Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198910

RESUMO

Changes in structural and functional neuroplasticity have been implicated in various neurological disorders. Sterol regulatory element-binding protein (SREBP)-1c is a critical regulatory molecule of lipid homeostasis in the brain. Recently, our findings have shown the potential involvement of SREBP-1c deficiency in the alteration of novel modulatory molecules in the hippocampus and occurrence of schizophrenia-like behaviors in mice. However, the possible underlying mechanisms, related to neuronal plasticity in the hippocampus, are yet to be elucidated. In this study, we investigated the hippocampus-dependent memory function and neuronal architecture of hippocampal neurons in SREBP-1c knockout (KO) mice. During the passive avoidance test, SREBP-1c KO mice showed memory impairment. Based on Golgi staining, the dendritic complexity, length, and branch points were significantly decreased in the apical cornu ammonis (CA) 1, CA3, and dentate gyrus (DG) subregions of the hippocampi of SREBP-1c KO mice, compared with those of wild-type (WT) mice. Additionally, significant decreases in the dendritic diameters were detected in the CA3 and DG subregions, and spine density was also significantly decreased in the apical CA3 subregion of the hippocampi of KO mice, compared with that of WT mice. Alterations in the proportions of stubby and thin-shaped dendritic spines were observed in the apical subcompartments of CA1 and CA3 in the hippocampi of KO mice. Furthermore, the corresponding differential decreases in the levels of SREBP-1 expression in the hippocampal subregions (particularly, a significant decrease in the level in the CA3) were detected by immunofluorescence. This study suggests that the contributions of SREBP-1c to the structural plasticity of the mouse hippocampus may have underlain the behavioral alterations. These findings offer insights into the critical role of SREBP-1c in hippocampal functioning in mice.


Assuntos
Espinhas Dendríticas/genética , Memória/fisiologia , Neurônios/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/patologia , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
2.
FASEB J ; 33(9): 10077-10088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237775

RESUMO

Bone morphogenetic protein (BMP)-9 has been reported to regulate energy balance in vivo. However, the mechanisms underlying BMP9-mediated regulation of energy balance remain incompletely understood. Here, we investigated the role of BMP9 in energy metabolism. In the current study, we found that hepatic BMP9 expression was down-regulated in insulin resistance (IR) mice and in patients who are diabetic. In mice fed a high-fat diet (HFD), the overexpression of hepatic BMP9 improved glucose tolerance and IR. The expression of gluconeogenic genes was down-regulated, whereas the level of insulin signaling molecule phosphorylation was increased in the livers of Adenovirus-BMP9-treated mice and glucosamine-treated hepatocytes. Furthermore, BMP9 overexpression ameliorated triglyceride accumulation and inhibited the expression of lipogenic genes in both human hepatocellular carcinoma HepG2 cells treated with a fatty acid mixture as well as the livers of HFD-fed mice. In hepatocytes isolated from sterol regulatory element-binding protein (SREBP)-1c knockout mice, the effects of BMP9 were ablated. Mechanistically, BMP9 inhibited SREBP-1c expression through the inhibition of liver X receptor response element 1 activity in the SREBP-1c promoter. Taken together, our results show that BMP9 is an important regulator of hepatic glucose and lipid metabolism.-Yang, M., Liang, Z., Yang, M., Jia, Y., Yang, G., He, Y., Li, X., Gu, H. F., Zheng, H., Zhu, Z., Li, L. Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism.


Assuntos
Glucose/metabolismo , Fator 2 de Diferenciação de Crescimento/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/farmacologia , Regulação da Expressão Gênica , Fator 2 de Diferenciação de Crescimento/biossíntese , Fator 2 de Diferenciação de Crescimento/genética , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Receptores X do Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Receptores para Leptina/deficiência , Proteínas Recombinantes/metabolismo , Elementos de Resposta/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 39(3): 373-386, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30700132

RESUMO

Objective- APOA5 variants are strongly associated with hypertriglyceridemia, as well as increased risks of cardiovascular disease and acute pancreatitis. Hypertriglyceridemia in apo AV dysfunction often aggravates by environmental factors such as high-carbohydrate diets or aging. To date, the molecular mechanisms by which these environmental factors induce hypertriglyceridemia are poorly defined, leaving the high-risk hypertriglyceridemia condition undertreated. Previously, we reported that LXR (liver X receptor)-SREBP (sterol regulatory element-binding protein)-1c pathway regulates large-VLDL (very low-density lipoprotein) production induced by LXR agonist. However, the pathophysiological relevance of the finding remains unknown. Approach and Results- Here, we reconstitute the environment-induced hypertriglyceridemia phenotype of human APOA5 deficiency in Apoa5-/- mice and delineate the role of SREBP-1c in vivo by generating Apoa5-/- ;Srebp-1c-/- mice. The Apoa5-/- mice, which showed moderate hypertriglyceridemia on a chow diet, developed severe hypertriglyceridemia on high-carbohydrate feeding or aging as seen in patients with human apo AV deficiency. These responses were nearly completely abolished in the Apoa5-/- ;Srebp-1c-/- mice. Further mechanistic studies revealed that in response to these environmental factors, SREBP-1c was activated to increase triglyceride synthesis and to permit the incorporation of triglyceride into abnormally large-VLDL particles, which require apo AV for efficient clearance. Conclusions- Severe hypertriglyceridemia develops only when genetic factors (apo AV deficiency) and environmental effects (SREBP-1c activation) coexist. We demonstrate that the regulated production of large-sized VLDL particles via SREBP-1c determines plasma triglyceride levels in apo AV deficiency. Our findings explain the long-standing enigma of the late-onset hypertriglyceridemia phenotype of apo AV deficiency and suggest a new approach to treat hypertriglyceridemia by targeting genes that mediate environmental effects.


Assuntos
Apolipoproteína A-V/deficiência , Hipertrigliceridemia/sangue , Lipoproteínas VLDL/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Envelhecimento/metabolismo , Ração Animal/efeitos adversos , Animais , Apolipoproteína A-V/genética , Apolipoproteínas/sangue , Quilomícrons/metabolismo , Feminino , Frutose/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Interação Gene-Ambiente , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hipertrigliceridemia/induzido quimicamente , Hipertrigliceridemia/genética , Lipídeos/sangue , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Azeite de Oliva/toxicidade , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sulfonamidas/farmacologia
4.
Genes Brain Behav ; 18(4): e12540, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30430717

RESUMO

Schizophrenia is a hereditary disease that approximately 1% of the worldwide population develops. Many studies have investigated possible underlying genes related to schizophrenia. Recently, clinical studies suggested sterol regulatory element-binding protein (SREBP) as a susceptibility gene in patients with schizophrenia. SREBP controls cellular lipid homeostasis by three isoforms: SREBP-1a, SREBP-1c and SREBP-2. This study used SREBP-1c knockout (KO) mice to examine whether a deficiency in SREBP-1c would affect their emotional and psychiatric behaviors. Altered mRNA expression in genes downstream from SREBP-1c was confirmed in the brains of SREBP-1c KO mice. Schizophrenia-like behavior, including hyperactivity during the dark phase, depressive-like behavior, aggressive behavior and deficits in social interaction and prepulse inhibition, was observed in SREBP-1c KO mice. Furthermore, increased volume of the lateral ventricle was detected in SREBP-1c KO mice. The mRNA levels of several γ-aminobutyric acid (GABA)-receptor subtypes and/or glutamic acid decarboxylase 65/67 decreased in the hippocampus and medial prefrontal cortex of SREBP-1c KO mice. Thus, SREBP-1c deficiency may contribute to enlargement of the lateral ventricle and development of schizophrenia-like behaviors and be associated with altered GABAergic transmission.


Assuntos
Esquizofrenia/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Ventrículos Laterais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
5.
Virology ; 520: 94-102, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803738

RESUMO

HBV HCV co-infection leads to more severe liver diseases including liver cancer than mono-infections. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor, inhibits sterol regulatory element binding protein-1 (SREBP-1). In this study, we characterized the effect of the PTEN - SREBP-1 pathway on HBV HCV co-replication in a cellular model. We found that HBV and HCV can co-replicate in Huh-7 cells with no interference. Overexpression of PTEN inhibits, whereas PTEN knockdown enhances, HBV replication as well as HBV and HCV co-replication. Knocking down SREBP-1 decreases HBV replication in an HBx-dependent manner. SREBP-1 knockdown also decreases HCV replication. PTEN knockdown is concomitant with increased nuclear SREBP-1 levels. PTEN and SREBP-1 double knockdown results in intermediate levels of HBV and HCV replication in mono- and co-replication scenarios. Taken together, we demonstrated, for the first time, that the PTEN - SREBP-1 pathway can regulate HBV HCV co-replication.


Assuntos
Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Replicação Viral , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Replicação do DNA , Técnicas de Silenciamento de Genes , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/virologia , PTEN Fosfo-Hidrolase/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
6.
J Neurochem ; 142(3): 420-428, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28467654

RESUMO

Neuroactive steroid levels are altered in several experimental models of peripheral neuropathy, and on this basis, they have been proposed as protective agents. For the first time, the levels of these molecules were assessed here in sterol regulatory element binding protein -1c knock-out male mice (i.e., an experimental model of peripheral neuropathy) and compared with observations in wild type animals. The levels of neuroactive steroids have been evaluated by liquid chromatography-tandem mass spectrometry in plasma and sciatic nerve at 2 and 10 months of age and these analyses were implemented analyzing the gene expression of crucial steroidogenic enzymes in sciatic nerve. Data obtained at 2 months of age showed high levels of pregnenolone in sciatic nerve, associated with low levels of its first metabolite, progesterone, and further metabolites (i.e., 5α-pregnane-3,20-dione and 5α-pregnan-3ß-ol-20-one). High levels of testosterone and 17ß-estradiol were also observed. At 10 months of age, the neuroactive steroid profile showed some differences. Indeed, low levels of pregnenolone and high levels of 5α-pregnan-3α-ol-20-one and 5α-pregnan-3ß-ol-20-one were observed. The analysis of the gene expression of steroidogenic enzymes considered here generally followed these changes. Interestingly, the levels of pregnenolone and progesterone were unmodified in plasma suggesting a specific effect of sterol regulatory element binding protein-1c on neurosteroidogenesis. Because this peripheral neuropathy is due to altered fatty acid biosynthesis, data reported here support the belief that the cross-talk between this biosynthetic pathway and neuroactive steroids may represent a possible therapeutic strategy for peripheral neuropathy.


Assuntos
Nervo Isquiático/metabolismo , Esteroides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Progesterona/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Testosterona/metabolismo
7.
Aging Cell ; 16(3): 508-517, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28256090

RESUMO

Caloric restriction (CR) can delay onset of several age-related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR-associated metabolic remodeling of WAT remain unclear. Sterol regulatory element-binding protein-1c (Srebp-1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp-1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Pgc-1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp-1c, most of these CR-associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp-1c may be an important factor both for CR-associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp-1c, the primary FA biosynthesis-promoting transcriptional factor implicated in fatty liver disease, is also the food shortage-responsive factor in WAT. This indicated that Srebp-1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , Restrição Calórica , Ácidos Graxos/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glutationa/biossíntese , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
8.
Cell Metab ; 21(4): 571-83, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25817536

RESUMO

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted peripheral nerve FA synthesis that results in development of peripheral neuropathy. Srebf1c-null mice develop Remak bundle alterations and hypermyelination of small-caliber fibers that impair nerve function. Peripheral nerves lacking Srebf1c show decreased FA synthesis and glycolytic flux, but increased FA catabolism and mitochondrial function. These metabolic alterations are the result of local accumulation of two endogenous peroxisome proliferator-activated receptor-α (Pparα) ligands, 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine and 1-stearoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine. Treatment with a Pparα antagonist rescues the neuropathy of Srebf1c-null mice. These findings reveal the importance of peripheral nerve FA synthesis to sustain myelin structure and function.


Assuntos
Ácidos Graxos/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Doenças do Sistema Nervoso Periférico/etiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Análise de Variância , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Metabolômica , Camundongos , Camundongos Knockout , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Bainha de Mielina/ultraestrutura , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tirosina/análogos & derivados , Tirosina/farmacologia
9.
J Hepatol ; 61(6): 1358-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25016220

RESUMO

BACKGROUND & AIMS: Hallmarks of non-alcoholic fatty liver disease (NAFLD) are increased triglyceride accumulation within hepatocytes. The prevalence of NAFLD increases steadily with increasing thyrotropin (TSH) levels. However, the underlying mechanisms are largely unknown. Here, we focused on exploring the effect and mechanism of TSH on the hepatic triglyceride content. METHODS: As the function of TSH is mediated through the TSH receptor (TSHR), Tshr(-/-) mice (supplemented with thyroxine) were used. Liver steatosis and triglyceride content were analysed in Tshr(-/-) and Tshr(+/+) mice fed a high-fat or normal chow diet, as well as in Srebp-1c(-/-) and Tshr(-/-)Srebp-1c(-/-) mice. The expression levels of proteins and genes involved in liver triglyceride metabolism was measured. RESULTS: Compared with control littermates, the high-fat diet induced a relatively low degree of liver steatosis in Tshr(-/-) mice. Even under chow diet, hepatic triglyceride content was decreased in Tshr(-/-) mice. TSH caused concentration- and time-dependent effects on intracellular triglyceride contents in hepatocytes in vitro. The activity of SREBP-1c, a key regulator involved in triglyceride metabolism and in the pathogenesis of NAFLD, was significantly lower in Tshr(-/-) mice. In Tshr(-/-)Srebp-1c(-/-) mice, the liver triglyceride content showed no significant difference compared with Tshr(+/+)Srebp-1c(-/-) mice. When mice were injected with forskolin (cAMP activator), H89 (inhibitor of PKA) or AICAR (AMPK activator), or HeG2 cells received MK886 (PPARα inhibitor), triglyceride contents presented in a manner dependent on SREBP-1c activity. The mechanism, underlying TSH-induced liver triglyceride accumulation, involved that TSH, through its receptor TSHR, triggered hepatic SREBP-1c activity via the cAMP/PKA/PPARα pathway associated with decreased AMPK, which further increased the expression of genes associated with lipogenesis. CONCLUSIONS: TSH increased the hepatic triglyceride content, indicating an essential role for TSH in the pathogenesis of NAFLD.


Assuntos
Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Tireotropina/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima/fisiologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Técnicas In Vitro , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , PPAR alfa/metabolismo , Receptores da Tireotropina/deficiência , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Fatores de Risco , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Tireotropina/farmacologia
10.
Cell Physiol Biochem ; 33(5): 1568-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24854845

RESUMO

BACKGROUND: Fatty liver is a major metabolic disorder that occurs during early lactation in high-producing dairy cows. Sterol regulatory element-binding protein-1c (SREBP-1c) is an important transcription factor that regulates lipid synthesis by regulating the expression of lipid metabolism genes. METHODS: In this study, we reduced the expression of SREBP-1c by adenovirus-mediated SREBP-1c with a low expression vector (AD-GFP-SREBP-1c) to study the effects of SREBP-1c on lipid deposits in bovine hepatocytes. The expression levels and enzyme activities of SERBP-1c and its target genes were determined by real-time PCR, western blot, and ELISA. RESULTS: These results showed that Ad-GFP-SREBP-1c could inhibit SREBP-1c expression. The expression of the lipid synthesis enzyme acetyl-CoA carboxylase (ACC) was down-regulated. The expression levels of the lipid oxidation enzymes long-chain fatty acyl-COA synthetase (ACSL-1), carnitine palmitoyltransferase І (CPT-І), carnitine palmitoyltransferase II (CPT- II), and ß-hydroxyacyl-CoA-DH (HADH) were significantly elevated. Furthermore, the expression levels of factors involved in the assembly and transport of very low-density lipoproteins (VLDLs), such as apolipoprotein B100 (ApoB), apolipoprotein E (ApoE), and microsomal triglyceride transfer protein (MTTP) were decreased comparison with the negative control and the blank control groups, but the low-density lipoprotein receptor (LDLR) was elevated. The concentrations of TG (triglyceride) and VLDL were also reduced. CONCLUSION: These data suggest that low SREBP-1c expression can decrease lipid synthesis, increase lipid oxidation, and decrease the TG and VLDL content in bovine hepatocytes.


Assuntos
Inativação Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Adenoviridae/metabolismo , Animais , Bovinos , Células Cultivadas , Perfilação da Expressão Gênica , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 31(8): 1788-95, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21546605

RESUMO

OBJECTIVE: Sterol regulatory element-binding protein-1 (SREBP-1) is nutritionally regulated and is known to be a key transcription factor regulating lipogenic enzymes. The goal of this study was to evaluate the roles of SREBP-1 in dyslipidemia and atherosclerosis. METHODS AND RESULTS: Transgenic mice that overexpress SREBP-1c in the liver and SREBP-1-deficient mice were crossed with low-density lipoprotein receptor (LDLR)-deficient mice, and the plasma lipids and atherosclerosis were analyzed. Hepatic SREBP-1c overexpression in LDLR-deficient mice caused postprandial hypertriglyceridemia, increased very-low-density lipoprotein (VLDL) cholesterol, and decreased high-density lipoprotein cholesterol in plasma, which resulted in accelerated aortic atheroma formation. Conversely, absence of SREBP-1 suppressed Western diet-induced hyperlipidemia in LDLR-deficient mice and ameliorated atherosclerosis. In contrast, bone marrow-specific SREBP-1 deficiency did not alter the development of atherosclerosis. The size of nascent VLDL particles secreted from the liver was increased in SREBP-1c transgenic mice and reduced in SREBP-1-deficient mice, accompanied by upregulation and downregulation of phospholipid transfer protein expression, respectively. CONCLUSIONS: Hepatic SREBP-1c determines plasma triglycerides and remnant cholesterol and contributes to atherosclerosis in hyperlipidemic states. Hepatic SREBP-1c also regulates the size of nascent VLDL particles.


Assuntos
Aterosclerose/etiologia , Lipoproteínas/sangue , Receptores de LDL/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Colesterol/sangue , Humanos , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/química , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Tamanho da Partícula , Proteínas de Transferência de Fosfolipídeos/sangue , Receptores de LDL/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/sangue
12.
J Lipid Res ; 49(4): 814-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18178930

RESUMO

Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.


Assuntos
Regulação da Expressão Gênica , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triazenos/farmacologia , Triglicerídeos/metabolismo
13.
Mol Cell Biol ; 26(18): 6786-98, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16943421

RESUMO

Stearoyl-coenzyme A desaturase (SCD) is the rate-limiting enzyme necessary for the biosynthesis of monounsaturated fatty acids. In this study, we investigated the regulation of mouse SCD1 by liver X receptor (LXR) and its role in plasma lipoprotein metabolism upon LXR activation. In vivo, the SCD1 gene remained induced upon LXR activation in the absence of sterol regulatory element-binding protein 1c (SREBP-1c), a known transcriptional regulator of SCD1. Serial deletion and point mutation analyses in reporter gene assays, as well as a gel mobility shift assay, identified an LXR response element in the mouse SCD1 promoter. In addition, SCD1 deficiency prevented the hypertriglyceridemic effect and reduced hepatic triglyceride accumulation associated with LXR activation despite induced hepatic expression of SREBP-1c protein and several SREBP1c and LXR target genes involved in lipoprotein metabolism. Unlike wild-type mice, SCD1-deficient mice failed to elevate the hepatic triglyceride monounsaturated acid (MUFA)/saturated fatty acid (SFA) ratio despite induction of the SCD2 gene. Together, these findings suggest that SCD1 plays a pivotal role in the regulation of hepatic and plasma triglyceride accumulation, possibly by modulating the MUFA-to-SFA ratio. In addition, SCD1 deficiency also increased plasma high-density lipoprotein cholesterol levels induced by LXR activation.


Assuntos
HDL-Colesterol/sangue , Proteínas de Ligação a DNA/metabolismo , Hipertrigliceridemia/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Estearoil-CoA Dessaturase/deficiência , Animais , Sequência de Bases , Proteínas de Ligação a DNA/agonistas , Humanos , Hidrocarbonetos Fluorados , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Receptores X do Fígado , Camundongos , Dados de Sequência Molecular , Receptores Nucleares Órfãos , Receptor de Pregnano X , Ligação Proteica/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores do Ácido Retinoico/metabolismo , Receptores de Esteroides/metabolismo , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética , Deleção de Sequência/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Sulfonamidas/farmacologia
14.
Curr Opin Clin Nutr Metab Care ; 9(2): 84-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16477170

RESUMO

PURPOSE OF REVIEW: With the increasing incidence of obesity today, related complications such as diabetes, insulin resistance and hepatic steatosis are also becoming major concerns. Since these conditions share a common factor, aberrations in lipid metabolism, understanding the molecular changes that lead to abnormal lipid partitioning has become key to combating the obesity epidemic. RECENT FINDINGS: The enzyme stearoyl-coenzyme A desaturase 1 (SCD1) has been shown to be intimately involved in both the lipogenic as well as the lipid oxidative pathways. Our studies with the SCD1 mouse model have established that these animals are lean and protected from leptin deficiency-induced and diet-induced obesity. Consequently, they also show greater whole body insulin sensitivity than wild-type mice. SCD1 mice have decreased expression of genes of lipogenesis and increased expression of lipid oxidative genes. The main transcription factors controlling genes of lipid synthesis and oxidation are sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-alpha (PPARalpha), respectively. Here, we review some studies that show that the effects of SCD1 deficiency on whole body adiposity may be partly dependent on sterol regulatory element binding protein-1c, but are most likely independent of peroxisome proliferator-activated receptor-alpha. SUMMARY: Our findings indicate that SCD1 is a key controller of lipid partitioning between lipogenesis and oxidation. While some questions regarding the molecular changes downstream of SCD1 deletion are yet to be answered, the studies outlined below clearly point to SCD1 as a highly promising target in combating obesity as well as related complications.


Assuntos
Metabolismo dos Lipídeos , Obesidade/metabolismo , PPAR alfa/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Animais , Humanos , Lipídeos/biossíntese , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Oxirredução , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA