Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Thorac Cancer ; 13(21): 3042-3051, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36193770

RESUMO

BACKGROUND: To reveal the function of protein tyrosine phosphatase-L1 (PTPL1) in lung adenocarcinoma. METHODS: Lung cancer cell lines were transfected with short hairpin RNA against PTPL1 (shPTPL1 group) or negative control (shmock group). Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to verify the transfection efficacy. Cell proliferation was analyzed by ethynyldeoxyuridine (EdU), Cell counting kit 8 (CCK8), and colony formation assay after PTPL1 or PTPL1 and yes-associated protein (YAP1) knockdown. The effect of PTPL1 on tumor growth was examined in a xenograft lung cancer model. RESULTS: PTPL1 was downregulated in various types of lung cancer cell lines. The EdU, CCK8, colony formation assays and investigation using a xenograft lung cancer model indicated that PTPL1 knockdown increased the proliferation of lung cancer cells. Mechanistically, PTPL1 knockdown induced the activation of the Proto-oncogene tyrosine-protein kinase SRC (Src)/Extracellular regulated MAP kinase (ERK) pathway and thereby promoted yes-associated protein (YAP1) nuclear translocation and activation. CONCLUSIONS: In our study, PTPL1 played a crucial suppressive role in the pathogenesis of lung cancer potentially through counteracting the Src/ERK/YAP1 pathway.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo
2.
Nat Commun ; 13(1): 6232, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266302

RESUMO

Recent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method. In the apo protein, an allosteric conformational selection step comprising almost 60% of the domain was detected with an "open" ligand welcoming state and a "closed" state that obstructs the binding site by changing the distance between the ß-sheet 2, α-helix 2, and sidechains of residues Lys38 and Lys72. The observed induced fit-type apo-holo structural rearrangements are in line with the previously published evolution-based analysis covering ~25% of the domain with only a partial overlap with the protein allostery of the open form. These presented structural studies highlight the presence of a dedicated highly optimized and complex dynamic interplay of the PDZ2 domain owed by the structure-dynamics landscape.


Assuntos
Domínios PDZ , Proteínas , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Peptídeos/química , Tirosina/metabolismo
3.
J Neurotrauma ; 38(22): 3077-3085, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34498916

RESUMO

Biomarkers play an increasing role in medicinal biology. They are used for diagnosis, management, drug target identification, drug responses, and disease prognosis. We have discovered that calpain-1 and calpain-2 play opposite functions in neurodegeneration, with calpain-1 activation being neuroprotective, while prolonged calpain-2 activation is neurodegenerative. This notion has been validated in several mouse models of acute neuronal injury, in particular in mouse models of traumatic brain injury (TBI) and repeated concussions. We have identified a selective substrate of calpain-2, the tyrosine phosphatase, PTPN13, which is cleaved in brain after TBI. One of the fragments generated by calpain-2, referred to as P13BP, is also found in the blood after TBI both in mice and humans. In humans, P13BP blood levels are significantly correlated with the severity of TBI, as measured by Glasgow Coma Scale scores and loss of consciousness. The results indicate that P13BP represents a novel blood biomarker for TBI.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
4.
J Biol Chem ; 297(2): 100962, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265306

RESUMO

The Hippo pathway is a key regulatory pathway that is tightly regulated by mechanical cues such as tension, pressure, and contact with the extracellular matrix and other cells. At the distal end of the pathway is the yes-associated protein (YAP), a well-characterized transcriptional regulator. Through binding to transcription factors such as the TEA Domain TFs (TEADs) YAP regulates expression of several genes involved in cell fate, proliferation and death decisions. While the function of YAP as direct transcriptional regulator has been extensively characterized, only a small number of studies examined YAP function as a regulator of gene expression via microRNAs. We utilized bioinformatic approaches, including chromatin immunoprecipitation sequencing and RNA-Seq, to identify potential new targets of YAP regulation and identified miR-30a as a YAP target gene in Schwann cells. We find that YAP binds to the promoter and regulates the expression of miR-30a. Moreover, we identify several YAP-regulated genes that are putative miR-30a targets and focus on two of these, protein tyrosine pohosphatase non-receptor type 13 (PTPN13) and Kruppel like factor 9. We find that YAP regulation of Schwann cell proliferation and death is mediated, to a significant extent, through miR-30a regulation of PTPN13 in Schwann cells. These findings identify a new regulatory function by YAP, mediated by miR-30a, to downregulate expression of PTPN13 and Kruppel like factor 9. These studies expand our understanding of YAP function as a regulator of miRNAs and illustrate the complexity of YAP transcriptional functions.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Células de Schwann/patologia , Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Transdução de Sinais , Transcrição Gênica , Proteínas de Sinalização YAP
5.
Acta Pharmacol Sin ; 42(8): 1280-1287, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33536603

RESUMO

Epithelial-mesenchymal transition (EMT) enables dissemination of neoplastic cells and onset of distal metastasis of primary tumors. However, the regulatory mechanisms of EMT by microenvironmental factors such as transforming growth factor-ß (TGF-ß) remain largely unresolved. Protein tyrosine phosphatase L1 (PTPL1) is a non-receptor protein tyrosine phosphatase that plays a suppressive role in tumorigenesis of diverse tissues. In this study we investigated the role of PTPL1/PTPN13 in metastasis of lung cancer and the signaling pathways regulated by PTPL1 in terms of EMT of non-small cell lung cancer (NSCLC) cells. We showed that the expression of PTPL1 was significantly downregulated in cancerous tissues of 23 patients with NSCLC compared with adjacent normal tissues. PTPL1 expression was positively correlated with overall survival of NSCLC patients. Then we treated A549 cells in vitro with TGF-ß1 (10 ng/mL) and assessed EMT. We found that knockdown of PTPL1 enhanced the migration and invasion capabilities of A549 cells, through enhancing TGF-ß1-induced EMT. In nude mice bearing A549 cell xenografts, knockdown of PTPL1 significantly promoted homing of cells and formation of tumor loci in the lungs. We further revealed that PTPL1 suppressed TGF-ß-induced EMT by counteracting the activation of canonical Smad2/3 and non-canonical p38 MAPK signaling pathways. Using immunoprecipitation assay we demonstrated that PTPL1 could bind to p38 MAPK, suggesting that p38 MAPK might be a direct substrate of PTPL1. In conclusion, these results unravel novel mechanisms underlying the regulation of TGF-ß signaling pathway, and have implications for prognostic assessment and targeted therapy of metastatic lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Theranostics ; 11(7): 3244-3261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33537085

RESUMO

Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fibrose Pulmonar Idiopática/terapia , Terapia de Alvo Molecular/métodos , Miofibroblastos/metabolismo , NADPH Oxidase 4/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Animais , Bleomicina/administração & dosagem , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Miofibroblastos/patologia , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 13/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Resultado do Tratamento
7.
Biomolecules ; 10(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322542

RESUMO

In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.


Assuntos
Neoplasias/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Animais , Metilação de DNA/genética , Epigênese Genética , Humanos , Modelos Biológicos , Neoplasias/genética , Transdução de Sinais
8.
Exp Cell Res ; 396(1): 112286, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919955

RESUMO

Protein tyrosine phosphatase, nonreceptor type 13 (PTPN13), has emerged as a critical cancer-related gene that is implicated in a wide range of cancer types. However, the role of PTPN13 in clear cell renal cell carcinoma (ccRCC) is poorly understood. In the present study, we aimed to evaluate whether PTPN13 participates in the progression of ccRCC. Decreased expression of PTPN13 was found in ccRCC tissues, which predicted a shorter survival rate in ccRCC patients. PTPN13 expression was also lower in ccRCC cell lines, and the upregulation of PTPN13 repressed the proliferation, colony formation and invasion, but enhanced the apoptosis of ccRCC cells. In contrast, the silencing of PTPN13 produced the opposite effects. Further data showed that PTPN13 overexpression decreased the phosphorylation of Akt, while PTPN13 silencing increased the phosphorylation of Akt. Treatment with Akt inhibitor markedly abrogated the PTPN13 silencing-evoked oncogenic effect in ccRCC cells. Xenograft tumor experiments revealed that overexpression of PTPN13 remarkably restricted the tumor formation and growth of ccRCC cells in vivo associated with inactivation of Akt. In conclusion, our data demonstrated that overexpression of PTPN13 restricts the proliferation and invasion of ccRCC cells through inactivation of Akt. Our study suggests a tumor suppressive function of PTPN13 in ccRCC and highlights the potential role of PTPN13 in the progression of ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Animais , Apoptose/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Tirosina Fosfatase não Receptora Tipo 13/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 10(1): 3105, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308371

RESUMO

Fas plays a major role in regulating ligand-induced apoptosis in many cell types. It is well known that several cancers demonstrate reduced cell surface levels of Fas and thus escape a potential control system via ligand-induced apoptosis, although underlying mechanisms are unclear. Here we report that the endosome associated trafficking regulator 1 (ENTR1), controls cell surface levels of Fas and Fas-mediated apoptotic signalling. ENTR1 regulates, via binding to the coiled coil domain protein Dysbindin, the delivery of Fas from endosomes to lysosomes thereby controlling termination of Fas signal transduction. We demonstrate that ENTR1 is cleaved during Fas-induced apoptosis in a caspase-dependent manner revealing an unexpected interplay of apoptotic signalling and regulation of endolysosomal trafficking resulting in a positive feedback signalling-loop. Our data provide insights into the molecular mechanism of Fas post-endocytic trafficking and signalling, opening possible explanations on how cancer cells regulate cell surface levels of death receptors.


Assuntos
Antígenos de Neoplasias/fisiologia , Endocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/metabolismo , Apoptose , Disbindina/metabolismo , Proteína Ligante Fas/análise , Proteína Ligante Fas/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/análise , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/fisiologia , Transdução de Sinais , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/metabolismo , Receptor fas/análise , Receptor fas/metabolismo
10.
Mol Biol Cell ; 30(5): 566-578, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625033

RESUMO

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Assuntos
Células Epiteliais/metabolismo , Inflamação/patologia , Intestinos/patologia , Molécula A de Adesão Juncional/metabolismo , Fosfotirosina/metabolismo , Sequência de Aminoácidos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Citocinas/farmacologia , Sulfato de Dextrana , Células HEK293 , Humanos , Intestinos/química , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
11.
J Mol Biol ; 430(21): 4275-4292, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30189200

RESUMO

Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold. PDZ3 of PTPN13 binds five carboxy-terminal amino acids of PRK2 via a groove located between the EB-strand and the DB-helix. The PRK2 peptide resides in the canonical PDZ3 binding cleft in an elongated manner and the amino acid side chains in position P0 and P-2, cysteine and aspartate, of the ligand face the groove between EB-strand and DB-helix, whereas the PRK2 side chains of tryptophan and alanine located in position P-1 and P-3 point away from the binding cleft. These structures are rare examples of selective class III ligand recognition by a PDZ domain and now provide a basis for the detailed structural investigation of the promiscuous interaction between the PDZ domains of PTPN13 and their ligands. They will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTPN13 and could ultimately contribute to low molecular weight antagonists that might even act on the PRK2 signaling pathway to modulate rearrangements of the actin cytoskeleton.


Assuntos
Proteína Quinase C/química , Proteína Quinase C/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Conformação Proteica
12.
Sci Transl Med ; 10(432)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540618

RESUMO

Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing.


Assuntos
Caveolina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Receptor fas/metabolismo , Animais , Caveolina 1/genética , Feminino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Cicatrização/genética , Cicatrização/fisiologia , Receptor fas/genética
13.
PLoS One ; 13(2): e0192157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29415055

RESUMO

OBJECTIVES: Selective targeting of cancer-associated fibroblasts (CAFs) has been proposed to synergize with immune-checkpoint inhibitors. While the roles of CAFs in cancer development are well described, their immune-regulatory properties remain incompletely understood. This study investigates correlations between CAF and immune-markers in tumor stroma from non-small cell lung cancer (NSCLC) patients, and examines whether a combination of CAF and immune cell scores impact patient prognosis. METHODS: Tumor specimens from 536 primary operable stage I-III NSCLC patients were organized in tissue microarrays. Expression of protein-markers was evaluated by immunohistochemistry. RESULTS: Fibroblast and stromal markers PDGFRα, PDGFRß, FAP-1 and vimentin showed weak correlations while αSMA, and Masson's trichrome did not correlate with any of the investigated markers. Hierarchical clustering indicated the existence of different CAF-subsets. No relevant correlations were found between any CAF-marker and the immune-markers CD3, CD4, CD8, CD20, CD68, CD1a, CD56, FoxP3 and CD45RO. High density of fibroblast-activation protein positive mesenchymal cells (CAFFAP) was associated with better prognosis in tumors with high infiltration of CD8 and CD3 T-lymphocytes. CONCLUSIONS: The presented data suggest that CAFs, irrespective of identity, have low influence on the degree of tumor infiltration by inflammatory- and/or immune-cells. However, CAFFAP may exert immuno-adjuvant roles in NSCLC, and targeting CAFs should be cautiously considered.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Estudos de Coortes , Humanos , Imunofenotipagem , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Análise de Sobrevida , Análise Serial de Tecidos
14.
Sci Rep ; 7(1): 11771, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924170

RESUMO

Traumatic brain injury (TBI) increases the risk of Alzheimer's disease (AD). Calpain activation and tau hyperphosphorylation have been implicated in both TBI and AD. However, the link between calpain and tau phosphorylation has not been fully identified. We recently discovered that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity and neuronal survival/death, which may be related to their different C-terminal PDZ binding motifs. Here, we identify the tyrosine phosphatase PTPN13 as a key PDZ binding partner of calpain-2. PTPN13 is cleaved by calpain-2, which inactivates its phosphatase activity and generates stable breakdown products (P13BPs). We also found that PTPN13 dephosphorylates and inhibits c-Abl. Following TBI, calpain-2 activation cleaved PTPN13, activated c-Abl and triggered tau tyrosine phosphorylation. The activation of this pathway was responsible for the accumulation of tau oligomers after TBI, as post-TBI injection of a calpain-2 selective inhibitor inhibited c-Abl activation and tau oligomer accumulation. Thus, the calpain-2-PTPN13-c-Abl pathway provides a direct link between calpain-2 activation and abnormal tau aggregation, which may promote tangle formation and accelerate the development of AD pathology after repeated concussions or TBI. This study suggests that P13BPs could be potential biomarkers to diagnose mTBI or AD.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Calpaína/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Calpaína/genética , Camundongos , Camundongos Knockout , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Tirosina/genética , Tirosina/metabolismo , Proteínas tau/genética
15.
J Clin Invest ; 127(7): 2751-2764, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28604386

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in PKD1 and PKD2 genes. Recent work suggests that epigenetic modulation of gene expression and protein function may play a role in ADPKD pathogenesis. In this study, we identified SMYD2, a SET and MYND domain protein with lysine methyltransferase activity, as a regulator of renal cyst growth. SMYD2 was upregulated in renal epithelial cells and tissues from Pkd1-knockout mice as well as in ADPKD patients. SMYD2 deficiency delayed renal cyst growth in postnatal kidneys from Pkd1 mutant mice. Pkd1 and Smyd2 double-knockout mice lived longer than Pkd1-knockout mice. Targeting SMYD2 with its specific inhibitor, AZ505, delayed cyst growth in both early- and later-stage Pkd1 conditional knockout mouse models. SMYD2 carried out its function via methylation and activation of STAT3 and the p65 subunit of NF-κB, leading to increased cystic renal epithelial cell proliferation and survival. We further identified two positive feedback loops that integrate epigenetic regulation and renal inflammation in cyst development: SMYD2/IL-6/STAT3/SMYD2 and SMYD2/TNF-α/NF-κB/SMYD2. These pathways provide mechanisms by which SMYD2 might be induced by cyst fluid IL-6 and TNF-α in ADPKD kidneys. The SMYD2 transcriptional target gene Ptpn13 also linked SMYD2 to other PKD-associated signaling pathways, including ERK, mTOR, and Akt signaling, via PTPN13-mediated phosphorylation.


Assuntos
Proliferação de Células , Cistos/enzimologia , Epigênese Genética , Células Epiteliais/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Benzoxazinas/farmacologia , Cistos/tratamento farmacológico , Cistos/genética , Cistos/patologia , Células Epiteliais/patologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Metilação/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Rim Policístico Autossômico Dominante , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia
16.
J Cell Mol Med ; 21(11): 2852-2862, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28653805

RESUMO

Aberrant microRNA expression is involved in the regulation of various cellular processes, such as proliferation and metastasis in multiple diseases including cancers. MicroRNA-30e-5p (miR-30e) was previously reported as an oncogenic or tumour suppressing miRNA in some malignancies, but its function in lung adenocarcinoma (LAC) remains largely undefined. In this study, we found that the expression of miR-30e was increased in LAC tissues and cell lines, associated with tumour size and represented an independent prognostic factor for overall survival and recurrence of LAC patients. Further functional experiments showed that knockdown of miR-30e suppressed cell growth while its overexpression promoted growth of LAC cells and xenografts in vitro and in vivo. Mechanistically, PTPN13 was identified as the direct target of miR-30e in LAC, in which PTPN13 expression was down-regulated in LAC tissues and showed the inverse correlation with miR-30e expression. Overexpression of PTPN13 inhibited cell growth and rescued the proliferation-promoting effect of miR-30e through inhibition of the EGFR signalling. Altogether, our findings suggest that miR-30e could function as an oncogene in LAC via targeting PTPN13 and act as a potential therapeutic target for treating LAC.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Idoso , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos Nus , MicroRNAs/agonistas , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/mortalidade , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochem Biophys Res Commun ; 478(3): 1205-10, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27544031

RESUMO

Protein tyrosine phosphatase-Basophil (PTP-Bas) is a membrane-associated protein tyrosine phosphatase with five PDZ domains and is involved in apoptosis, tumorigenesis, and insulin signaling. The interaction between PTP-Bas and tandem-PH-domain-containing protein 1/2 (TAPP1/2) plays an essential role in the regulation of insulin signaling. Despite its high sequence homology with the other PDZ domains, only the PDZ1 domain of PTP-Bas showed distinct binding specificity for TAPP1/2. Although the interaction between PTP-Bas PDZ1 and TAPP1/2 is a therapeutic target for diabetes, the structural basis for the interaction has not been elucidated. In the present study, we determined the crystal structure of the PTP-Bas PDZ1 domain at 1.6 Å resolution. In addition, we calculated the structural models of complexes of PTP-Bas PDZ1 and the C-terminal peptides of TAPP1/2 (referred to as TAPP1p/2p). Structural comparison with the PTP-Bas PDZ2/RA-GEF2 peptide complex revealed a structural basis for distinct binding specificity of PTP-Bas PDZ1 for TAPP1p/2p peptides. Our high-resolution crystal structure of PTP-Bas PDZ1 will serve as a useful template for rational structure-based design of novel anti-diabetes therapeutics.


Assuntos
Cristalografia por Raios X , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia Estrutural de Proteína
18.
PLoS Comput Biol ; 12(4): e1004893, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27115535

RESUMO

Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.


Assuntos
Proteínas/química , Proteínas/metabolismo , Regulação Alostérica , Biologia Computacional , Simulação por Computador , Entropia , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Domínios PDZ , Análise de Componente Principal , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo
19.
Leukemia ; 30(7): 1502-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26984787

RESUMO

Chronic myeloid leukemia (CML) is characterized by expression of Bcr-abl, a tyrosine kinase oncogene. Clinical outcomes in CML were revolutionized by development of Bcr-abl-targeted tyrosine kinase inhibitors (TKIs), but CML is not cured by these agents. CML leukemia stem cells (LSCs) are relatively TKI insensitive and persist even in remission. LSC persistence results in relapse upon TKI discontinuation, or drug resistance or blast crisis (BC) during prolonged treatment. We hypothesize that increased expression of Fas-associated phosphatase 1 (Fap1) in CML contributes to LSC persistence and BC. As Fap1 substrates include Fas and glycogen synthase kinase-3ß (Gsk3ß), increased Fap1 activity in CML is anticipated to induce Fas resistance and stabilization of ß-catenin protein. Resistance to Fas-induced apoptosis may contribute to CML LSC persistence, and ß-catenin activity increases during BC. In the current study, we directly tested the role of Fap1 in CML LSC persistence using in an in vivo murine model. In TKI-treated mice, we found that inhibiting Fap1, using a tripeptide or small molecule, prevented TKI resistance, BC and relapse after TKI discontinuation; all events observed with TKI alone. In addition, Fap1 inhibition increased Fas sensitivity and decreased ß-catenin activity in CD34(+) bone marrow cells from human subjects with CML. Therapeutic Fap1 inhibition may permit TKI discontinuation and delay in progression in CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 13/fisiologia , Animais , Apoptose/efeitos dos fármacos , Crise Blástica/etiologia , Crise Blástica/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 13/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Recidiva , Receptor fas/metabolismo
20.
Oncol Rep ; 35(1): 139-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26498513

RESUMO

Aberrant hypermethylation of CpG islands of tumor suppressor is one of the mechanisms for epigenetic loss of gene function. In the present study, the methylation status of the promoter regions of protein tyrosine phosphatase (PTPN) 6, DAPK, and p16 were studied using methylation-specific polymerase chain reaction (MSP) in 26 diffuse large B cell lymphoma (DLBCL) lymphomas. In OCI-LY1 cell line, gene methylation status, expression of PTPL1 and its reactivation by DNA demethylation was determined by PCR and on the protein level by western blotting. ELISA-like reaction was used to detect global DNA methylation measurement. Induction of apoptosis by 5-azacitidine was analyzed by Annexin V/PI staining and flow cytometry. Our results show that hypermethylation of the PTPN6 gene promoter region was found in 15.4% (4/26), the DAPK gene promoter region in 30.8% (8/26), the p16 gene promoter region in 7.7% (2/26). Notably, we identified that PTPL1 was hypermethylated and transcriptionally silenced in OCI-LY1 cell line. The expression of PTPL1 was re-inducible by 5-azacytidine. 5-azacytidine also inhibits the proliferation and decreases the global methylation level of the OCI-LY1 cell line. We can conclude from our study that a higher prevalence of methylation of PTPL1, PTPN6, DAPK and p16 occur in DLBCL. Our data also highlights 5-azacytidine as a potential therapeutic candidate for DLBCL. Further studies are required to substantiate the role of methylation of PTPL1, PTPN6, DAPK and p16 as a marker in diffuse large B cell lymphoma.


Assuntos
Azacitidina/farmacologia , Proteínas Quinases Associadas com Morte Celular/genética , Linfoma Difuso de Grandes Células B/genética , Proteínas de Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA