Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
J Virol ; 98(7): e0056124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869285

RESUMO

Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Neurônios , Ativação Viral , Latência Viral , Animais , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/fisiologia , Neurônios/virologia , Neurônios/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Inativação Gênica , Ratos , Axônios/virologia , Axônios/metabolismo , Dependovirus/genética , Dependovirus/fisiologia , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Células Cultivadas , Herpes Simples/virologia , Herpes Simples/metabolismo
2.
J Virol ; 97(4): e0007323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022165

RESUMO

Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples , Herpesvirus Humano 1 , Regiões Promotoras Genéticas , Replicação Viral , Animais , Camundongos , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Feminino , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Células NIH 3T3 , Latência Viral/genética , Mutação , RNA Interferente Pequeno/metabolismo
3.
Nat Commun ; 12(1): 6160, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697317

RESUMO

Pparg, a nuclear receptor, is downregulated in basal subtype bladder cancers that tend to be muscle invasive and amplified in luminal subtype bladder cancers that tend to be non-muscle invasive. Bladder cancers derive from the urothelium, one of the most quiescent epithelia in the body, which is composed of basal, intermediate, and superficial cells. We find that expression of an activated form of Pparg (VP16;Pparg) in basal progenitors induces formation of superficial cells in situ, that exit the cell cycle, and do not form tumors. Expression in basal progenitors that have been activated by mild injury however, results in luminal tumor formation. We find that these tumors are immune deserted, which may be linked to down-regulation of Nf-kb, a Pparg target. Interestingly, some luminal tumors begin to shift to basal subtype tumors with time, down-regulating Pparg and other luminal markers. Our findings have important implications for treatment and diagnosis of bladder cancer.


Assuntos
PPAR gama/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese , Carcinógenos/toxicidade , Diferenciação Celular , Proliferação de Células , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/efeitos dos fármacos , Urotélio/imunologia , Urotélio/patologia
4.
Curr Issues Mol Biol ; 41: 267-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32883886

RESUMO

We are at an interesting time in the understanding of alpha herpesvirus latency and reactivation and their implications to human disease. Conceptual advances have come from both animal and neuronal culture models. This review focuses on the concept that the tegument protein and viral transactivator VP16 plays a major role in the transition from latency to the lytic cycle. During acute infection, regulation of VP16 transactivation balances spread in the nervous system, establishment of latent infections and virulence. Reactivation is dependent on this transactivator to drive entry into the lytic cycle. In vivo de novo expression of VP16 protein is mediated by sequences conferring pre-immediate early transcription embedded in the normally leaky late promoter. In vitro, alternate mechanisms regulating VP16 expression in the context of latency have come from the SCG neuron culture model and include the concepts that (i) generalized transcriptional derepression of the viral genome and sequestration of VP16 in the cytoplasm for ~48 hours (Phase I) precedes and is required for VP16-dependent reactivation (Phase II); and (ii) a histone methyl/phospho switch during Phase I is required for Phase II reactivation. The challenge to the field is reconciling these data into a unified model of virus reactivation. The task of compiling this review was uncomfortably humbling, as if cataloging the stars in the universe. While not completely dark, our night sky is missing a multitude of studies which are among the many points of light contributing to our field. This article is a focused review in which we discuss from the vantage point of our expertise, just a handful of concepts that have or are emerging. A lookback at some of the pioneering work that grounds our field is also included.


Assuntos
Alphaherpesvirinae/genética , Herpes Simples/virologia , Infecção Latente/virologia , Simplexvirus/genética , Latência Viral/genética , Animais , Genoma Viral/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Neurônios/virologia , Transcrição Gênica/genética
5.
J Neurovirol ; 26(5): 687-695, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671812

RESUMO

Pseudorabies virus (PRV) establishes a lifelong latent infection in swine trigeminal ganglion (TG) following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Muscle injection combined with intravenous deliver of the synthetic corticosteroid dexamethasone (DEX) consistently induces reactivation from latency in pigs. In this study, PRV-free piglets were infected with PRV. Viral shedding in nasal and ocular swabs demonstrated that PRV infection entered the latent period. The anti-PRV antibody was detected by enzyme-linked immunosorbent assay and the serum neutralization test, which suggested that the PRV could establish latent infection in the presence of humoral immunity. Immunohistochemistry and viral genome detection of TG neurons suggested that PRV was reactivated from latency. Viral gene expressions of IE180, EP0, VP16, and LLT-intron were readily detected at 3-h post-DEX treatment, but gB, a γ1 gene, was not detectable. The differentially expressed phosphorylated proteins of TG neurons were analyzed by ITRAQ coupled with LC-MS/MS, and p-EIF2S2 differentially expression was confirmed by western blot assay. Taken together, our study provides the evidence that typical gene expression in PRV reactivation from latency in TG is disordered compared with known lytic infection in epithelial cells.


Assuntos
Dexametasona/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/virologia , Doenças dos Suínos/virologia , Gânglio Trigeminal/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Animais , Anticorpos Antivirais/sangue , Olho/virologia , Glucocorticoides/farmacologia , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/imunologia , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/patogenicidade , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Imunidade Humoral/efeitos dos fármacos , Cavidade Nasal/virologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/virologia , Pseudorraiva/imunologia , Pseudorraiva/patologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Latência Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
6.
ACS Chem Biol ; 15(2): 533-542, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31904924

RESUMO

CRISPR-associated proteins (Cas) are enabling powerful new approaches to control mammalian cell functions, yet the lack of spatially defined, noninvasive modalities limits their use as biological tools. Here, we integrate thermal gene switches with dCas9 complexes to confer remote control of gene activation and suppression with short pulses of heat. Using a thermal switch constructed from the heat shock protein A6 (HSPA6) locus, we show that a single heat pulse 3-5 °C above basal temperature is sufficient to trigger expression of dCas9 complexes. We demonstrate that dCas9 fused to the transcriptional activator VP64 is functional after heat activation, and, depending on the number of heat pulses, drives transcription of endogenous genes GzmB and CCL21 to levels equivalent to that achieved by a constitutive viral promoter. Across a range of input temperatures, we find that downstream protein expression of GzmB closely correlates with transcript levels (R2 = 0.99). Using dCas9 fused with the transcriptional suppressor KRAB, we show that longitudinal suppression of the reporter d2GFP depends on key thermal input parameters including pulse magnitude, number of pulses, and dose fractionation. In living mice, we extend our study using photothermal heating to spatially target implanted cells to suppress d2GFP in vivo. Our study establishes a noninvasive and targeted approach to harness Cas-based proteins for modulation of gene expression to complement current methods for remote control of cell function.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Calefação , Ativação Transcricional/fisiologia , Animais , Quimiocina CCL21/metabolismo , Genes de Troca , Granzimas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos Nus , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Simplexvirus/química , Transcrição Gênica/fisiologia
7.
Mol Med ; 24(1): 65, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577726

RESUMO

BACKGROUND: Numerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear. METHODS AND RESULTS: Hsp90α knockdown or inhibition significantly inhibited the promoter activity of HSV-1 α genes and downregulated virion protein 16(VP16) expression from virus and plasmids. The Hsp90α knockdown-induced suppression of α genes promoter activity and downregulation of α genes was reversed by VP16 overexpression, indicating that Hsp90α is involved in VP16-mediated transcription of HSV-1 α genes. Co-immunoprecipitation experiments indicated that VP16 interacted with Hsp90α through the conserved core domain within VP16. Based on using autophagy inhibitors and the presence of Hsp90 inhibitors in ATG7-/- (autophagy-deficient) cells, Hsp90 inhibition-induced degradation of VP16 is dependent on macroautophagy-mediated degradation but not chaperone-mediated autophagy (CMA) pathway. In vivo studies demonstrated that treatment with gels containing Hsp90 inhibitor effectively reduced the level of VP16 and α genes, which may contribute to the amelioration of the skin lesions in an HSV-1 infection mediated zosteriform model. CONCLUSION: Our study provides new insights into the mechanisms by which Hsp90α facilitates the transactivation of HSV-1 α genes and viral infection, and highlights the importance of developing selective inhibitors targeting the interaction between Hsp90α and VP16 to reduce toxicity, a major challenge in the clinical use of Hsp90 inhibitors.


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Herpes Simples/tratamento farmacológico , Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ativação Transcricional
8.
Sci Rep ; 8(1): 15876, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367157

RESUMO

Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/fisiologia , Receptores de Mineralocorticoides/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Células HeLa , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/isolamento & purificação , Humanos , Interferons/farmacologia , Interferons/uso terapêutico , Fator 1 de Transcrição de Octâmero/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Ativação Transcricional/efeitos dos fármacos
9.
J Cell Sci ; 130(24): 4213-4224, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29122982

RESUMO

Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed blue light-induced chromatin recruitment (BLInCR) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a cluster of reporter genes in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 min after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models of transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cromatina/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Transcrição Gênica , Ativação Transcricional/genética , Linhagem Celular Tumoral , Cromatina/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Genes Reporter/genética , Humanos , Cinética , Luz
10.
Nat Methods ; 14(12): 1163-1166, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083402

RESUMO

Targeted and inducible regulation of mammalian gene expression is a broadly important capability. We engineered drug-inducible catalytically inactive Cpf1 nuclease fused to transcriptional activation domains to tune the expression of endogenous genes in human cells. Leveraging the multiplex capability of the Cpf1 platform, we demonstrate both synergistic and combinatorial gene expression in human cells. Our work should enable the development of multiplex gene perturbation library screens for understanding complex cellular phenotypes.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Ativação Transcricional , Técnicas de Cultura de Células , Proteínas de Fluorescência Verde/genética , Células HEK293 , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Proteínas Imediatamente Precoces/genética , Plasmídeos , Proteínas Recombinantes de Fusão/genética , Transativadores/genética , Fator de Transcrição RelA/genética , Transfecção
11.
Cell Rep ; 20(7): 1585-1596, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813671

RESUMO

SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. We report that, at an early stage of reprogramming, virtually all DNA-bound OCT4, SOX2, and SOX2-VP16 were embedded in putative enhancers, about half of which were created de novo. Those associated with SOX2-VP16 were, on average, stronger than those bearing WT SOX2. Many newly created putative enhancers were transient, and many transcription factor locations on DNA changed as reprogramming progressed. These results are consistent with the idea that, during reprogramming, there is an intermediate state that is distinct from both parental cells and iPSCs.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição SOXB1/genética , Diferenciação Celular , Fibroblastos/citologia , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Ativação Transcricional
12.
Nano Lett ; 17(8): 5043-5050, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28703595

RESUMO

Current antibiotics gradually lose their efficacy against chronic Pseudomonas aeruginosa infections due to development of increased resistance mediated by biofilm formation, as well as the large arsenal of microbial virulence factors that are coordinated by the cell density-dependent phenomenon of quorum sensing. Here, we address this issue by using synthetic biology principles to rationally engineer quorum-quencher cells with closed-loop control to autonomously dampen virulence and interfere with biofilm integrity. Pathogen-derived signals dynamically activate a synthetic mammalian autoinducer sensor driving downstream expression of next-generation anti-infectives. Engineered cells were able to sensitively score autoinducer levels from P. aeruginosa clinical isolates and mount a 2-fold defense consisting of an autoinducer-inactivating enzyme to silence bacterial quorum sensing and a bipartite antibiofilm effector to dissolve the biofilm matrix. The self-guided cellular device fully cleared autoinducers, potentiated bacterial antibiotic susceptibility, substantially reduced biofilms, and alleviated cytotoxicity to lung epithelial cells. We believe this strategy of dividing otherwise coordinated pathogens and breaking up their shielded stronghold represents a blueprint for cellular anti-infectives in the postantibiotic era.


Assuntos
Biofilmes , Homosserina/análogos & derivados , Lactonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Células A549 , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular , DNA/genética , Farmacorresistência Bacteriana , Vetores Genéticos , Células HEK293 , Proteína Vmw65 do Vírus do Herpes Simples/genética , Homosserina/metabolismo , Humanos , Sinais de Localização Nuclear , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Biologia Sintética , Tobramicina/química , Tobramicina/farmacologia , Transativadores/genética , Virulência , Fatores de Virulência/biossíntese
13.
PLoS Pathog ; 12(9): e1005877, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27607440

RESUMO

The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.


Assuntos
Regulação Viral da Expressão Gênica , Proteína Vmw65 do Vírus do Herpes Simples/biossíntese , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Gânglio Trigeminal/metabolismo , Latência Viral , Doença Aguda , Animais , Axônios/metabolismo , Axônios/virologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Camundongos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Gânglio Trigeminal/virologia
14.
J Biol Chem ; 291(46): 23906-23914, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27645993

RESUMO

It is known that there are mechanistic links between circadian clocks and metabolic cycles. Reduced nicotinamide adenine dinucleotide (NADH) is a key metabolic cofactor in all living cells; however, it is not known whether levels of NADH oscillate or not. Here we employed REX, a bacterial NADH-binding protein, fused to the VP16 activator to convert intracellular endogenous redox balance into transcriptional readouts by a reporter gene in mammalian cells. EMSA results show that the DNA binding activity of both T- and S-REX::VP16 fusions is decreased with a reduced-to-oxidized cofactor ratio increase. Transient and stabilized cell lines bearing the REX::VP16 and the REX binding operator (ROP) exhibit two circadian luminescence cycles. Consistent with these results, NADH oscillations are observed in host cells, indicating REX can act as a NADH sensor to report intracellular dynamic redox homeostasis in mammalian cells in real time. NADH oscillations provide another metabolic signal for coupling the circadian clock and cellular metabolic states.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Relógios Circadianos , Proteína Vmw65 do Vírus do Herpes Simples , NAD/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Células HEK293 , Proteína Vmw65 do Vírus do Herpes Simples/biossíntese , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Oxirredução , Proteínas Recombinantes de Fusão/genética
15.
Protein Sci ; 25(8): 1371-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27213278

RESUMO

Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p-benzoyl-L-phenylalanine (Bpa), a genetically incorporated photo-crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/genética , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Transativadores/genética , Ativação Transcricional , Benzofenonas/química , Benzofenonas/metabolismo , Imunoprecipitação da Cromatina , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Processos Fotoquímicos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo
16.
Exp Neurol ; 280: 115-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27060489

RESUMO

Axonal regeneration after spinal cord injury (SCI) is intrinsically and extrinsically inhibited by multiple factors. One major factor contributing to intrinsic regeneration failure is the inability of mature neurons in the central nervous system (CNS) to activate regeneration-associated transcription factors (TFs) post-injury. A prior study identified TFs overexpressed in neurons of the peripheral nervous system (PNS) compared to the CNS; some of these could be involved in the ability of PNS neurons to regenerate. Of these, signal transducer and activator of transcription 3 (STAT3), as well its downstream regeneration-associated targets, showed a significant upregulation in PNS neurons relative to CNS neurons, and a constitutively active variant of Stat3 (Stat3CA) promoted neurite growth when expressed in cerebellar neurons (Lerch et al., 2012; Smith et al., 2011). To further enhance STAT3's neurite outgrowth enhancing activity, Stat3CA was fused with a viral activation domain (VP16). VP16 hyperactivates TFs by recruiting transcriptional co-factors to the DNA binding domain (Hirai et al., 2010). Overexpression of this VP16-Stat3CA chimera in primary cortical neurons led to a significant increase of neurite outgrowth as well as Stat3 transcriptional activity in vitro. Furthermore, in vivo transduction of retinal ganglion cells (RGCs) with AAV constructs expressing VP16-Stat3CA resulted in regeneration of optic nerve axons after injury, to a greater degree than for those expressing Stat3CA alone. These findings confirm and extend the concept that overexpression of hyperactivated transcription factors identified as functioning in PNS regeneration can promote axon regeneration in the CNS.


Assuntos
Sistema Nervoso Central/patologia , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/patologia , Fator de Transcrição STAT3/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Toxina da Cólera/toxicidade , Feminino , Proteína Vmw65 do Vírus do Herpes Simples/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neuritos , Ratos , Fator de Transcrição STAT3/genética , Transdução Genética , Regulação para Cima/genética
17.
Intervirology ; 59(4): 187-196, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28178699

RESUMO

OBJECT: Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae viruses. VP16 and pUL14 are both predicted to be tegument proteins of DEV. METHODS: An indirect immunofluorescence assay (IFA) was performed for preliminary analysis of the colocalization of pUL14 and VP16, which detected their subcellular localization in duck embryo fibroblasts (DEFs) during virus replication. The coexpression of pUL14 and VP16 was detected in transfected DEFs. A bimolecular fluorescence complementation (BiFC) assay was used to confirm a direct interaction between pUL14 and VP16. To better characterize the nuclear localization domain of pUL14, we designed a series of deletion mutants and transfected them with VP16. RESULTS: Our IFA findings indicated that pUL14 binds to VP16 in the cytoplasm and that pUL14 leads VP16 import into the nucleus during DEV replication. The BiFC assay revealed the presence of pUL14 and VP16 complexes. Furthermore, 1-98 amino acid (aa) at the N-terminus of pUL14 played a role in the nuclear localization signal (NLS) region and promoted translocation of VP16 into the nucleus to complete the virus life cycle. CONCLUSIONS: Our findings indicated that pUL14 could transport VP16 into the nucleus and that the N-terminal 1-98 aa may contain the NLS domain of pUL14.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Mardivirus/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/genética , Patos/virologia , Fibroblastos/ultraestrutura , Fibroblastos/virologia , Microscopia de Fluorescência , Mutação , Transfecção , Proteínas Virais/metabolismo , Replicação Viral
18.
Bing Du Xue Bao ; 32(6): 817-24, 2016 11.
Artigo em Chinês | MEDLINE | ID: mdl-30004657

RESUMO

Viral protein(VP)16is an important tegument protein of the herpes virus. It is involved in early transcription activation of viral genes as well as virion assembly and release in host cells.VP16 of some herpes viruses have deubiquitinating protease activity and can help the virus counteract the host immune response. In this review, we explain the function and complex interactions between VP16 and other proteins based of the structural characteristics of VP16.This summary provides a reference for further research of maturation of the herpes virus as well as interactions between VP16 and other proteins.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Animais , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Ligação Proteica
19.
Hepatology ; 61(3): 979-89, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25266280

RESUMO

UNLABELLED: The ubiquitously expressed transcriptional regulator serum response factor (SRF) is controlled by both Ras/MAPK (mitogen-activated protein kinase) and Rho/actin signaling pathways, which are frequently activated in hepatocellular carcinoma (HCC). We generated SRF-VP16iHep mice, which conditionally express constitutively active SRF-VP16 in hepatocytes, thereby controlling subsets of both Ras/MAPK- and Rho/actin-stimulated target genes. All SRF-VP16iHep mice develop hyperproliferative liver nodules that progresses to lethal HCC. Some murine (m)HCCs acquire Ctnnb1 mutations equivalent to those in human (h)HCC. The resulting transcript signatures mirror those of a distinct subgroup of hHCCs, with shared activation of oncofetal genes including Igf2, correlating with CpG hypomethylation at the imprinted Igf2/H19 locus. CONCLUSION: SRF-VP16iHep mHCC reveal convergent Ras/MAPK and Rho/actin signaling as a highly oncogenic driver mechanism for hepatocarcinogenesis. This suggests simultaneous inhibition of Ras/MAPK and Rho/actin signaling as a treatment strategy in hHCC therapy.


Assuntos
Neoplasias Hepáticas Experimentais/etiologia , Fator de Resposta Sérica/fisiologia , Animais , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Perfilação da Expressão Gênica , Hepatócitos/patologia , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Fator de Crescimento Insulin-Like II/genética , Linfócitos/patologia , Camundongos , Mutação , beta Catenina/genética
20.
FEBS Lett ; 588(20): 3665-72, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25150167

RESUMO

Biological functions of only some plant transcriptional repressors are known owing to the lack of knockout lines or unclear phenotypes because of redundancy. Here we show that strong viral activation domain VP16 fusion to the transcriptional repressor FLOWERING LOCUS C reversed its function and caused a stronger phenotype than that of the multiple-knockout line of redundant genes, suggesting the potential of this technique to identify transcription factor function that cannot be detected in a single-knockout line. Loss-of-function of transcriptional coactivator Mediator25 did not affect VP16 activity despite their in vivo interaction, suggesting the existence of other key mechanism(s) in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Proteínas Nucleares/metabolismo , Ativação Transcricional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas Nucleares/genética , Fenótipo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA