPK11) plays a negative role in red light-induced stomatal opening. First, MPK11 was found to be highly expressed in guard cells, and MPK11-GFP signals were detected in both nuclear and cytoplasm of guard cells. The transcript levels of MPK11 in guard cells were upregulated by white light, and the stomata of mpk11 opened wider than that of wild type under white light. Consistent with the larger stomatal aperture, mpk11 mutant exhibited higher stomatal conductance and CO2 assimilation rate under white light. The transcript levels of the genes responsible for osmolytes increases were higher in guard cells of mpk11 than that of wild type, which may contribute to the larger stomatal aperture of mpk11 under white light. Furthermore, MPK11 transcript levels in guard cells were upregulated by red light, and mpk11 mutant showed a larger stomatal aperture under red light. Taken together, these results demonstrate that red light-upregulated MPK11 plays a negative role in stomatal opening, which finetuning the stomatal opening apertures and preventing excessive water loss by transpiration under light.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Estômatos de Plantas/metabolismo , Luz , Água/metabolismoRESUMO
Arginine is one of the host semiessential amino acids with diverse biological activities, and arginine depletion is associated with the incidence of many diseases. Arginine depletion induced by diet-derived interferon gamma (IFN-γ) leads to malignant transformation and impaired milk quality in healthy lactating bovine mammary epithelial cells (BMECs). However, the molecular mechanism of IFN-γ-induced arginine depletion is unclear. In this study, the BMEC cell line, mammary alveolar cells-large T antigen cells (MAC-T), was stimulated with IFN-γ (10 ng/mL) for 24 h, and cellular arginine and ornithine quantified by liquid chromatography-tandem mass spectrometry. Carnosine synthase 1 (CARNS1) was identified from RNA-seq data, CARNS1 knockdown was achieved using an shRNA interfering plasmid. The expression levels of CARNS1, argininosuccinate synthetase 1 (ASS1), mitogen-activated protein kinase 11 (p38 MAPK), and phosphorylated (p)-p38, and their cognate genes, were analyzed by Western blotting and real-time quantitative polymerase chain reaction. The results showed that IFN-γ inhibited the biosynthesis of arginine, but enhanced its catalysis via disruption of key enzymes involved in arginine metabolism. IFN-γ also inhibited the expression of CARNS1, ASS1, and cationic amino acid transporter 1, while activating the expression and phosphorylation of p38. However, knockdown of CARNS1 reduced arginine level and ASS1 expression and block of either the IFN-γ receptor IFN-γ receptor 2 or p38 relieved both the expression of Carnosine synthase 1 (CARNS1) and ASS1. In summary, these results indicate that IFN-γ induced arginine depletion through inhibition of CARNS1 signaling via activation of p38 in BMECs. These findings provide a novel insight for IFN-γ-related disease control strategies in dairy cows.
Assuntos
Carnosina , Interferon gama , Animais , Antígenos Virais de Tumores/metabolismo , Arginina/metabolismo , Arginina/farmacologia , Argininossuccinato Sintase/metabolismo , Carnosina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Bovinos , Células Epiteliais/metabolismo , Feminino , Lactação , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Ornitina/metabolismo , RNA Interferente Pequeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress-signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.
Assuntos
Endocitose , Sistema de Sinalização das MAP Quinases , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteólise , Nexinas de Classificação/metabolismo , Estresse Fisiológico , Células HeLa , Humanos , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Fosforilação/genética , Nexinas de Classificação/genéticaRESUMO
Seed germination is a critical stage in the plant life cycle and it plays an important role in the efficiency of agricultural production. However, our knowledge of the mechanisms that regulate seed germination remains limited. In this study, we identified a novel gene, MAPK11, that encodes mitogen-activated protein kinase 11; its expression was significantly higher in seeds of tomato varieties with a low optimum germination temperature than in those with a high optimum germination temperature. In tests at 25 °C, overexpression of MAPK11 in an accession with optimum germination at 25 °C resulted in a decrease in germination, whereas RNAi of MAPK11 in an accession with optimum germination at 15 °C resulted in increased germination. Furthermore, we found that lines overexpressing MAPK11 exhibited hypersensitivity to ABA during germination. These observations were at least partially explained by the fact that MAPK11 up-regulated both NCED1 expression and ABA biosynthesis, and that it also affected ABA signaling and negatively regulated germination by influencing the phosphorylation of SnRK2.2 in vivo. In addition, we found that MAPK11 interacts with and phosphorylates SnRK1 in vivo, thereby potentially inhibiting its activation. SnRK1 interacted with ABI5 and suppressed the transcription of ABI5, thereby affecting ABA signaling and the regulation of germination. Our results demonstrate that ABA signaling in tomato is affected by a mechanism that depends on MAPK11 phosphorylating SnRKs, and this ultimately influences seed germination.
Assuntos
Ácido Abscísico/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Solanum lycopersicum , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Membrana , Fosfoproteínas , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/genética , Sementes/metabolismoRESUMO
KEY MESSAGE: StMAPK11 overexpression promotes potato growth, physiological activities and photosynthesis under drought conditions. Mitogen-activated protein kinases (MAPKs) are import regulators of MAPK pathway in plants under drought condition. However, the critical role in potato (Solanum tuberosum L.) drought resistance is not fully understood. In this study, we aimed to explore the role of StMAPK11 under drought stress. The result of RT-qPCR for assay of StMAPKs expression demonstrated that 15 StMAPKs were differentially expressed in leaves, flowers, petioles, stamens, pistils, stems, stolons, roots, tubers and tuber peels of potato. StMAPKs was dynamically modulated by abiotic stresses and plant hormone treatments, and StMAPK11 was apparently up-regulated under drought conditions. Therefore, the vectors pCPB-StMAPK11 and pCPBI121-miRmapk11 for over-expression and down-regulation of StMAPK11 were constructed, respectively, and introduced into potato cultivar Atlantic. The result showed that StMAPK11 promoted potato growth under drought conditions, as well as the physiological activities evidenced by changes in SOD, CAT and POD activity and H2O2, proline and MDA content. StMAPK11 up-regulation intensified drought resistance of potato plant by elevating antioxidant activities and photosynthesis. Moreover, we consolidated the protective role of StMAPK11 in tobacco and Arabidopsis against drought stress. The result could provide new insights into the function of StMAPK11 in drought response and its possible mechanisms.
Assuntos
Secas , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prolina/metabolismo , Estresse Fisiológico , Nicotiana/genética , Nicotiana/crescimento & desenvolvimentoRESUMO
Cancer-associated cachexia, characterized by muscle wasting, is a lethal metabolic syndrome without defined etiology or established treatment. We previously found that p300 mediates cancer-induced muscle wasting by activating C/EBPß, which then upregulates key catabolic genes. However, the signaling mechanism that activates p300 in response to cancer is unknown. Here, we show that upon cancer-induced activation of Toll-like receptor 4 in skeletal muscle, p38ß MAPK phosphorylates Ser-12 on p300 to stimulate C/EBPß acetylation, which is necessary and sufficient to cause muscle wasting. Thus, p38ß MAPK is a central mediator and therapeutic target of cancer-induced muscle wasting. In addition, nilotinib, an FDA-approved kinase inhibitor that preferentially binds p38ß MAPK, inhibited p300 activation 20-fold more potently than the p38α/ß MAPK inhibitor, SB202190, and abrogated cancer cell-induced muscle protein loss in C2C12 myotubes without suppressing p38α MAPK-dependent myogenesis. Systemic administration of nilotinib at a low dose (0.5 mg/kg/day, i.p.) in tumor-bearing mice not only alleviated muscle wasting, but also prolonged survival. Therefore, nilotinib appears to be a promising treatment for human cancer cachexia due to its selective inhibition of p38ß MAPK. SIGNIFICANCE: These findings demonstrate that prevention of p38ß MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cancer cachexia, representing a potential therapeutic strategy against this syndrome.
Assuntos
Caquexia/etiologia , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Atrofia Muscular/etiologia , Neoplasias/complicações , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Células Cultivadas , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38ß (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38ß in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38ß might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Assuntos
Suscetibilidade a Doenças , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Quinase 11 Ativada por Mitógeno/genética , Família Multigênica , Neoplasias/patologia , Transdução de SinaisRESUMO
We report the design of hetero-bifunctional small molecules that selectively target p38α and p38ß for degradation. These proteolysis targeted chimeras (PROTACs) are based on an ATP competitive inhibitor of p38α and p38ß, which is linked to thalidomide analogues to recruit the Cereblon E3 ubiquitin ligase complex. Compound synthesis was facilitated by the use of a copper catalyzed "click" reaction. We show that optimization of the linker length and composition is crucial for the degradation-inducing activity of these PROTACs. We provide evidence that these chemical compounds can induce degradation of p38α and p38ß but no other related kinases at nanomolar concentrations in several mammalian cell lines. Accordingly, the PROTACs inhibit stress and cytokine-induced p38α signaling. Our compounds contribute to understanding the development of PROTACs, and provide a useful tool to investigate functions of the p38 MAPK pathway and its involvement in diseases.
Assuntos
Benzamidas/farmacologia , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Piridonas/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzamidas/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Proteína Quinase 11 Ativada por Mitógeno/química , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Proteólise/efeitos dos fármacos , Piridonas/síntese química , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Nonsmall cell lung cancer (NSCLC) accounts for >80% of lung cancer cases and is the leading cause of cancerassociated mortality worldwide. Propofol is an anesthetic drug frequently used during tumor resection. It is also known to exert inhibitory effects on cancer. Although the role of propofol in NSCLC has been reported, its underlying mechanisms remain unknown. The present study aimed therefore to investigate the mechanisms of propofol action on NSCLC. Starbase V3.0 project was used to analyze the expression levels of microRNA215p (miR215p) and mitogenactivated protein kinase 10 (MAPK10) in NSCLC and adjacent normal tissues from patients with NSCLC and the association between miR215p and MAPK10 expression level in NSCLC tissues. The correlation between MAPK10 expression and diseasefree survival (DFS) in patients with NSCLC was analyzed using GEPIA software version 1.0. miR215p and MAPK10 expression in tumor and adjacent normal tissues from patients with NSCLC was evaluated by reverse transcriptionquantitative (RTq) PCR and western blotting. Cell viability and apoptosis were assessed by using Cell Counting Kit8 assay and flow cytometry, respectively. The interaction between miR215p and MAPK10 was predicted by TargetScan/miRanda and verified by dual luciferase assay. The regulatory effect of propofol on miR215p and MAPK10 expression in NSCLC cell lines was examined by RTqPCR and western blotting. Starbase V3.0 project and the results of the present study indicated that tumor tissues presented a significantly lower MAPK10 level and a higher miR215p level compared with the normal samples, and that miR215p expression was negatively correlated with MAPK10 expression in the tumor tissues of patients with NSCLC. Furthermore, miR215p targeted the 3'untranslated region of MAPK10. In addition, compared with BEAS2B cells, a higher miR215p and a lower MAPK10 expression was observed in the NSCLC cell lines A549 and H1299, which was reversed by propofol. The overexpression of miR215p abrogated the effects of propofol on A549 and H1299 cell viability and apoptosis by targeting MAPK10. Taken together, these findings demonstrated that propofol inhibited the viability and promoted the apoptosis of NSCLC cells by downregulating the miR215p/MAPK10 axis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação para Baixo , MicroRNAs/genética , Proteína Quinase 11 Ativada por Mitógeno/genética , Propofol/farmacologia , Regiões 3' não Traduzidas , Células A549 , Adulto , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 11 Ativada por Mitógeno/metabolismoRESUMO
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50µM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Assuntos
Ácido Eicosapentaenoico/farmacologia , Estrogênios/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Animais , Linhagem Celular , DNA Glicosilases/metabolismo , Sinergismo Farmacológico , Receptor alfa de Estrogênio/metabolismo , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana/metabolismo , Camundongos , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteína MyoD/metabolismo , Mioblastos/citologia , Miogenina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
Huntington's Disease (HD) is a monogenetic neurodegenerative disorder mainly caused by the cytotoxicity of the mutant HTT protein (mHTT) encoded by the mutant HTT gene. Lowering HTT mRNA has been extensively studied as a potential therapeutic strategy, but how its level is regulated endogenously has been unclear. Here we report that the RNA-binding protein (RBP) HuR interacts with and stabilizes HTT mRNA in an mHTT-dependent manner. In HD cells but not wild-type cells, siRNA knockdown or CRISPR-induced heterozygous knockout of HuR decreased HTT mRNA stability. HuR interacted with HTT mRNA at a conserved site in exon 11 rather than the 3'-UTR region of the mRNA. Interestingly, this interaction was dependent on the presence of mHTT, likely via the activation of MAPK11, which enhanced cytosolic localization of the HuR protein. Thus, mHTT, MAPK11 and HuR may form a positive feedback loop that stabilizes HTT mRNA and enhances mHTT accumulation, which may contribute to HD progression. Our data reveal a novel regulatory mechanism of HTT mRNA via non-canonical binding of HuR.
Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Proteína Huntingtina/química , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Mutação , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Éxons , Retroalimentação Fisiológica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Doença de Huntington/metabolismo , Camundongos , Estabilidade de RNARESUMO
Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO markedly promotes osteoblast differentiation, including expression of Runx2, Osterix, and Osteocalcin. Treatment of human mesenchymal stem cells with DIPQUO results in osteogenic differentiation including a significant increase in calcium matrix deposition. DIPQUO stimulates ossification of emerging vertebral primordia in developing zebrafish larvae, and increases caudal fin osteogenic differentiation during adult zebrafish fin regeneration. The stimulatory effect of DIPQUO on osteoblast differentiation and maturation was shown to be dependent on the p38 MAPK pathway. Inhibition of p38 MAPK signaling or specific knockdown of the p38-ß isoform attenuates DIPQUO induction of ALP, suggesting that DIPQUO mediates osteogenesis through activation of p38-ß, and is a promising lead candidate for development of bone therapeutics.
Assuntos
Diferenciação Celular/fisiologia , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Osteoblastos/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Quinase 11 Ativada por Mitógeno/fisiologia , Osteoblastos/fisiologia , Osteogênese , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Lipoapoptosis of cardiomyocytes may underlie diabetic cardiomyopathy. Numerous forms of cardiomyopathies share a common end-pathway in which apoptotic loss of cardiomyocytes is mediated by p38α mitogen activated protein kinase (MAPK). Although we have previously shown that palmitic acid (PA), a saturated fatty acid (SFA) elevated in plasma of type 2 diabetes mellitus and morbid obesity, induces apoptosis in cardiomyocytes via p38α MAPK-dependent signaling, the downstream cascade events that cause cell death remain unknown. The objective of this study was to investigate mechanisms involved in palmitic acid-induced cardiomyocyte apoptosis. Human adult ventricular cardiomyocyte line (AC16 cells) exposed to high physiological levels of PA for 16 h showed enhanced transcription and phosphorylation of c-fos and c-jun subunits of AP-1 and transcription of caspase 8. When AC16 cells were transfected with small interfering RNA specific against p38α MAPK (si-p38α) for 24 or 48 h, the amplified phosphorylation of c-fos was dose-dependently attenuated, and procaspase 8 was dose-dependently reduced. With translational knockdown of c-fos, PA-induced apoptosis was diminished. Inhibition of caspase 8 for 24 h reduced apoptosis in PA-treated cardiomyocytes. These findings provide evidence for induction of apoptosis in cardiomyocytes exposed to high SFA by a novel pathway requiring activation of c-fos/AP-1 and caspase 8. These results demonstrate how elevated plasma SFA may lead to continual and cumulative loss of cardiomyocytes and potentially contribute to the development of diabetic cardiomyopathy.
Assuntos
Apoptose , Caspase 8/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/metabolismo , Fator de Transcrição AP-1/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/genética , Inibidores de Caspase/farmacologia , Linhagem Celular Transformada , Humanos , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno , Fator de Transcrição AP-1/genética , Transcrição GênicaRESUMO
The present investigation was undertaken to study the effect of silymarin on cardiac hypertrophy induced by partial abdominal aortic constriction (PAAC) in Wistar rats. Silymarin was administered for 9 weeks at the end of which we evaluated hypertrophic, hemodynamic, non-specific cardiac markers, oxidative stress parameters, and determined mitochondrial DNA concentration. Hypertrophic control animals exhibited cardiac hypertrophy, altered hemodynamics, oxidative stress, and decreased mitochondrial DNA (mtDNA) concentration. Treatment with silymarin prevented cardiac hypertrophy, improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Docking studies revealed that silymarin produces maximum docking score with mitogen-activated protein kinases (MAPK) p38 as compared to other relevant proteins docked. Moreover, PAAC-control rats exhibited significantly increased expression of MAPK p38ß mRNA levels which were significantly decreased by the treatment of silymarin. Our data suggest that silymarin produces beneficial effects on cardiac hypertrophy which are likely to be mediated through inhibition of MAPK p38ß.
Assuntos
Cardiomegalia/prevenção & controle , Ventrículos do Coração/efeitos dos fármacos , Silimarina/farmacologia , Animais , Sítios de Ligação , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Silimarina/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação VentricularRESUMO
BACKGROUND: The sucrose non-fermenting-1-related protein kinase 2 family (SnRK2s) unifies different abiotic stress signals in plants. To date, the functions of two rice SnRK2s, osmotic stress/ABA-activated protein kinase 1 (SAPK1) and SAPK2, have been unknown. We investigated their roles in response to salt stress by generating loss-of-function lines using the CRISPR/Cas9 system and by overexpressing these proteins in transgenic rice plants. RESULTS: Expression profiling revealed that SAPK1 and SAPK2 expression were strongly induced by drought, NaCl, and PEG treatment, but not by ABA. SAPK2 expression was highest in the leaves, followed by the roots, whereas SAPK1 was highest expressed in roots followed by leaves. Both proteins were localized to the nucleus and the cytoplasm. Under salt stress, sapk1, sapk2 and, in particular, sapk1/2 mutants, exhibited reduced germination rates, more severe growth inhibition, more distinct chlorosis, reduced chlorophyll contents, and reduced survival rates in comparison with the wild-type plants. In contrast, SAPK1- and SAPK2-overexpression lines had increased germination rates and reduced sensitivities to salt; including mild reductions in growth inhibition, reduced chlorosis, increased chlorophyll contents and improved survival rates in comparison with the wild-type plants. These results suggest that SAPK1 and SAPK2 may function collaboratively as positive regulators of salt stress tolerance at the germination and seedling stages. We also found that SAPK1 and SAPK2 affected the osmotic potential following salt stress by promoting the generation of osmotically active metabolites such as proline. SAPK1 and SAPK2 also improved reactive oxygen species (ROS) detoxification following salt stress by promoting the generation of ROS scavengers such as ascorbic acid, and by increasing the expression levels of proteins such as superoxide dismutase (SOD) and catalase (CAT). SAPK1 and SAPK2 may function collaboratively in reducing Na+ toxicity by affecting the Na+ distribution between roots and shoots, Na+ exclusion from the cytoplasm, and Na+ sequestration into the vacuoles. These effects may be facilitated through the expression of Na+-and K+-homeostasis-related genes. CONCLUSION: SAPK1 and SAPK2 may function collaboratively as positive regulators of salt stress tolerance at the germination and seedling stages in rice. SAPK1 and SAPK2 may be useful to improve salt tolerance in crop plants.
Assuntos
Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Oryza/fisiologia , Tolerância ao Sal/fisiologia , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Mutação , Oryza/genética , Osmose , Plantas Geneticamente Modificadas/genética , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Plântula/fisiologia , Sódio/metabolismoRESUMO
The fruit fly Drosophila melanogaster is a powerful model system for the study of innate immunity in vector insects as well as mammals. For vector insects, it is particularly important to understand all aspects of their antiviral immune defenses, which could eventually be harnessed to control the transmission of human pathogenic viruses. The immune responses controlling RNA viruses in insects have been extensively studied, but the response to DNA virus infections is poorly characterized. Here, we report that infection of Drosophila with the DNA virus Invertebrate iridescent Virus 6 (IIV-6) triggers JAK-STAT signaling and the robust expression of the Turandots, a gene family encoding small secreted proteins. To drive JAK-STAT signaling, IIV-6 infection more immediately induced expression of the unpaireds, a family of IL-6-related cytokine genes, via a pathway that required one of the three Drosophila p38 homologs, p38b. In fact, both Stat92E and p38b were required for the survival of IIV-6 infected flies. In addition, in vitro induction of the unpaireds required an NADPH-oxidase, and in vivo studies demonstrated Nox was required for induction of TotA. These results argue that ROS production, triggered by IIV-6 infection, leads to p38b activation and unpaired expression, and subsequent JAK-STAT signaling, which ultimately protects the fly from IIV-6 infection.