Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.298
Filtrar
1.
Int J Biol Sci ; 20(7): 2658-2685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725851

RESUMO

Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.


Assuntos
Proteína de Domínio de Morte Associada a Fas , Mucosa Gástrica , Hipertensão Portal , Mitocôndrias , Animais , Camundongos , Mitocôndrias/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Hipertensão Portal/metabolismo , Hipertensão Portal/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Inflamassomos/metabolismo
2.
Nat Commun ; 15(1): 3791, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710704

RESUMO

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Caspase 8 , Proteína de Domínio de Morte Associada a Fas , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Caspase 8/metabolismo , Humanos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/química , Cristalografia por Raios X , Transdução de Sinais , Microscopia Crioeletrônica , Modelos Moleculares , Domínios Proteicos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Ligação Proteica , Células HEK293
3.
Sci Rep ; 14(1): 9824, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684755

RESUMO

PANoptosis plays a crucial role in cancer initiation and progression. However, the roles of PANoptosis-related genes (PARGs) in the prognosis and immune landscape of head and neck squamous cell carcinoma (HNSCC) remain unclear. Integrated bioinformatics analyses based on the data of HNSCC patients in the TCGA database were conducted. We extracted 48 PARGs expression profile and then conducted differentially expressed analysis, following building a Cox model to predict the survival of HNSCC patients. Subsequently, the relationships between the risk score, immune landscape, chemo-, and immune-therapy responses were analyzed, respectively. Moreover, we investigated the prognostic value, and further predicted the pathways influenced by PARGs. Finally, we identified the biological function of crucial PARGs. A total of 18 differentially expressed PARGs were identified in HNSCC, and a Cox model including CASP8, FADD, NLRP1, TNF, and ZBP1 was constructed, which showed that the risk score was associated with the prognosis as well as immune infiltration of HNSCC patients, and the risk score could be regarded as an independent biomarker. Additionally, patients with high-risk score might be an indicator of lymph node metastasis and advanced clinical stage. High-risk scores also contributed to the chemotherapy resistance and immune escape of HNSCC patients. In addition, FADD and ZBP1 played a crucial role in various cancer-related pathways, such as the MAPK, WNT, and MTOR signaling pathways. On the other hand, we suggested that FADD facilitated the progression and 5-fluorouracil (5-FU) resistance of HNSCC cells. A signature based on PANoptosis showed great predictive power for lymph node metastasis and advanced stage, suggesting that the risk score might be an independent prognostic biomarker for HNSCC. Meanwhile, FADD, identified as a prognostic biomarker, may represent an effective therapeutic target for HNSCC.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Feminino , Masculino , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Metástase Linfática
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542202

RESUMO

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Assuntos
Apoptose , Neoplasias , Humanos , Domínio de Morte , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/fisiologia , Receptor fas/metabolismo , Inflamação , Caspase 8/metabolismo
5.
J Neurosci Res ; 102(2): e25296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361411

RESUMO

Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Ratos , Masculino , Animais , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo
6.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793571

RESUMO

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Assuntos
Síndrome Linfoproliferativa Autoimune , Proteína de Domínio de Morte Associada a Fas , Humanos , Apoptose/genética , Doenças Autoimunes/genética , Síndrome Linfoproliferativa Autoimune/genética , Hibridização Genômica Comparativa , DNA , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células Germinativas/patologia , Mutação
7.
J Allergy Clin Immunol ; 153(1): 297-308.e12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979702

RESUMO

BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.


Assuntos
Síndrome Linfoproliferativa Autoimune , Receptor fas , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Biomarcadores , Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Mutação
8.
Commun Biol ; 6(1): 1299, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129580

RESUMO

The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Imunoterapia/métodos , Linfócitos T , Anticorpos Monoclonais/uso terapêutico , Receptores de Morte Celular , Proteína de Domínio de Morte Associada a Fas
9.
Cell Rep ; 42(12): 113476, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37988267

RESUMO

TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.


Assuntos
Proteínas Reguladoras de Apoptose , NF-kappa B , Humanos , NF-kappa B/metabolismo , Caspase 8/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Apoptose , Inflamação , Citocinas/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores , Proteína de Domínio de Morte Associada a Fas/metabolismo
11.
Eur J Pharmacol ; 947: 175676, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001580

RESUMO

PURPOSE: Ginsenoside Rb1 (GRb1), a dammarane-type triterpene saponin compound mainly distributed in ginseng (Panax ginseng), has been demonstrated to ameliorate cardiovascular diseases. However, it remains unclear whether GRb1 alleviates heart failure (HF) by maintaining cardiac energy metabolism balance. Therefore, this work aimed to investigate the cardiac benefits of GRb1 against cardiac energy deficit and explore its mechanism of action. METHODS AND RESULTS: Isoproterenol (ISO) induced HF Sprague-Dawley rats were administrated with GRb1 or fenofibrate for 6 weeks. ISO-induced primary neonatal rat cardiomyocytes (NRCMs) were used as the in vitro model. In vivo, GRb1 significantly improved the structural and metabolic disorder, as demonstrated by the restoration of cardiac function, inhibition of cardiac hypertrophy and fibrosis, and increased adenosine triphosphate (ATP) generation. In vitro, GRb1 effectively protected mitochondrial function and scavenged excessive reactive oxygen species. Moreover, in ISO-induced NRCMs, GRb1 significantly inhibited the abnormal upregulation of Fas-associated death domain (FADD), promoted transcriptional activation of peroxisome proliferator-activated receptor-alpha (PPARα), improved the aberrant expression of cardiac energy metabolism-related enzymes and cardiac fatty acid oxidation, and subsequently increased the synthesis of ATP. Noticeably, GRb1 could inhibit the increased binding between FADD and PPARα, which contributed to the activation of PPARα. Furthermore, GRb1 strengthened the thermal stabilization of FADD and might bind to FADD directly. CONCLUSIONS: Collectively, it's part of the in-depth mechanism of GRb1's cardio-protection that GRb1 could directly bind to FADD and counteract its negative role in the transcription of PPARα thus ameliorating cardiac energy derangement and HF.


Assuntos
Ginsenosídeos , Insuficiência Cardíaca , Ratos , Animais , PPAR alfa/metabolismo , Ratos Sprague-Dawley , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Trifosfato de Adenosina , Proteína de Domínio de Morte Associada a Fas/metabolismo
12.
Oxid Med Cell Longev ; 2023: 3479688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820406

RESUMO

Pancreatic cancer has higher incidence and mortality rates worldwide. PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one] is a carbazole derivative containing chalcone moiety which was designed for inhibiting tumorigenesis in human pancreatic cancer. This study is aimed at investigating PW06-induced anticancer effects in human pancreatic cancer MIA PaCa-2 cells in vitro. The results showed PW06 potent antiproliferative/cytotoxic activities and induced cell morphological changes in a human pancreatic cancer cell line (MIA PaCa-2), and these effects are concentration-dependent (IC50 is 0.43 µM). Annexin V and DAPI staining assays indicated that PW06 induced apoptotic cell death and DNA condensation. Western blotting indicated that PW06 increased the proapoptotic proteins such as Bak and Bad but decreased the antiapoptotic protein such as Bcl-2 and Bcl-xL. Moreover, PW06 increased the active form of caspase-8, caspase-9, and caspase-3, PARP, releasing cytochrome c, AIF, and Endo G from mitochondria in MIA PaCa-2 cells. Confocal laser microscopy assay also confirmed that PW06 increased Bak and decreased Bcl-xL. Also, the cells were pretreated with inhibitors of caspase-3, caspase-8, and caspase-9 and then were treated with PW06, resulting in increased viable cell number compared to PW06 treated only. Furthermore, PW06 showed a potent binding ability with hydrophobic interactions in the core site of the Fas-Fas death domains (FADD). In conclusion, PW06 can potent binding ability to the Fas-FADD which led to antiproliferative, cytotoxic activities, and apoptosis induction accompanied by the caspase-dependent and mitochondria-dependent pathways in human pancreatic cancer MIA PaCa-2 cells.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
13.
Biosensors (Basel) ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36832063

RESUMO

Different programed cell death (PCD) modalities involve protein-protein interactions in large complexes. Tumor necrosis factor α (TNFα) stimulated assembly of receptor-interacting protein kinase 1 (RIPK1)/Fas-associated death domain (FADD) interaction forms Ripoptosome complex that may cause either apoptosis or necroptosis. The present study addresses the interaction of RIPK1 and FADD in TNFα signaling by fusion of C-terminal (CLuc) and N-terminal (NLuc) luciferase fragments to RIPK1-CLuc (R1C) or FADD-NLuc (FN) in a caspase 8 negative neuroblastic SH-SY5Y cell line, respectively. In addition, based on our findings, an RIPK1 mutant (R1C K612R) had less interaction with FN, resulting in increasing cell viability. Moreover, presence of a caspase inhibitor (zVAD.fmk) increases luciferase activity compared to Smac mimetic BV6 (B), TNFα -induced (T) and non-induced cell. Furthermore, etoposide decreased luciferase activity, but dexamethasone was not effective in SH-SY5Y. This reporter assay might be used to evaluate basic aspects of this interaction as well as for screening of necroptosis and apoptosis targeting drugs with potential therapeutic application.


Assuntos
Neuroblastoma , Fator de Necrose Tumoral alfa , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Apoptose , Linhagem Celular , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/farmacologia
14.
Virchows Arch ; 482(5): 869-878, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36813950

RESUMO

Penile squamous cell carcinoma (PSCC) with a poor prognosis lacks reliable biomarkers for stratifying patients. Fas-associated death domain (FADD) could regulate cell proliferation and has shown promising diagnostic and prognostic significance in multiple cancers. However, researchers have not determined how FADD exerts its effect on PSCC. In this study, we set out to investigate the clinical features of FADD and the prognostic impact of PSCC. Additionally, we also assessed the role of affecting the immune environment in PSCC. Immunohistochemistry was carried out to evaluate the protein expression of FADD. The difference between FADDhigh and FADDlow was explored by RNA sequencing from available cases. The immune environment evaluation of CD4, CD8, and Foxp3 was performed by immunohistochemical. In this study, we found that FADD was overexpressed in 19.6 (39/199) patients, and the overexpression of FADD was associated with phimosis (p=0.007), N stage (p<0.001), clinical stage (p=0.001), and histologic grade (p=0.005). The overexpression of FADD was an independent prognostic factor for both PFS (HR 3.976, 95% CI 2.413-6.553, p<0.001) and OS (HR 4.134, 95% CI 2.358-7.247, p<0.001). In addition, overexpression of FADD was mainly linked to T cell activation and PD-L1 expression combined with PD-L1 checkpoint in cancer. Further validation demonstrated that overexpression of FADD was positively correlated with the infiltration of Foxp3 in PSCC (p=0.0142). It is the first time to show that overexpression of FADD is an adjunct biomarker with poor prognosis in PSCC and could also serve as a tumor immune environment regulator.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Penianas , Masculino , Humanos , Antígeno B7-H1 , Prognóstico , Neoplasias Penianas/patologia , Carcinoma de Células Escamosas/patologia , Biomarcadores , Fatores de Transcrição Forkhead , Biomarcadores Tumorais/genética , Proteína de Domínio de Morte Associada a Fas
15.
Cell Cycle ; 22(5): 580-595, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281535

RESUMO

FADD, a classical apoptotic signaling adaptor, has recently been reported to exhibit a series of non-apoptotic functions. Here, we report that FADD may play a critical role in the development of renal fibrosis. Neutrophil infiltration in the renal interstitial part, glomerular mesangial cell proliferation, and base-membrane thickening were observed in FADD-D mice by H&E, PAS, and PASM staining. Immunofluorescence analysis revealed that macrophage infiltration was significantly enhanced in FADD-D mice. Renal fibrosis might be induced by IgA nephritis in FADD-D mice as evidenced by increased Ki67 and type IV collagen. Additionally, the levels of α-SMA, Fibronectin, and Vimentin were also found to be elevated. Mechanism study indicated that the TLR4/myD88/NF-κB signaling pathway was activated in FADD-D mice. Moreover, FADD phosphorylation activated the mTOR and TGF-ß/Smad pathway and accelerated the process of epithelial mesenchymal transition. Further studies indicated that the TGF-ß1 pathway was also activated and the process of EMT was accelerated in both FADD-disrupted HEK293 cells and FADD-deficient MES cells. Thus, we concluded that FADD phosphorylation could lead to IgA nephritis and eventually result in renal fibrosis. Taken together, our study provides evidence, for the first time, that FADD, especially in its phosphorylated form, has an effect on the development of renal fibrosis.Abbreviations: FADD: FAS-associated protein with death domain; DED: death effector domain; DD: death domain; CKD: chronic kidney disease; ECM: extracellular matrix; ESRD: end-stage renal disease; RRT: renal replacement therapy; H&E: hematoxylin and eosin; PASM: periodic acid silver methenamine.


Assuntos
Nefropatias , Nefrite , Camundongos , Humanos , Animais , Transição Epitelial-Mesenquimal , Fosforilação , Células HEK293 , Nefropatias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibrose , Imunoglobulina A/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/farmacologia
17.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499482

RESUMO

A reduction in FADD levels has been reported in precursor T-cell neoplasms and other tumor types. Such reduction would impact on the ability of tumor cells to undergo apoptosis and has been associated with poor clinical outcomes. However, FADD is also known to participate in non-apoptotic functions, but these mechanisms are not well-understood. Linking FADD expression to the severity of precursor T-cell neoplasms could indicate its use as a prognostic marker and may open new avenues for targeted therapeutic strategies. Using transcriptomic and clinical data from patients with precursor T-cell neoplasms, complemented by in vitro analysis of cellular functions and by high-throughput interactomics, our results allow us to propose a dual role for FADD in precursor T-cell neoplasms, whereby resisting cell death and chemotherapy would be a canonical consequence of FADD deficiency in these tumors, whereas deregulation of the cellular metabolism would be a relevant non-canonical function in patients expressing FADD. These results reveal that evaluation of FADD expression in precursor T-cell neoplasms may aid in the understanding of the biological processes that are affected in the tumor cells. The altered biological processes can be of different natures depending on the availability of FADD influencing its ability to exert its canonical or non-canonical functions. Accordingly, specific therapeutic interventions would be needed in each case.


Assuntos
Apoptose , Neoplasias , Humanos , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/genética , Perfilação da Expressão Gênica , Morte Celular , Linfócitos T/metabolismo
18.
Mol Med ; 28(1): 132, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348274

RESUMO

Cancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers' understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.


Assuntos
Apoptose , Neoplasias , Humanos , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/genética , Processos Neoplásicos , Neoplasias/genética , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 119(41): e2207240119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191211

RESUMO

The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.


Assuntos
Necroptose , Ácidos Nucleicos , Animais , Apoptose/fisiologia , Caspase 8/genética , Caspase 8/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Interferons/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
20.
Biomed Res Int ; 2022: 5509346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909476

RESUMO

Heparan sulfate proteoglycan is a key component of cell microenvironment and plays an important role in cell-cell interaction, adhesion, migration, and signal transduction. Heparan sulfate 3-O-sulfotransferase 1 (HS3ST1) is a metabolic-related gene of HS. The present study was aimed at exploring the role of HS3ST1 in the progress of non-small-cell lung cancer (NSCLC). Our results illustrated that HS3ST1 promoted the malignant behaviors of NSCLC cells both in vitro and in vivo. HS3ST1 was found to inhibit spot-type zinc finger protein (SPOP) expression, which might inhibit the NF-κB pathway activation through mediating the degradation of Fas-associated death domain protein (FADD). By analyzing NSCLC patient samples, we also found increased HS3ST1 expression and decreased SPOP expression in tumor tissues in contrast with those in adjoining normal tissues. In conclusion, HS3ST1 promotes NSCLC tumorigenesis by regulating SPOP/FADD/NF-κB pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sulfotransferases , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas , Humanos , Neoplasias Pulmonares/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares , Proteínas Repressoras , Sulfotransferases/genética , Sulfotransferases/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA